1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
44 #include <linux/ctype.h>
47 #include <asm/uaccess.h>
49 #include <linux/pci.h>
51 /*****************************************************************************/
54 * Define different board types. Use the standard Stallion "assigned"
55 * board numbers. Boards supported in this driver are abbreviated as
56 * EIO = EasyIO and ECH = EasyConnection 8/32.
62 #define BRD_ECH64PCI 27
63 #define BRD_EASYIOPCI 28
69 unsigned long memaddr;
74 static unsigned int stl_nrbrds;
76 /*****************************************************************************/
79 * Define some important driver characteristics. Device major numbers
80 * allocated as per Linux Device Registry.
82 #ifndef STL_SIOMEMMAJOR
83 #define STL_SIOMEMMAJOR 28
85 #ifndef STL_SERIALMAJOR
86 #define STL_SERIALMAJOR 24
88 #ifndef STL_CALLOUTMAJOR
89 #define STL_CALLOUTMAJOR 25
93 * Set the TX buffer size. Bigger is better, but we don't want
94 * to chew too much memory with buffers!
96 #define STL_TXBUFLOW 512
97 #define STL_TXBUFSIZE 4096
99 /*****************************************************************************/
102 * Define our local driver identity first. Set up stuff to deal with
103 * all the local structures required by a serial tty driver.
105 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
106 static char *stl_drvname = "stallion";
107 static char *stl_drvversion = "5.6.0";
109 static struct tty_driver *stl_serial;
112 * Define a local default termios struct. All ports will be created
113 * with this termios initially. Basically all it defines is a raw port
114 * at 9600, 8 data bits, 1 stop bit.
116 static struct ktermios stl_deftermios = {
117 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
124 * Define global place to put buffer overflow characters.
126 static char stl_unwanted[SC26198_RXFIFOSIZE];
128 /*****************************************************************************/
130 static DEFINE_MUTEX(stl_brdslock);
131 static struct stlbrd *stl_brds[STL_MAXBRDS];
133 static const struct tty_port_operations stl_port_ops;
136 * Per board state flags. Used with the state field of the board struct.
137 * Not really much here!
139 #define BRD_FOUND 0x1
140 #define STL_PROBED 0x2
144 * Define the port structure istate flags. These set of flags are
145 * modified at interrupt time - so setting and reseting them needs
146 * to be atomic. Use the bit clear/setting routines for this.
148 #define ASYI_TXBUSY 1
150 #define ASYI_TXFLOWED 3
153 * Define an array of board names as printable strings. Handy for
154 * referencing boards when printing trace and stuff.
156 static char *stl_brdnames[] = {
188 /*****************************************************************************/
191 * Define some string labels for arguments passed from the module
192 * load line. These allow for easy board definitions, and easy
193 * modification of the io, memory and irq resoucres.
195 static unsigned int stl_nargs;
196 static char *board0[4];
197 static char *board1[4];
198 static char *board2[4];
199 static char *board3[4];
201 static char **stl_brdsp[] = {
209 * Define a set of common board names, and types. This is used to
210 * parse any module arguments.
217 { "easyio", BRD_EASYIO },
218 { "eio", BRD_EASYIO },
219 { "20", BRD_EASYIO },
220 { "ec8/32", BRD_ECH },
221 { "ec8/32-at", BRD_ECH },
222 { "ec8/32-isa", BRD_ECH },
224 { "echat", BRD_ECH },
226 { "ec8/32-mc", BRD_ECHMC },
227 { "ec8/32-mca", BRD_ECHMC },
228 { "echmc", BRD_ECHMC },
229 { "echmca", BRD_ECHMC },
231 { "ec8/32-pc", BRD_ECHPCI },
232 { "ec8/32-pci", BRD_ECHPCI },
233 { "26", BRD_ECHPCI },
234 { "ec8/64-pc", BRD_ECH64PCI },
235 { "ec8/64-pci", BRD_ECH64PCI },
236 { "ech-pci", BRD_ECH64PCI },
237 { "echpci", BRD_ECH64PCI },
238 { "echpc", BRD_ECH64PCI },
239 { "27", BRD_ECH64PCI },
240 { "easyio-pc", BRD_EASYIOPCI },
241 { "easyio-pci", BRD_EASYIOPCI },
242 { "eio-pci", BRD_EASYIOPCI },
243 { "eiopci", BRD_EASYIOPCI },
244 { "28", BRD_EASYIOPCI },
248 * Define the module agruments.
251 module_param_array(board0, charp, &stl_nargs, 0);
252 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
253 module_param_array(board1, charp, &stl_nargs, 0);
254 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
255 module_param_array(board2, charp, &stl_nargs, 0);
256 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
257 module_param_array(board3, charp, &stl_nargs, 0);
258 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
260 /*****************************************************************************/
263 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
264 * to the directly accessible io ports of these boards (not the uarts -
265 * they are in cd1400.h and sc26198.h).
267 #define EIO_8PORTRS 0x04
268 #define EIO_4PORTRS 0x05
269 #define EIO_8PORTDI 0x00
270 #define EIO_8PORTM 0x06
272 #define EIO_IDBITMASK 0x07
274 #define EIO_BRDMASK 0xf0
277 #define ID_BRD16 0x30
279 #define EIO_INTRPEND 0x08
280 #define EIO_INTEDGE 0x00
281 #define EIO_INTLEVEL 0x08
285 #define ECH_IDBITMASK 0xe0
286 #define ECH_BRDENABLE 0x08
287 #define ECH_BRDDISABLE 0x00
288 #define ECH_INTENABLE 0x01
289 #define ECH_INTDISABLE 0x00
290 #define ECH_INTLEVEL 0x02
291 #define ECH_INTEDGE 0x00
292 #define ECH_INTRPEND 0x01
293 #define ECH_BRDRESET 0x01
295 #define ECHMC_INTENABLE 0x01
296 #define ECHMC_BRDRESET 0x02
298 #define ECH_PNLSTATUS 2
299 #define ECH_PNL16PORT 0x20
300 #define ECH_PNLIDMASK 0x07
301 #define ECH_PNLXPID 0x40
302 #define ECH_PNLINTRPEND 0x80
304 #define ECH_ADDR2MASK 0x1e0
307 * Define the vector mapping bits for the programmable interrupt board
308 * hardware. These bits encode the interrupt for the board to use - it
309 * is software selectable (except the EIO-8M).
311 static unsigned char stl_vecmap[] = {
312 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
313 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
317 * Lock ordering is that you may not take stallion_lock holding
321 static spinlock_t brd_lock; /* Guard the board mapping */
322 static spinlock_t stallion_lock; /* Guard the tty driver */
325 * Set up enable and disable macros for the ECH boards. They require
326 * the secondary io address space to be activated and deactivated.
327 * This way all ECH boards can share their secondary io region.
328 * If this is an ECH-PCI board then also need to set the page pointer
329 * to point to the correct page.
331 #define BRDENABLE(brdnr,pagenr) \
332 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
333 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
334 stl_brds[(brdnr)]->ioctrl); \
335 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
336 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
338 #define BRDDISABLE(brdnr) \
339 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
340 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
341 stl_brds[(brdnr)]->ioctrl);
343 #define STL_CD1400MAXBAUD 230400
344 #define STL_SC26198MAXBAUD 460800
346 #define STL_BAUDBASE 115200
347 #define STL_CLOSEDELAY (5 * HZ / 10)
349 /*****************************************************************************/
352 * Define the Stallion PCI vendor and device IDs.
354 #ifndef PCI_VENDOR_ID_STALLION
355 #define PCI_VENDOR_ID_STALLION 0x124d
357 #ifndef PCI_DEVICE_ID_ECHPCI832
358 #define PCI_DEVICE_ID_ECHPCI832 0x0000
360 #ifndef PCI_DEVICE_ID_ECHPCI864
361 #define PCI_DEVICE_ID_ECHPCI864 0x0002
363 #ifndef PCI_DEVICE_ID_EIOPCI
364 #define PCI_DEVICE_ID_EIOPCI 0x0003
368 * Define structure to hold all Stallion PCI boards.
371 static struct pci_device_id stl_pcibrds[] = {
372 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864),
373 .driver_data = BRD_ECH64PCI },
374 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI),
375 .driver_data = BRD_EASYIOPCI },
376 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832),
377 .driver_data = BRD_ECHPCI },
378 { PCI_DEVICE(PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410),
379 .driver_data = BRD_ECHPCI },
382 MODULE_DEVICE_TABLE(pci, stl_pcibrds);
384 /*****************************************************************************/
387 * Define macros to extract a brd/port number from a minor number.
389 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
390 #define MINOR2PORT(min) ((min) & 0x3f)
393 * Define a baud rate table that converts termios baud rate selector
394 * into the actual baud rate value. All baud rate calculations are
395 * based on the actual baud rate required.
397 static unsigned int stl_baudrates[] = {
398 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
399 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
402 /*****************************************************************************/
405 * Declare all those functions in this driver!
408 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
409 static int stl_brdinit(struct stlbrd *brdp);
410 static int stl_getportstats(struct tty_struct *tty, struct stlport *portp, comstats_t __user *cp);
411 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
414 * CD1400 uart specific handling functions.
416 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
417 static int stl_cd1400getreg(struct stlport *portp, int regnr);
418 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
419 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
420 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
421 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
422 static int stl_cd1400getsignals(struct stlport *portp);
423 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
424 static void stl_cd1400ccrwait(struct stlport *portp);
425 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
426 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
427 static void stl_cd1400disableintrs(struct stlport *portp);
428 static void stl_cd1400sendbreak(struct stlport *portp, int len);
429 static void stl_cd1400flowctrl(struct stlport *portp, int state);
430 static void stl_cd1400sendflow(struct stlport *portp, int state);
431 static void stl_cd1400flush(struct stlport *portp);
432 static int stl_cd1400datastate(struct stlport *portp);
433 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
434 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
435 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
436 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
437 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
439 static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
442 * SC26198 uart specific handling functions.
444 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
445 static int stl_sc26198getreg(struct stlport *portp, int regnr);
446 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
447 static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
448 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
449 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
450 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
451 static int stl_sc26198getsignals(struct stlport *portp);
452 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
453 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
454 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
455 static void stl_sc26198disableintrs(struct stlport *portp);
456 static void stl_sc26198sendbreak(struct stlport *portp, int len);
457 static void stl_sc26198flowctrl(struct stlport *portp, int state);
458 static void stl_sc26198sendflow(struct stlport *portp, int state);
459 static void stl_sc26198flush(struct stlport *portp);
460 static int stl_sc26198datastate(struct stlport *portp);
461 static void stl_sc26198wait(struct stlport *portp);
462 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
463 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
464 static void stl_sc26198txisr(struct stlport *port);
465 static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
466 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
467 static void stl_sc26198rxbadchars(struct stlport *portp);
468 static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
470 /*****************************************************************************/
473 * Generic UART support structure.
475 typedef struct uart {
476 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
477 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
478 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
479 int (*getsignals)(struct stlport *portp);
480 void (*setsignals)(struct stlport *portp, int dtr, int rts);
481 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
482 void (*startrxtx)(struct stlport *portp, int rx, int tx);
483 void (*disableintrs)(struct stlport *portp);
484 void (*sendbreak)(struct stlport *portp, int len);
485 void (*flowctrl)(struct stlport *portp, int state);
486 void (*sendflow)(struct stlport *portp, int state);
487 void (*flush)(struct stlport *portp);
488 int (*datastate)(struct stlport *portp);
489 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
493 * Define some macros to make calling these functions nice and clean.
495 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
496 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
497 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
498 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
499 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
500 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
501 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
502 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
503 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
504 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
505 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
506 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
507 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
509 /*****************************************************************************/
512 * CD1400 UART specific data initialization.
514 static uart_t stl_cd1400uart = {
518 stl_cd1400getsignals,
519 stl_cd1400setsignals,
520 stl_cd1400enablerxtx,
522 stl_cd1400disableintrs,
532 * Define the offsets within the register bank of a cd1400 based panel.
533 * These io address offsets are common to the EasyIO board as well.
541 #define EREG_BANKSIZE 8
543 #define CD1400_CLK 25000000
544 #define CD1400_CLK8M 20000000
547 * Define the cd1400 baud rate clocks. These are used when calculating
548 * what clock and divisor to use for the required baud rate. Also
549 * define the maximum baud rate allowed, and the default base baud.
551 static int stl_cd1400clkdivs[] = {
552 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
555 /*****************************************************************************/
558 * SC26198 UART specific data initization.
560 static uart_t stl_sc26198uart = {
561 stl_sc26198panelinit,
564 stl_sc26198getsignals,
565 stl_sc26198setsignals,
566 stl_sc26198enablerxtx,
567 stl_sc26198startrxtx,
568 stl_sc26198disableintrs,
569 stl_sc26198sendbreak,
573 stl_sc26198datastate,
578 * Define the offsets within the register bank of a sc26198 based panel.
586 #define XP_BANKSIZE 4
589 * Define the sc26198 baud rate table. Offsets within the table
590 * represent the actual baud rate selector of sc26198 registers.
592 static unsigned int sc26198_baudtable[] = {
593 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
594 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
595 230400, 460800, 921600
598 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
600 /*****************************************************************************/
603 * Define the driver info for a user level control device. Used mainly
604 * to get at port stats - only not using the port device itself.
606 static const struct file_operations stl_fsiomem = {
607 .owner = THIS_MODULE,
608 .ioctl = stl_memioctl,
611 static struct class *stallion_class;
613 static void stl_cd_change(struct stlport *portp)
615 unsigned int oldsigs = portp->sigs;
616 struct tty_struct *tty = tty_port_tty_get(&portp->port);
621 portp->sigs = stl_getsignals(portp);
623 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
624 wake_up_interruptible(&portp->port.open_wait);
626 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0))
627 if (portp->port.flags & ASYNC_CHECK_CD)
633 * Check for any arguments passed in on the module load command line.
636 /*****************************************************************************/
639 * Parse the supplied argument string, into the board conf struct.
642 static int __init stl_parsebrd(struct stlconf *confp, char **argp)
647 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
649 if ((argp[0] == NULL) || (*argp[0] == 0))
652 for (sp = argp[0], i = 0; (*sp != 0) && (i < 25); sp++, i++)
655 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++)
656 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
659 if (i == ARRAY_SIZE(stl_brdstr)) {
660 printk("STALLION: unknown board name, %s?\n", argp[0]);
664 confp->brdtype = stl_brdstr[i].type;
667 if ((argp[i] != NULL) && (*argp[i] != 0))
668 confp->ioaddr1 = simple_strtoul(argp[i], NULL, 0);
670 if (confp->brdtype == BRD_ECH) {
671 if ((argp[i] != NULL) && (*argp[i] != 0))
672 confp->ioaddr2 = simple_strtoul(argp[i], NULL, 0);
675 if ((argp[i] != NULL) && (*argp[i] != 0))
676 confp->irq = simple_strtoul(argp[i], NULL, 0);
680 /*****************************************************************************/
683 * Allocate a new board structure. Fill out the basic info in it.
686 static struct stlbrd *stl_allocbrd(void)
690 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
692 printk("STALLION: failed to allocate memory (size=%Zd)\n",
693 sizeof(struct stlbrd));
697 brdp->magic = STL_BOARDMAGIC;
701 /*****************************************************************************/
703 static int stl_open(struct tty_struct *tty, struct file *filp)
705 struct stlport *portp;
707 struct tty_port *port;
708 unsigned int minordev, brdnr, panelnr;
711 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
713 minordev = tty->index;
714 brdnr = MINOR2BRD(minordev);
715 if (brdnr >= stl_nrbrds)
717 brdp = stl_brds[brdnr];
721 minordev = MINOR2PORT(minordev);
722 for (portnr = -1, panelnr = 0; panelnr < STL_MAXPANELS; panelnr++) {
723 if (brdp->panels[panelnr] == NULL)
725 if (minordev < brdp->panels[panelnr]->nrports) {
729 minordev -= brdp->panels[panelnr]->nrports;
734 portp = brdp->panels[panelnr]->ports[portnr];
740 * On the first open of the device setup the port hardware, and
741 * initialize the per port data structure.
743 tty_port_tty_set(port, tty);
744 tty->driver_data = portp;
747 if ((port->flags & ASYNC_INITIALIZED) == 0) {
748 if (!portp->tx.buf) {
749 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
752 portp->tx.head = portp->tx.buf;
753 portp->tx.tail = portp->tx.buf;
755 stl_setport(portp, tty->termios);
756 portp->sigs = stl_getsignals(portp);
757 stl_setsignals(portp, 1, 1);
758 stl_enablerxtx(portp, 1, 1);
759 stl_startrxtx(portp, 1, 0);
760 clear_bit(TTY_IO_ERROR, &tty->flags);
761 port->flags |= ASYNC_INITIALIZED;
763 return tty_port_block_til_ready(port, tty, filp);
766 /*****************************************************************************/
768 static int stl_carrier_raised(struct tty_port *port)
770 struct stlport *portp = container_of(port, struct stlport, port);
771 return (portp->sigs & TIOCM_CD) ? 1 : 0;
774 static void stl_raise_dtr_rts(struct tty_port *port)
776 struct stlport *portp = container_of(port, struct stlport, port);
777 /* Takes brd_lock internally */
778 stl_setsignals(portp, 1, 1);
781 /*****************************************************************************/
783 static void stl_flushbuffer(struct tty_struct *tty)
785 struct stlport *portp;
787 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
789 portp = tty->driver_data;
797 /*****************************************************************************/
799 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
801 struct stlport *portp;
804 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
806 portp = tty->driver_data;
812 tend = jiffies + timeout;
815 while (stl_datastate(portp)) {
816 if (signal_pending(current))
818 msleep_interruptible(20);
819 if (time_after_eq(jiffies, tend))
825 /*****************************************************************************/
827 static void stl_close(struct tty_struct *tty, struct file *filp)
829 struct stlport *portp;
830 struct tty_port *port;
833 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
835 portp = tty->driver_data;
836 BUG_ON(portp == NULL);
840 if (tty_port_close_start(port, tty, filp) == 0)
843 * May want to wait for any data to drain before closing. The BUSY
844 * flag keeps track of whether we are still sending or not - it is
845 * very accurate for the cd1400, not quite so for the sc26198.
846 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
848 stl_waituntilsent(tty, (HZ / 2));
850 spin_lock_irqsave(&port->lock, flags);
851 portp->port.flags &= ~ASYNC_INITIALIZED;
852 spin_unlock_irqrestore(&port->lock, flags);
854 stl_disableintrs(portp);
855 if (tty->termios->c_cflag & HUPCL)
856 stl_setsignals(portp, 0, 0);
857 stl_enablerxtx(portp, 0, 0);
858 stl_flushbuffer(tty);
860 if (portp->tx.buf != NULL) {
861 kfree(portp->tx.buf);
862 portp->tx.buf = NULL;
863 portp->tx.head = NULL;
864 portp->tx.tail = NULL;
867 tty_port_close_end(port, tty);
868 tty_port_tty_set(port, NULL);
871 /*****************************************************************************/
874 * Write routine. Take data and stuff it in to the TX ring queue.
875 * If transmit interrupts are not running then start them.
878 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
880 struct stlport *portp;
881 unsigned int len, stlen;
882 unsigned char *chbuf;
885 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
887 portp = tty->driver_data;
890 if (portp->tx.buf == NULL)
894 * If copying direct from user space we must cater for page faults,
895 * causing us to "sleep" here for a while. To handle this copy in all
896 * the data we need now, into a local buffer. Then when we got it all
897 * copy it into the TX buffer.
899 chbuf = (unsigned char *) buf;
901 head = portp->tx.head;
902 tail = portp->tx.tail;
904 len = STL_TXBUFSIZE - (head - tail) - 1;
905 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
907 len = tail - head - 1;
911 len = min(len, (unsigned int)count);
914 stlen = min(len, stlen);
915 memcpy(head, chbuf, stlen);
920 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
921 head = portp->tx.buf;
925 portp->tx.head = head;
927 clear_bit(ASYI_TXLOW, &portp->istate);
928 stl_startrxtx(portp, -1, 1);
933 /*****************************************************************************/
935 static int stl_putchar(struct tty_struct *tty, unsigned char ch)
937 struct stlport *portp;
941 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
943 portp = tty->driver_data;
946 if (portp->tx.buf == NULL)
949 head = portp->tx.head;
950 tail = portp->tx.tail;
952 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
957 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
958 head = portp->tx.buf;
960 portp->tx.head = head;
964 /*****************************************************************************/
967 * If there are any characters in the buffer then make sure that TX
968 * interrupts are on and get'em out. Normally used after the putchar
969 * routine has been called.
972 static void stl_flushchars(struct tty_struct *tty)
974 struct stlport *portp;
976 pr_debug("stl_flushchars(tty=%p)\n", tty);
978 portp = tty->driver_data;
981 if (portp->tx.buf == NULL)
984 stl_startrxtx(portp, -1, 1);
987 /*****************************************************************************/
989 static int stl_writeroom(struct tty_struct *tty)
991 struct stlport *portp;
994 pr_debug("stl_writeroom(tty=%p)\n", tty);
996 portp = tty->driver_data;
999 if (portp->tx.buf == NULL)
1002 head = portp->tx.head;
1003 tail = portp->tx.tail;
1004 return (head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1);
1007 /*****************************************************************************/
1010 * Return number of chars in the TX buffer. Normally we would just
1011 * calculate the number of chars in the buffer and return that, but if
1012 * the buffer is empty and TX interrupts are still on then we return
1013 * that the buffer still has 1 char in it. This way whoever called us
1014 * will not think that ALL chars have drained - since the UART still
1015 * must have some chars in it (we are busy after all).
1018 static int stl_charsinbuffer(struct tty_struct *tty)
1020 struct stlport *portp;
1024 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1026 portp = tty->driver_data;
1029 if (portp->tx.buf == NULL)
1032 head = portp->tx.head;
1033 tail = portp->tx.tail;
1034 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1035 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1040 /*****************************************************************************/
1043 * Generate the serial struct info.
1046 static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1048 struct serial_struct sio;
1049 struct stlbrd *brdp;
1051 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1053 memset(&sio, 0, sizeof(struct serial_struct));
1054 sio.line = portp->portnr;
1055 sio.port = portp->ioaddr;
1056 sio.flags = portp->port.flags;
1057 sio.baud_base = portp->baud_base;
1058 sio.close_delay = portp->close_delay;
1059 sio.closing_wait = portp->closing_wait;
1060 sio.custom_divisor = portp->custom_divisor;
1062 if (portp->uartp == &stl_cd1400uart) {
1063 sio.type = PORT_CIRRUS;
1064 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1066 sio.type = PORT_UNKNOWN;
1067 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1070 brdp = stl_brds[portp->brdnr];
1072 sio.irq = brdp->irq;
1074 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1077 /*****************************************************************************/
1080 * Set port according to the serial struct info.
1081 * At this point we do not do any auto-configure stuff, so we will
1082 * just quietly ignore any requests to change irq, etc.
1085 static int stl_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1087 struct stlport * portp = tty->driver_data;
1088 struct serial_struct sio;
1090 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1092 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1094 if (!capable(CAP_SYS_ADMIN)) {
1095 if ((sio.baud_base != portp->baud_base) ||
1096 (sio.close_delay != portp->close_delay) ||
1097 ((sio.flags & ~ASYNC_USR_MASK) !=
1098 (portp->port.flags & ~ASYNC_USR_MASK)))
1102 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1103 (sio.flags & ASYNC_USR_MASK);
1104 portp->baud_base = sio.baud_base;
1105 portp->close_delay = sio.close_delay;
1106 portp->closing_wait = sio.closing_wait;
1107 portp->custom_divisor = sio.custom_divisor;
1108 stl_setport(portp, tty->termios);
1112 /*****************************************************************************/
1114 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1116 struct stlport *portp;
1118 portp = tty->driver_data;
1121 if (tty->flags & (1 << TTY_IO_ERROR))
1124 return stl_getsignals(portp);
1127 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1128 unsigned int set, unsigned int clear)
1130 struct stlport *portp;
1131 int rts = -1, dtr = -1;
1133 portp = tty->driver_data;
1136 if (tty->flags & (1 << TTY_IO_ERROR))
1139 if (set & TIOCM_RTS)
1141 if (set & TIOCM_DTR)
1143 if (clear & TIOCM_RTS)
1145 if (clear & TIOCM_DTR)
1148 stl_setsignals(portp, dtr, rts);
1152 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1154 struct stlport *portp;
1156 void __user *argp = (void __user *)arg;
1158 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd,
1161 portp = tty->driver_data;
1165 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1166 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS))
1167 if (tty->flags & (1 << TTY_IO_ERROR))
1176 rc = stl_getserial(portp, argp);
1179 rc = stl_setserial(tty, argp);
1181 case COM_GETPORTSTATS:
1182 rc = stl_getportstats(tty, portp, argp);
1184 case COM_CLRPORTSTATS:
1185 rc = stl_clrportstats(portp, argp);
1191 case TIOCSERGSTRUCT:
1192 case TIOCSERGETMULTI:
1193 case TIOCSERSETMULTI:
1202 /*****************************************************************************/
1205 * Start the transmitter again. Just turn TX interrupts back on.
1208 static void stl_start(struct tty_struct *tty)
1210 struct stlport *portp;
1212 pr_debug("stl_start(tty=%p)\n", tty);
1214 portp = tty->driver_data;
1217 stl_startrxtx(portp, -1, 1);
1220 /*****************************************************************************/
1222 static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1224 struct stlport *portp;
1225 struct ktermios *tiosp;
1227 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1229 portp = tty->driver_data;
1233 tiosp = tty->termios;
1234 if ((tiosp->c_cflag == old->c_cflag) &&
1235 (tiosp->c_iflag == old->c_iflag))
1238 stl_setport(portp, tiosp);
1239 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1241 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1242 tty->hw_stopped = 0;
1245 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1246 wake_up_interruptible(&portp->port.open_wait);
1249 /*****************************************************************************/
1252 * Attempt to flow control who ever is sending us data. Based on termios
1253 * settings use software or/and hardware flow control.
1256 static void stl_throttle(struct tty_struct *tty)
1258 struct stlport *portp;
1260 pr_debug("stl_throttle(tty=%p)\n", tty);
1262 portp = tty->driver_data;
1265 stl_flowctrl(portp, 0);
1268 /*****************************************************************************/
1271 * Unflow control the device sending us data...
1274 static void stl_unthrottle(struct tty_struct *tty)
1276 struct stlport *portp;
1278 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1280 portp = tty->driver_data;
1283 stl_flowctrl(portp, 1);
1286 /*****************************************************************************/
1289 * Stop the transmitter. Basically to do this we will just turn TX
1293 static void stl_stop(struct tty_struct *tty)
1295 struct stlport *portp;
1297 pr_debug("stl_stop(tty=%p)\n", tty);
1299 portp = tty->driver_data;
1302 stl_startrxtx(portp, -1, 0);
1305 /*****************************************************************************/
1308 * Hangup this port. This is pretty much like closing the port, only
1309 * a little more brutal. No waiting for data to drain. Shutdown the
1310 * port and maybe drop signals.
1313 static void stl_hangup(struct tty_struct *tty)
1315 struct stlport *portp;
1316 struct tty_port *port;
1317 unsigned long flags;
1319 pr_debug("stl_hangup(tty=%p)\n", tty);
1321 portp = tty->driver_data;
1324 port = &portp->port;
1326 spin_lock_irqsave(&port->lock, flags);
1327 port->flags &= ~ASYNC_INITIALIZED;
1328 spin_unlock_irqrestore(&port->lock, flags);
1330 stl_disableintrs(portp);
1331 if (tty->termios->c_cflag & HUPCL)
1332 stl_setsignals(portp, 0, 0);
1333 stl_enablerxtx(portp, 0, 0);
1334 stl_flushbuffer(tty);
1336 set_bit(TTY_IO_ERROR, &tty->flags);
1337 if (portp->tx.buf != NULL) {
1338 kfree(portp->tx.buf);
1339 portp->tx.buf = NULL;
1340 portp->tx.head = NULL;
1341 portp->tx.tail = NULL;
1343 tty_port_hangup(port);
1346 /*****************************************************************************/
1348 static int stl_breakctl(struct tty_struct *tty, int state)
1350 struct stlport *portp;
1352 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1354 portp = tty->driver_data;
1358 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1362 /*****************************************************************************/
1364 static void stl_sendxchar(struct tty_struct *tty, char ch)
1366 struct stlport *portp;
1368 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1370 portp = tty->driver_data;
1374 if (ch == STOP_CHAR(tty))
1375 stl_sendflow(portp, 0);
1376 else if (ch == START_CHAR(tty))
1377 stl_sendflow(portp, 1);
1379 stl_putchar(tty, ch);
1382 /*****************************************************************************/
1387 * Format info for a specified port. The line is deliberately limited
1388 * to 80 characters. (If it is too long it will be truncated, if too
1389 * short then padded with spaces).
1392 static int stl_portinfo(struct stlport *portp, int portnr, char *pos)
1398 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1399 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1400 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1402 if (portp->stats.rxframing)
1403 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1404 if (portp->stats.rxparity)
1405 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1406 if (portp->stats.rxbreaks)
1407 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1408 if (portp->stats.rxoverrun)
1409 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1411 sigs = stl_getsignals(portp);
1412 cnt = sprintf(sp, "%s%s%s%s%s ",
1413 (sigs & TIOCM_RTS) ? "|RTS" : "",
1414 (sigs & TIOCM_CTS) ? "|CTS" : "",
1415 (sigs & TIOCM_DTR) ? "|DTR" : "",
1416 (sigs & TIOCM_CD) ? "|DCD" : "",
1417 (sigs & TIOCM_DSR) ? "|DSR" : "");
1421 for (cnt = sp - pos; cnt < (MAXLINE - 1); cnt++)
1424 pos[(MAXLINE - 2)] = '+';
1425 pos[(MAXLINE - 1)] = '\n';
1430 /*****************************************************************************/
1433 * Port info, read from the /proc file system.
1436 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1438 struct stlbrd *brdp;
1439 struct stlpanel *panelp;
1440 struct stlport *portp;
1441 unsigned int brdnr, panelnr, portnr;
1442 int totalport, curoff, maxoff;
1445 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1446 "data=%p\n", page, start, off, count, eof, data);
1453 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1455 while (pos < (page + MAXLINE - 1))
1462 * We scan through for each board, panel and port. The offset is
1463 * calculated on the fly, and irrelevant ports are skipped.
1465 for (brdnr = 0; brdnr < stl_nrbrds; brdnr++) {
1466 brdp = stl_brds[brdnr];
1469 if (brdp->state == 0)
1472 maxoff = curoff + (brdp->nrports * MAXLINE);
1473 if (off >= maxoff) {
1478 totalport = brdnr * STL_MAXPORTS;
1479 for (panelnr = 0; panelnr < brdp->nrpanels; panelnr++) {
1480 panelp = brdp->panels[panelnr];
1484 maxoff = curoff + (panelp->nrports * MAXLINE);
1485 if (off >= maxoff) {
1487 totalport += panelp->nrports;
1491 for (portnr = 0; portnr < panelp->nrports; portnr++,
1493 portp = panelp->ports[portnr];
1496 if (off >= (curoff += MAXLINE))
1498 if ((pos - page + MAXLINE) > count)
1500 pos += stl_portinfo(portp, totalport, pos);
1512 /*****************************************************************************/
1515 * All board interrupts are vectored through here first. This code then
1516 * calls off to the approrpriate board interrupt handlers.
1519 static irqreturn_t stl_intr(int irq, void *dev_id)
1521 struct stlbrd *brdp = dev_id;
1523 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, brdp->irq);
1525 return IRQ_RETVAL((* brdp->isr)(brdp));
1528 /*****************************************************************************/
1531 * Interrupt service routine for EasyIO board types.
1534 static int stl_eiointr(struct stlbrd *brdp)
1536 struct stlpanel *panelp;
1537 unsigned int iobase;
1540 spin_lock(&brd_lock);
1541 panelp = brdp->panels[0];
1542 iobase = panelp->iobase;
1543 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1545 (* panelp->isr)(panelp, iobase);
1547 spin_unlock(&brd_lock);
1551 /*****************************************************************************/
1554 * Interrupt service routine for ECH-AT board types.
1557 static int stl_echatintr(struct stlbrd *brdp)
1559 struct stlpanel *panelp;
1560 unsigned int ioaddr, bnknr;
1563 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1565 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1567 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1568 ioaddr = brdp->bnkstataddr[bnknr];
1569 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1570 panelp = brdp->bnk2panel[bnknr];
1571 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1576 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1581 /*****************************************************************************/
1584 * Interrupt service routine for ECH-MCA board types.
1587 static int stl_echmcaintr(struct stlbrd *brdp)
1589 struct stlpanel *panelp;
1590 unsigned int ioaddr, bnknr;
1593 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1595 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1596 ioaddr = brdp->bnkstataddr[bnknr];
1597 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1598 panelp = brdp->bnk2panel[bnknr];
1599 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1606 /*****************************************************************************/
1609 * Interrupt service routine for ECH-PCI board types.
1612 static int stl_echpciintr(struct stlbrd *brdp)
1614 struct stlpanel *panelp;
1615 unsigned int ioaddr, bnknr, recheck;
1620 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1621 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1622 ioaddr = brdp->bnkstataddr[bnknr];
1623 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1624 panelp = brdp->bnk2panel[bnknr];
1625 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1636 /*****************************************************************************/
1639 * Interrupt service routine for ECH-8/64-PCI board types.
1642 static int stl_echpci64intr(struct stlbrd *brdp)
1644 struct stlpanel *panelp;
1645 unsigned int ioaddr, bnknr;
1648 while (inb(brdp->ioctrl) & 0x1) {
1650 for (bnknr = 0; bnknr < brdp->nrbnks; bnknr++) {
1651 ioaddr = brdp->bnkstataddr[bnknr];
1652 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1653 panelp = brdp->bnk2panel[bnknr];
1654 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1662 /*****************************************************************************/
1665 * Initialize all the ports on a panel.
1668 static int __devinit stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1670 struct stlport *portp;
1674 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1676 chipmask = stl_panelinit(brdp, panelp);
1679 * All UART's are initialized (if found!). Now go through and setup
1680 * each ports data structures.
1682 for (i = 0; i < panelp->nrports; i++) {
1683 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1685 printk("STALLION: failed to allocate memory "
1686 "(size=%Zd)\n", sizeof(struct stlport));
1689 tty_port_init(&portp->port);
1690 portp->port.ops = &stl_port_ops;
1691 portp->magic = STL_PORTMAGIC;
1693 portp->brdnr = panelp->brdnr;
1694 portp->panelnr = panelp->panelnr;
1695 portp->uartp = panelp->uartp;
1696 portp->clk = brdp->clk;
1697 portp->baud_base = STL_BAUDBASE;
1698 portp->close_delay = STL_CLOSEDELAY;
1699 portp->closing_wait = 30 * HZ;
1700 init_waitqueue_head(&portp->port.open_wait);
1701 init_waitqueue_head(&portp->port.close_wait);
1702 portp->stats.brd = portp->brdnr;
1703 portp->stats.panel = portp->panelnr;
1704 portp->stats.port = portp->portnr;
1705 panelp->ports[i] = portp;
1706 stl_portinit(brdp, panelp, portp);
1712 static void stl_cleanup_panels(struct stlbrd *brdp)
1714 struct stlpanel *panelp;
1715 struct stlport *portp;
1717 struct tty_struct *tty;
1719 for (j = 0; j < STL_MAXPANELS; j++) {
1720 panelp = brdp->panels[j];
1723 for (k = 0; k < STL_PORTSPERPANEL; k++) {
1724 portp = panelp->ports[k];
1727 tty = tty_port_tty_get(&portp->port);
1732 kfree(portp->tx.buf);
1739 /*****************************************************************************/
1742 * Try to find and initialize an EasyIO board.
1745 static int __devinit stl_initeio(struct stlbrd *brdp)
1747 struct stlpanel *panelp;
1748 unsigned int status;
1752 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1754 brdp->ioctrl = brdp->ioaddr1 + 1;
1755 brdp->iostatus = brdp->ioaddr1 + 2;
1757 status = inb(brdp->iostatus);
1758 if ((status & EIO_IDBITMASK) == EIO_MK3)
1762 * Handle board specific stuff now. The real difference is PCI
1765 if (brdp->brdtype == BRD_EASYIOPCI) {
1766 brdp->iosize1 = 0x80;
1767 brdp->iosize2 = 0x80;
1768 name = "serial(EIO-PCI)";
1769 outb(0x41, (brdp->ioaddr2 + 0x4c));
1772 name = "serial(EIO)";
1773 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1774 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1775 printk("STALLION: invalid irq=%d for brd=%d\n",
1776 brdp->irq, brdp->brdnr);
1780 outb((stl_vecmap[brdp->irq] | EIO_0WS |
1781 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
1786 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1787 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1788 "%x conflicts with another device\n", brdp->brdnr,
1793 if (brdp->iosize2 > 0)
1794 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
1795 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
1796 "address %x conflicts with another device\n",
1797 brdp->brdnr, brdp->ioaddr2);
1798 printk(KERN_WARNING "STALLION: Warning, also "
1799 "releasing board %d I/O address %x \n",
1800 brdp->brdnr, brdp->ioaddr1);
1805 * Everything looks OK, so let's go ahead and probe for the hardware.
1807 brdp->clk = CD1400_CLK;
1808 brdp->isr = stl_eiointr;
1811 switch (status & EIO_IDBITMASK) {
1813 brdp->clk = CD1400_CLK8M;
1823 switch (status & EIO_BRDMASK) {
1842 * We have verified that the board is actually present, so now we
1843 * can complete the setup.
1846 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
1848 printk(KERN_WARNING "STALLION: failed to allocate memory "
1849 "(size=%Zd)\n", sizeof(struct stlpanel));
1854 panelp->magic = STL_PANELMAGIC;
1855 panelp->brdnr = brdp->brdnr;
1856 panelp->panelnr = 0;
1857 panelp->nrports = brdp->nrports;
1858 panelp->iobase = brdp->ioaddr1;
1859 panelp->hwid = status;
1860 if ((status & EIO_IDBITMASK) == EIO_MK3) {
1861 panelp->uartp = &stl_sc26198uart;
1862 panelp->isr = stl_sc26198intr;
1864 panelp->uartp = &stl_cd1400uart;
1865 panelp->isr = stl_cd1400eiointr;
1868 brdp->panels[0] = panelp;
1870 brdp->state |= BRD_FOUND;
1871 brdp->hwid = status;
1872 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
1873 printk("STALLION: failed to register interrupt "
1874 "routine for %s irq=%d\n", name, brdp->irq);
1881 stl_cleanup_panels(brdp);
1883 if (brdp->iosize2 > 0)
1884 release_region(brdp->ioaddr2, brdp->iosize2);
1886 release_region(brdp->ioaddr1, brdp->iosize1);
1891 /*****************************************************************************/
1894 * Try to find an ECH board and initialize it. This code is capable of
1895 * dealing with all types of ECH board.
1898 static int __devinit stl_initech(struct stlbrd *brdp)
1900 struct stlpanel *panelp;
1901 unsigned int status, nxtid, ioaddr, conflict, panelnr, banknr, i;
1905 pr_debug("stl_initech(brdp=%p)\n", brdp);
1911 * Set up the initial board register contents for boards. This varies a
1912 * bit between the different board types. So we need to handle each
1913 * separately. Also do a check that the supplied IRQ is good.
1915 switch (brdp->brdtype) {
1918 brdp->isr = stl_echatintr;
1919 brdp->ioctrl = brdp->ioaddr1 + 1;
1920 brdp->iostatus = brdp->ioaddr1 + 1;
1921 status = inb(brdp->iostatus);
1922 if ((status & ECH_IDBITMASK) != ECH_ID) {
1926 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1927 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1928 printk("STALLION: invalid irq=%d for brd=%d\n",
1929 brdp->irq, brdp->brdnr);
1933 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
1934 status |= (stl_vecmap[brdp->irq] << 1);
1935 outb((status | ECH_BRDRESET), brdp->ioaddr1);
1936 brdp->ioctrlval = ECH_INTENABLE |
1937 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
1938 for (i = 0; i < 10; i++)
1939 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1942 name = "serial(EC8/32)";
1943 outb(status, brdp->ioaddr1);
1947 brdp->isr = stl_echmcaintr;
1948 brdp->ioctrl = brdp->ioaddr1 + 0x20;
1949 brdp->iostatus = brdp->ioctrl;
1950 status = inb(brdp->iostatus);
1951 if ((status & ECH_IDBITMASK) != ECH_ID) {
1955 if ((brdp->irq < 0) || (brdp->irq > 15) ||
1956 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
1957 printk("STALLION: invalid irq=%d for brd=%d\n",
1958 brdp->irq, brdp->brdnr);
1962 outb(ECHMC_BRDRESET, brdp->ioctrl);
1963 outb(ECHMC_INTENABLE, brdp->ioctrl);
1965 name = "serial(EC8/32-MC)";
1969 brdp->isr = stl_echpciintr;
1970 brdp->ioctrl = brdp->ioaddr1 + 2;
1973 name = "serial(EC8/32-PCI)";
1977 brdp->isr = stl_echpci64intr;
1978 brdp->ioctrl = brdp->ioaddr2 + 0x40;
1979 outb(0x43, (brdp->ioaddr1 + 0x4c));
1980 brdp->iosize1 = 0x80;
1981 brdp->iosize2 = 0x80;
1982 name = "serial(EC8/64-PCI)";
1986 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
1992 * Check boards for possible IO address conflicts and return fail status
1993 * if an IO conflict found.
1996 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
1997 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
1998 "%x conflicts with another device\n", brdp->brdnr,
2003 if (brdp->iosize2 > 0)
2004 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2005 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2006 "address %x conflicts with another device\n",
2007 brdp->brdnr, brdp->ioaddr2);
2008 printk(KERN_WARNING "STALLION: Warning, also "
2009 "releasing board %d I/O address %x \n",
2010 brdp->brdnr, brdp->ioaddr1);
2015 * Scan through the secondary io address space looking for panels.
2016 * As we find'em allocate and initialize panel structures for each.
2018 brdp->clk = CD1400_CLK;
2019 brdp->hwid = status;
2021 ioaddr = brdp->ioaddr2;
2026 for (i = 0; i < STL_MAXPANELS; i++) {
2027 if (brdp->brdtype == BRD_ECHPCI) {
2028 outb(nxtid, brdp->ioctrl);
2029 ioaddr = brdp->ioaddr2;
2031 status = inb(ioaddr + ECH_PNLSTATUS);
2032 if ((status & ECH_PNLIDMASK) != nxtid)
2034 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2036 printk("STALLION: failed to allocate memory "
2037 "(size=%Zd)\n", sizeof(struct stlpanel));
2041 panelp->magic = STL_PANELMAGIC;
2042 panelp->brdnr = brdp->brdnr;
2043 panelp->panelnr = panelnr;
2044 panelp->iobase = ioaddr;
2045 panelp->pagenr = nxtid;
2046 panelp->hwid = status;
2047 brdp->bnk2panel[banknr] = panelp;
2048 brdp->bnkpageaddr[banknr] = nxtid;
2049 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2051 if (status & ECH_PNLXPID) {
2052 panelp->uartp = &stl_sc26198uart;
2053 panelp->isr = stl_sc26198intr;
2054 if (status & ECH_PNL16PORT) {
2055 panelp->nrports = 16;
2056 brdp->bnk2panel[banknr] = panelp;
2057 brdp->bnkpageaddr[banknr] = nxtid;
2058 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2061 panelp->nrports = 8;
2063 panelp->uartp = &stl_cd1400uart;
2064 panelp->isr = stl_cd1400echintr;
2065 if (status & ECH_PNL16PORT) {
2066 panelp->nrports = 16;
2067 panelp->ackmask = 0x80;
2068 if (brdp->brdtype != BRD_ECHPCI)
2069 ioaddr += EREG_BANKSIZE;
2070 brdp->bnk2panel[banknr] = panelp;
2071 brdp->bnkpageaddr[banknr] = ++nxtid;
2072 brdp->bnkstataddr[banknr++] = ioaddr +
2075 panelp->nrports = 8;
2076 panelp->ackmask = 0xc0;
2081 ioaddr += EREG_BANKSIZE;
2082 brdp->nrports += panelp->nrports;
2083 brdp->panels[panelnr++] = panelp;
2084 if ((brdp->brdtype != BRD_ECHPCI) &&
2085 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2))) {
2091 brdp->nrpanels = panelnr;
2092 brdp->nrbnks = banknr;
2093 if (brdp->brdtype == BRD_ECH)
2094 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2096 brdp->state |= BRD_FOUND;
2097 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2098 printk("STALLION: failed to register interrupt "
2099 "routine for %s irq=%d\n", name, brdp->irq);
2106 stl_cleanup_panels(brdp);
2107 if (brdp->iosize2 > 0)
2108 release_region(brdp->ioaddr2, brdp->iosize2);
2110 release_region(brdp->ioaddr1, brdp->iosize1);
2115 /*****************************************************************************/
2118 * Initialize and configure the specified board.
2119 * Scan through all the boards in the configuration and see what we
2120 * can find. Handle EIO and the ECH boards a little differently here
2121 * since the initial search and setup is very different.
2124 static int __devinit stl_brdinit(struct stlbrd *brdp)
2128 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2130 switch (brdp->brdtype) {
2133 retval = stl_initeio(brdp);
2141 retval = stl_initech(brdp);
2146 printk("STALLION: board=%d is unknown board type=%d\n",
2147 brdp->brdnr, brdp->brdtype);
2152 if ((brdp->state & BRD_FOUND) == 0) {
2153 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2154 stl_brdnames[brdp->brdtype], brdp->brdnr,
2155 brdp->ioaddr1, brdp->irq);
2159 for (i = 0; i < STL_MAXPANELS; i++)
2160 if (brdp->panels[i] != NULL)
2161 stl_initports(brdp, brdp->panels[i]);
2163 printk("STALLION: %s found, board=%d io=%x irq=%d "
2164 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2165 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2170 free_irq(brdp->irq, brdp);
2172 stl_cleanup_panels(brdp);
2174 release_region(brdp->ioaddr1, brdp->iosize1);
2175 if (brdp->iosize2 > 0)
2176 release_region(brdp->ioaddr2, brdp->iosize2);
2181 /*****************************************************************************/
2184 * Find the next available board number that is free.
2187 static int __devinit stl_getbrdnr(void)
2191 for (i = 0; i < STL_MAXBRDS; i++)
2192 if (stl_brds[i] == NULL) {
2193 if (i >= stl_nrbrds)
2201 /*****************************************************************************/
2203 * We have a Stallion board. Allocate a board structure and
2204 * initialize it. Read its IO and IRQ resources from PCI
2205 * configuration space.
2208 static int __devinit stl_pciprobe(struct pci_dev *pdev,
2209 const struct pci_device_id *ent)
2211 struct stlbrd *brdp;
2212 unsigned int i, brdtype = ent->driver_data;
2213 int brdnr, retval = -ENODEV;
2215 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2218 retval = pci_enable_device(pdev);
2221 brdp = stl_allocbrd();
2226 mutex_lock(&stl_brdslock);
2227 brdnr = stl_getbrdnr();
2229 dev_err(&pdev->dev, "too many boards found, "
2230 "maximum supported %d\n", STL_MAXBRDS);
2231 mutex_unlock(&stl_brdslock);
2235 brdp->brdnr = (unsigned int)brdnr;
2236 stl_brds[brdp->brdnr] = brdp;
2237 mutex_unlock(&stl_brdslock);
2239 brdp->brdtype = brdtype;
2240 brdp->state |= STL_PROBED;
2243 * We have all resources from the board, so let's setup the actual
2244 * board structure now.
2248 brdp->ioaddr2 = pci_resource_start(pdev, 0);
2249 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2252 brdp->ioaddr2 = pci_resource_start(pdev, 2);
2253 brdp->ioaddr1 = pci_resource_start(pdev, 1);
2256 brdp->ioaddr1 = pci_resource_start(pdev, 2);
2257 brdp->ioaddr2 = pci_resource_start(pdev, 1);
2260 dev_err(&pdev->dev, "unknown PCI board type=%u\n", brdtype);
2264 brdp->irq = pdev->irq;
2265 retval = stl_brdinit(brdp);
2269 pci_set_drvdata(pdev, brdp);
2271 for (i = 0; i < brdp->nrports; i++)
2272 tty_register_device(stl_serial,
2273 brdp->brdnr * STL_MAXPORTS + i, &pdev->dev);
2277 stl_brds[brdp->brdnr] = NULL;
2284 static void __devexit stl_pciremove(struct pci_dev *pdev)
2286 struct stlbrd *brdp = pci_get_drvdata(pdev);
2289 free_irq(brdp->irq, brdp);
2291 stl_cleanup_panels(brdp);
2293 release_region(brdp->ioaddr1, brdp->iosize1);
2294 if (brdp->iosize2 > 0)
2295 release_region(brdp->ioaddr2, brdp->iosize2);
2297 for (i = 0; i < brdp->nrports; i++)
2298 tty_unregister_device(stl_serial,
2299 brdp->brdnr * STL_MAXPORTS + i);
2301 stl_brds[brdp->brdnr] = NULL;
2305 static struct pci_driver stl_pcidriver = {
2307 .id_table = stl_pcibrds,
2308 .probe = stl_pciprobe,
2309 .remove = __devexit_p(stl_pciremove)
2312 /*****************************************************************************/
2315 * Return the board stats structure to user app.
2318 static int stl_getbrdstats(combrd_t __user *bp)
2320 combrd_t stl_brdstats;
2321 struct stlbrd *brdp;
2322 struct stlpanel *panelp;
2325 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2327 if (stl_brdstats.brd >= STL_MAXBRDS)
2329 brdp = stl_brds[stl_brdstats.brd];
2333 memset(&stl_brdstats, 0, sizeof(combrd_t));
2334 stl_brdstats.brd = brdp->brdnr;
2335 stl_brdstats.type = brdp->brdtype;
2336 stl_brdstats.hwid = brdp->hwid;
2337 stl_brdstats.state = brdp->state;
2338 stl_brdstats.ioaddr = brdp->ioaddr1;
2339 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2340 stl_brdstats.irq = brdp->irq;
2341 stl_brdstats.nrpanels = brdp->nrpanels;
2342 stl_brdstats.nrports = brdp->nrports;
2343 for (i = 0; i < brdp->nrpanels; i++) {
2344 panelp = brdp->panels[i];
2345 stl_brdstats.panels[i].panel = i;
2346 stl_brdstats.panels[i].hwid = panelp->hwid;
2347 stl_brdstats.panels[i].nrports = panelp->nrports;
2350 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2353 /*****************************************************************************/
2356 * Resolve the referenced port number into a port struct pointer.
2359 static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2361 struct stlbrd *brdp;
2362 struct stlpanel *panelp;
2364 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
2366 brdp = stl_brds[brdnr];
2369 if (panelnr < 0 || (unsigned int)panelnr >= brdp->nrpanels)
2371 panelp = brdp->panels[panelnr];
2374 if (portnr < 0 || (unsigned int)portnr >= panelp->nrports)
2376 return panelp->ports[portnr];
2379 /*****************************************************************************/
2382 * Return the port stats structure to user app. A NULL port struct
2383 * pointer passed in means that we need to find out from the app
2384 * what port to get stats for (used through board control device).
2387 static int stl_getportstats(struct tty_struct *tty, struct stlport *portp, comstats_t __user *cp)
2389 comstats_t stl_comstats;
2390 unsigned char *head, *tail;
2391 unsigned long flags;
2394 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2396 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2402 portp->stats.state = portp->istate;
2403 portp->stats.flags = portp->port.flags;
2404 portp->stats.hwid = portp->hwid;
2406 portp->stats.ttystate = 0;
2407 portp->stats.cflags = 0;
2408 portp->stats.iflags = 0;
2409 portp->stats.oflags = 0;
2410 portp->stats.lflags = 0;
2411 portp->stats.rxbuffered = 0;
2413 spin_lock_irqsave(&stallion_lock, flags);
2414 if (tty != NULL && portp->port.tty == tty) {
2415 portp->stats.ttystate = tty->flags;
2416 /* No longer available as a statistic */
2417 portp->stats.rxbuffered = 1; /*tty->flip.count; */
2418 if (tty->termios != NULL) {
2419 portp->stats.cflags = tty->termios->c_cflag;
2420 portp->stats.iflags = tty->termios->c_iflag;
2421 portp->stats.oflags = tty->termios->c_oflag;
2422 portp->stats.lflags = tty->termios->c_lflag;
2425 spin_unlock_irqrestore(&stallion_lock, flags);
2427 head = portp->tx.head;
2428 tail = portp->tx.tail;
2429 portp->stats.txbuffered = (head >= tail) ? (head - tail) :
2430 (STL_TXBUFSIZE - (tail - head));
2432 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2434 return copy_to_user(cp, &portp->stats,
2435 sizeof(comstats_t)) ? -EFAULT : 0;
2438 /*****************************************************************************/
2441 * Clear the port stats structure. We also return it zeroed out...
2444 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2446 comstats_t stl_comstats;
2449 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2451 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2457 memset(&portp->stats, 0, sizeof(comstats_t));
2458 portp->stats.brd = portp->brdnr;
2459 portp->stats.panel = portp->panelnr;
2460 portp->stats.port = portp->portnr;
2461 return copy_to_user(cp, &portp->stats,
2462 sizeof(comstats_t)) ? -EFAULT : 0;
2465 /*****************************************************************************/
2468 * Return the entire driver ports structure to a user app.
2471 static int stl_getportstruct(struct stlport __user *arg)
2473 struct stlport stl_dummyport;
2474 struct stlport *portp;
2476 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2478 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2479 stl_dummyport.portnr);
2482 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2485 /*****************************************************************************/
2488 * Return the entire driver board structure to a user app.
2491 static int stl_getbrdstruct(struct stlbrd __user *arg)
2493 struct stlbrd stl_dummybrd;
2494 struct stlbrd *brdp;
2496 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2498 if (stl_dummybrd.brdnr >= STL_MAXBRDS)
2500 brdp = stl_brds[stl_dummybrd.brdnr];
2503 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2506 /*****************************************************************************/
2509 * The "staliomem" device is also required to do some special operations
2510 * on the board and/or ports. In this driver it is mostly used for stats
2514 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2517 void __user *argp = (void __user *)arg;
2519 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg);
2522 if (brdnr >= STL_MAXBRDS)
2527 case COM_GETPORTSTATS:
2528 rc = stl_getportstats(NULL, NULL, argp);
2530 case COM_CLRPORTSTATS:
2531 rc = stl_clrportstats(NULL, argp);
2533 case COM_GETBRDSTATS:
2534 rc = stl_getbrdstats(argp);
2537 rc = stl_getportstruct(argp);
2540 rc = stl_getbrdstruct(argp);
2550 static const struct tty_operations stl_ops = {
2554 .put_char = stl_putchar,
2555 .flush_chars = stl_flushchars,
2556 .write_room = stl_writeroom,
2557 .chars_in_buffer = stl_charsinbuffer,
2559 .set_termios = stl_settermios,
2560 .throttle = stl_throttle,
2561 .unthrottle = stl_unthrottle,
2564 .hangup = stl_hangup,
2565 .flush_buffer = stl_flushbuffer,
2566 .break_ctl = stl_breakctl,
2567 .wait_until_sent = stl_waituntilsent,
2568 .send_xchar = stl_sendxchar,
2569 .read_proc = stl_readproc,
2570 .tiocmget = stl_tiocmget,
2571 .tiocmset = stl_tiocmset,
2574 static const struct tty_port_operations stl_port_ops = {
2575 .carrier_raised = stl_carrier_raised,
2576 .raise_dtr_rts = stl_raise_dtr_rts,
2579 /*****************************************************************************/
2580 /* CD1400 HARDWARE FUNCTIONS */
2581 /*****************************************************************************/
2584 * These functions get/set/update the registers of the cd1400 UARTs.
2585 * Access to the cd1400 registers is via an address/data io port pair.
2586 * (Maybe should make this inline...)
2589 static int stl_cd1400getreg(struct stlport *portp, int regnr)
2591 outb((regnr + portp->uartaddr), portp->ioaddr);
2592 return inb(portp->ioaddr + EREG_DATA);
2595 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2597 outb(regnr + portp->uartaddr, portp->ioaddr);
2598 outb(value, portp->ioaddr + EREG_DATA);
2601 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2603 outb(regnr + portp->uartaddr, portp->ioaddr);
2604 if (inb(portp->ioaddr + EREG_DATA) != value) {
2605 outb(value, portp->ioaddr + EREG_DATA);
2611 /*****************************************************************************/
2614 * Inbitialize the UARTs in a panel. We don't care what sort of board
2615 * these ports are on - since the port io registers are almost
2616 * identical when dealing with ports.
2619 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2623 int nrchips, uartaddr, ioaddr;
2624 unsigned long flags;
2626 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2628 spin_lock_irqsave(&brd_lock, flags);
2629 BRDENABLE(panelp->brdnr, panelp->pagenr);
2632 * Check that each chip is present and started up OK.
2635 nrchips = panelp->nrports / CD1400_PORTS;
2636 for (i = 0; i < nrchips; i++) {
2637 if (brdp->brdtype == BRD_ECHPCI) {
2638 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2639 ioaddr = panelp->iobase;
2641 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2642 uartaddr = (i & 0x01) ? 0x080 : 0;
2643 outb((GFRCR + uartaddr), ioaddr);
2644 outb(0, (ioaddr + EREG_DATA));
2645 outb((CCR + uartaddr), ioaddr);
2646 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2647 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2648 outb((GFRCR + uartaddr), ioaddr);
2649 for (j = 0; j < CCR_MAXWAIT; j++)
2650 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2653 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2654 printk("STALLION: cd1400 not responding, "
2655 "brd=%d panel=%d chip=%d\n",
2656 panelp->brdnr, panelp->panelnr, i);
2659 chipmask |= (0x1 << i);
2660 outb((PPR + uartaddr), ioaddr);
2661 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2664 BRDDISABLE(panelp->brdnr);
2665 spin_unlock_irqrestore(&brd_lock, flags);
2669 /*****************************************************************************/
2672 * Initialize hardware specific port registers.
2675 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2677 unsigned long flags;
2678 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2681 if ((brdp == NULL) || (panelp == NULL) ||
2685 spin_lock_irqsave(&brd_lock, flags);
2686 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2687 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2688 portp->uartaddr = (portp->portnr & 0x04) << 5;
2689 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2691 BRDENABLE(portp->brdnr, portp->pagenr);
2692 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2693 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2694 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2695 BRDDISABLE(portp->brdnr);
2696 spin_unlock_irqrestore(&brd_lock, flags);
2699 /*****************************************************************************/
2702 * Wait for the command register to be ready. We will poll this,
2703 * since it won't usually take too long to be ready.
2706 static void stl_cd1400ccrwait(struct stlport *portp)
2710 for (i = 0; i < CCR_MAXWAIT; i++)
2711 if (stl_cd1400getreg(portp, CCR) == 0)
2714 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2715 portp->portnr, portp->panelnr, portp->brdnr);
2718 /*****************************************************************************/
2721 * Set up the cd1400 registers for a port based on the termios port
2725 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2727 struct stlbrd *brdp;
2728 unsigned long flags;
2729 unsigned int clkdiv, baudrate;
2730 unsigned char cor1, cor2, cor3;
2731 unsigned char cor4, cor5, ccr;
2732 unsigned char srer, sreron, sreroff;
2733 unsigned char mcor1, mcor2, rtpr;
2734 unsigned char clk, div;
2750 brdp = stl_brds[portp->brdnr];
2755 * Set up the RX char ignore mask with those RX error types we
2756 * can ignore. We can get the cd1400 to help us out a little here,
2757 * it will ignore parity errors and breaks for us.
2759 portp->rxignoremsk = 0;
2760 if (tiosp->c_iflag & IGNPAR) {
2761 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2762 cor1 |= COR1_PARIGNORE;
2764 if (tiosp->c_iflag & IGNBRK) {
2765 portp->rxignoremsk |= ST_BREAK;
2766 cor4 |= COR4_IGNBRK;
2769 portp->rxmarkmsk = ST_OVERRUN;
2770 if (tiosp->c_iflag & (INPCK | PARMRK))
2771 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2772 if (tiosp->c_iflag & BRKINT)
2773 portp->rxmarkmsk |= ST_BREAK;
2776 * Go through the char size, parity and stop bits and set all the
2777 * option register appropriately.
2779 switch (tiosp->c_cflag & CSIZE) {
2794 if (tiosp->c_cflag & CSTOPB)
2799 if (tiosp->c_cflag & PARENB) {
2800 if (tiosp->c_cflag & PARODD)
2801 cor1 |= (COR1_PARENB | COR1_PARODD);
2803 cor1 |= (COR1_PARENB | COR1_PAREVEN);
2805 cor1 |= COR1_PARNONE;
2809 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2810 * space for hardware flow control and the like. This should be set to
2811 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2812 * really be based on VTIME.
2814 cor3 |= FIFO_RXTHRESHOLD;
2818 * Calculate the baud rate timers. For now we will just assume that
2819 * the input and output baud are the same. Could have used a baud
2820 * table here, but this way we can generate virtually any baud rate
2823 baudrate = tiosp->c_cflag & CBAUD;
2824 if (baudrate & CBAUDEX) {
2825 baudrate &= ~CBAUDEX;
2826 if ((baudrate < 1) || (baudrate > 4))
2827 tiosp->c_cflag &= ~CBAUDEX;
2831 baudrate = stl_baudrates[baudrate];
2832 if ((tiosp->c_cflag & CBAUD) == B38400) {
2833 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2835 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2837 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2839 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2841 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2842 baudrate = (portp->baud_base / portp->custom_divisor);
2844 if (baudrate > STL_CD1400MAXBAUD)
2845 baudrate = STL_CD1400MAXBAUD;
2848 for (clk = 0; clk < CD1400_NUMCLKS; clk++) {
2849 clkdiv = (portp->clk / stl_cd1400clkdivs[clk]) / baudrate;
2853 div = (unsigned char) clkdiv;
2857 * Check what form of modem signaling is required and set it up.
2859 if ((tiosp->c_cflag & CLOCAL) == 0) {
2862 sreron |= SRER_MODEM;
2863 portp->port.flags |= ASYNC_CHECK_CD;
2865 portp->port.flags &= ~ASYNC_CHECK_CD;
2868 * Setup cd1400 enhanced modes if we can. In particular we want to
2869 * handle as much of the flow control as possible automatically. As
2870 * well as saving a few CPU cycles it will also greatly improve flow
2871 * control reliability.
2873 if (tiosp->c_iflag & IXON) {
2876 if (tiosp->c_iflag & IXANY)
2880 if (tiosp->c_cflag & CRTSCTS) {
2882 mcor1 |= FIFO_RTSTHRESHOLD;
2886 * All cd1400 register values calculated so go through and set
2890 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
2891 portp->portnr, portp->panelnr, portp->brdnr);
2892 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
2893 cor1, cor2, cor3, cor4, cor5);
2894 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
2895 mcor1, mcor2, rtpr, sreron, sreroff);
2896 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
2897 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
2898 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
2899 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
2901 spin_lock_irqsave(&brd_lock, flags);
2902 BRDENABLE(portp->brdnr, portp->pagenr);
2903 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
2904 srer = stl_cd1400getreg(portp, SRER);
2905 stl_cd1400setreg(portp, SRER, 0);
2906 if (stl_cd1400updatereg(portp, COR1, cor1))
2908 if (stl_cd1400updatereg(portp, COR2, cor2))
2910 if (stl_cd1400updatereg(portp, COR3, cor3))
2913 stl_cd1400ccrwait(portp);
2914 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
2916 stl_cd1400setreg(portp, COR4, cor4);
2917 stl_cd1400setreg(portp, COR5, cor5);
2918 stl_cd1400setreg(portp, MCOR1, mcor1);
2919 stl_cd1400setreg(portp, MCOR2, mcor2);
2921 stl_cd1400setreg(portp, TCOR, clk);
2922 stl_cd1400setreg(portp, TBPR, div);
2923 stl_cd1400setreg(portp, RCOR, clk);
2924 stl_cd1400setreg(portp, RBPR, div);
2926 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
2927 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
2928 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
2929 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
2930 stl_cd1400setreg(portp, RTPR, rtpr);
2931 mcor1 = stl_cd1400getreg(portp, MSVR1);
2932 if (mcor1 & MSVR1_DCD)
2933 portp->sigs |= TIOCM_CD;
2935 portp->sigs &= ~TIOCM_CD;
2936 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
2937 BRDDISABLE(portp->brdnr);
2938 spin_unlock_irqrestore(&brd_lock, flags);
2941 /*****************************************************************************/
2944 * Set the state of the DTR and RTS signals.
2947 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
2949 unsigned char msvr1, msvr2;
2950 unsigned long flags;
2952 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
2962 spin_lock_irqsave(&brd_lock, flags);
2963 BRDENABLE(portp->brdnr, portp->pagenr);
2964 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2966 stl_cd1400setreg(portp, MSVR2, msvr2);
2968 stl_cd1400setreg(portp, MSVR1, msvr1);
2969 BRDDISABLE(portp->brdnr);
2970 spin_unlock_irqrestore(&brd_lock, flags);
2973 /*****************************************************************************/
2976 * Return the state of the signals.
2979 static int stl_cd1400getsignals(struct stlport *portp)
2981 unsigned char msvr1, msvr2;
2982 unsigned long flags;
2985 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
2987 spin_lock_irqsave(&brd_lock, flags);
2988 BRDENABLE(portp->brdnr, portp->pagenr);
2989 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2990 msvr1 = stl_cd1400getreg(portp, MSVR1);
2991 msvr2 = stl_cd1400getreg(portp, MSVR2);
2992 BRDDISABLE(portp->brdnr);
2993 spin_unlock_irqrestore(&brd_lock, flags);
2996 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
2997 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
2998 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
2999 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3001 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3002 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3009 /*****************************************************************************/
3012 * Enable/Disable the Transmitter and/or Receiver.
3015 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
3018 unsigned long flags;
3020 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3025 ccr |= CCR_TXDISABLE;
3027 ccr |= CCR_TXENABLE;
3029 ccr |= CCR_RXDISABLE;
3031 ccr |= CCR_RXENABLE;
3033 spin_lock_irqsave(&brd_lock, flags);
3034 BRDENABLE(portp->brdnr, portp->pagenr);
3035 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3036 stl_cd1400ccrwait(portp);
3037 stl_cd1400setreg(portp, CCR, ccr);
3038 stl_cd1400ccrwait(portp);
3039 BRDDISABLE(portp->brdnr);
3040 spin_unlock_irqrestore(&brd_lock, flags);
3043 /*****************************************************************************/
3046 * Start/stop the Transmitter and/or Receiver.
3049 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
3051 unsigned char sreron, sreroff;
3052 unsigned long flags;
3054 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3059 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3061 sreron |= SRER_TXDATA;
3063 sreron |= SRER_TXEMPTY;
3065 sreroff |= SRER_RXDATA;
3067 sreron |= SRER_RXDATA;
3069 spin_lock_irqsave(&brd_lock, flags);
3070 BRDENABLE(portp->brdnr, portp->pagenr);
3071 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3072 stl_cd1400setreg(portp, SRER,
3073 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3074 BRDDISABLE(portp->brdnr);
3076 set_bit(ASYI_TXBUSY, &portp->istate);
3077 spin_unlock_irqrestore(&brd_lock, flags);
3080 /*****************************************************************************/
3083 * Disable all interrupts from this port.
3086 static void stl_cd1400disableintrs(struct stlport *portp)
3088 unsigned long flags;
3090 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3092 spin_lock_irqsave(&brd_lock, flags);
3093 BRDENABLE(portp->brdnr, portp->pagenr);
3094 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3095 stl_cd1400setreg(portp, SRER, 0);
3096 BRDDISABLE(portp->brdnr);
3097 spin_unlock_irqrestore(&brd_lock, flags);
3100 /*****************************************************************************/
3102 static void stl_cd1400sendbreak(struct stlport *portp, int len)
3104 unsigned long flags;
3106 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3108 spin_lock_irqsave(&brd_lock, flags);
3109 BRDENABLE(portp->brdnr, portp->pagenr);
3110 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3111 stl_cd1400setreg(portp, SRER,
3112 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3114 BRDDISABLE(portp->brdnr);
3115 portp->brklen = len;
3117 portp->stats.txbreaks++;
3118 spin_unlock_irqrestore(&brd_lock, flags);
3121 /*****************************************************************************/
3124 * Take flow control actions...
3127 static void stl_cd1400flowctrl(struct stlport *portp, int state)
3129 struct tty_struct *tty;
3130 unsigned long flags;
3132 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3136 tty = tty_port_tty_get(&portp->port);
3140 spin_lock_irqsave(&brd_lock, flags);
3141 BRDENABLE(portp->brdnr, portp->pagenr);
3142 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3145 if (tty->termios->c_iflag & IXOFF) {
3146 stl_cd1400ccrwait(portp);
3147 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3148 portp->stats.rxxon++;
3149 stl_cd1400ccrwait(portp);
3152 * Question: should we return RTS to what it was before? It may
3153 * have been set by an ioctl... Suppose not, since if you have
3154 * hardware flow control set then it is pretty silly to go and
3155 * set the RTS line by hand.
3157 if (tty->termios->c_cflag & CRTSCTS) {
3158 stl_cd1400setreg(portp, MCOR1,
3159 (stl_cd1400getreg(portp, MCOR1) |
3160 FIFO_RTSTHRESHOLD));
3161 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3162 portp->stats.rxrtson++;
3165 if (tty->termios->c_iflag & IXOFF) {
3166 stl_cd1400ccrwait(portp);
3167 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3168 portp->stats.rxxoff++;
3169 stl_cd1400ccrwait(portp);
3171 if (tty->termios->c_cflag & CRTSCTS) {
3172 stl_cd1400setreg(portp, MCOR1,
3173 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3174 stl_cd1400setreg(portp, MSVR2, 0);
3175 portp->stats.rxrtsoff++;
3179 BRDDISABLE(portp->brdnr);
3180 spin_unlock_irqrestore(&brd_lock, flags);
3184 /*****************************************************************************/
3187 * Send a flow control character...
3190 static void stl_cd1400sendflow(struct stlport *portp, int state)
3192 struct tty_struct *tty;
3193 unsigned long flags;
3195 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3199 tty = tty_port_tty_get(&portp->port);
3203 spin_lock_irqsave(&brd_lock, flags);
3204 BRDENABLE(portp->brdnr, portp->pagenr);
3205 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3207 stl_cd1400ccrwait(portp);
3208 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3209 portp->stats.rxxon++;
3210 stl_cd1400ccrwait(portp);
3212 stl_cd1400ccrwait(portp);
3213 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3214 portp->stats.rxxoff++;
3215 stl_cd1400ccrwait(portp);
3217 BRDDISABLE(portp->brdnr);
3218 spin_unlock_irqrestore(&brd_lock, flags);
3222 /*****************************************************************************/
3224 static void stl_cd1400flush(struct stlport *portp)
3226 unsigned long flags;
3228 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3233 spin_lock_irqsave(&brd_lock, flags);
3234 BRDENABLE(portp->brdnr, portp->pagenr);
3235 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3236 stl_cd1400ccrwait(portp);
3237 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3238 stl_cd1400ccrwait(portp);
3239 portp->tx.tail = portp->tx.head;
3240 BRDDISABLE(portp->brdnr);
3241 spin_unlock_irqrestore(&brd_lock, flags);
3244 /*****************************************************************************/
3247 * Return the current state of data flow on this port. This is only
3248 * really interresting when determining if data has fully completed
3249 * transmission or not... This is easy for the cd1400, it accurately
3250 * maintains the busy port flag.
3253 static int stl_cd1400datastate(struct stlport *portp)
3255 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3260 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3263 /*****************************************************************************/
3266 * Interrupt service routine for cd1400 EasyIO boards.
3269 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3271 unsigned char svrtype;
3273 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3275 spin_lock(&brd_lock);
3277 svrtype = inb(iobase + EREG_DATA);
3278 if (panelp->nrports > 4) {
3279 outb((SVRR + 0x80), iobase);
3280 svrtype |= inb(iobase + EREG_DATA);
3283 if (svrtype & SVRR_RX)
3284 stl_cd1400rxisr(panelp, iobase);
3285 else if (svrtype & SVRR_TX)
3286 stl_cd1400txisr(panelp, iobase);
3287 else if (svrtype & SVRR_MDM)
3288 stl_cd1400mdmisr(panelp, iobase);
3290 spin_unlock(&brd_lock);
3293 /*****************************************************************************/
3296 * Interrupt service routine for cd1400 panels.
3299 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3301 unsigned char svrtype;
3303 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3306 svrtype = inb(iobase + EREG_DATA);
3307 outb((SVRR + 0x80), iobase);
3308 svrtype |= inb(iobase + EREG_DATA);
3309 if (svrtype & SVRR_RX)
3310 stl_cd1400rxisr(panelp, iobase);
3311 else if (svrtype & SVRR_TX)
3312 stl_cd1400txisr(panelp, iobase);
3313 else if (svrtype & SVRR_MDM)
3314 stl_cd1400mdmisr(panelp, iobase);
3318 /*****************************************************************************/
3321 * Unfortunately we need to handle breaks in the TX data stream, since
3322 * this is the only way to generate them on the cd1400.
3325 static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3327 if (portp->brklen == 1) {
3328 outb((COR2 + portp->uartaddr), ioaddr);
3329 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3330 (ioaddr + EREG_DATA));
3331 outb((TDR + portp->uartaddr), ioaddr);
3332 outb(ETC_CMD, (ioaddr + EREG_DATA));
3333 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3334 outb((SRER + portp->uartaddr), ioaddr);
3335 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3336 (ioaddr + EREG_DATA));
3338 } else if (portp->brklen > 1) {
3339 outb((TDR + portp->uartaddr), ioaddr);
3340 outb(ETC_CMD, (ioaddr + EREG_DATA));
3341 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3345 outb((COR2 + portp->uartaddr), ioaddr);
3346 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3347 (ioaddr + EREG_DATA));
3353 /*****************************************************************************/
3356 * Transmit interrupt handler. This has gotta be fast! Handling TX
3357 * chars is pretty simple, stuff as many as possible from the TX buffer
3358 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3359 * are embedded as commands in the data stream. Oh no, had to use a goto!
3360 * This could be optimized more, will do when I get time...
3361 * In practice it is possible that interrupts are enabled but that the
3362 * port has been hung up. Need to handle not having any TX buffer here,
3363 * this is done by using the side effect that head and tail will also
3364 * be NULL if the buffer has been freed.
3367 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3369 struct stlport *portp;
3372 unsigned char ioack, srer;
3373 struct tty_struct *tty;
3375 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3377 ioack = inb(ioaddr + EREG_TXACK);
3378 if (((ioack & panelp->ackmask) != 0) ||
3379 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3380 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3383 portp = panelp->ports[(ioack >> 3)];
3386 * Unfortunately we need to handle breaks in the data stream, since
3387 * this is the only way to generate them on the cd1400. Do it now if
3388 * a break is to be sent.
3390 if (portp->brklen != 0)
3391 if (stl_cd1400breakisr(portp, ioaddr))
3394 head = portp->tx.head;
3395 tail = portp->tx.tail;
3396 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3397 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3398 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3399 set_bit(ASYI_TXLOW, &portp->istate);
3400 tty = tty_port_tty_get(&portp->port);
3408 outb((SRER + portp->uartaddr), ioaddr);
3409 srer = inb(ioaddr + EREG_DATA);
3410 if (srer & SRER_TXDATA) {
3411 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3413 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3414 clear_bit(ASYI_TXBUSY, &portp->istate);
3416 outb(srer, (ioaddr + EREG_DATA));
3418 len = min(len, CD1400_TXFIFOSIZE);
3419 portp->stats.txtotal += len;
3420 stlen = min_t(unsigned int, len,
3421 (portp->tx.buf + STL_TXBUFSIZE) - tail);
3422 outb((TDR + portp->uartaddr), ioaddr);
3423 outsb((ioaddr + EREG_DATA), tail, stlen);
3426 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3427 tail = portp->tx.buf;
3429 outsb((ioaddr + EREG_DATA), tail, len);
3432 portp->tx.tail = tail;
3436 outb((EOSRR + portp->uartaddr), ioaddr);
3437 outb(0, (ioaddr + EREG_DATA));
3440 /*****************************************************************************/
3443 * Receive character interrupt handler. Determine if we have good chars
3444 * or bad chars and then process appropriately. Good chars are easy
3445 * just shove the lot into the RX buffer and set all status byte to 0.
3446 * If a bad RX char then process as required. This routine needs to be
3447 * fast! In practice it is possible that we get an interrupt on a port
3448 * that is closed. This can happen on hangups - since they completely
3449 * shutdown a port not in user context. Need to handle this case.
3452 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3454 struct stlport *portp;
3455 struct tty_struct *tty;
3456 unsigned int ioack, len, buflen;
3457 unsigned char status;
3460 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3462 ioack = inb(ioaddr + EREG_RXACK);
3463 if ((ioack & panelp->ackmask) != 0) {
3464 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3467 portp = panelp->ports[(ioack >> 3)];
3468 tty = tty_port_tty_get(&portp->port);
3470 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3471 outb((RDCR + portp->uartaddr), ioaddr);
3472 len = inb(ioaddr + EREG_DATA);
3473 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3474 len = min_t(unsigned int, len, sizeof(stl_unwanted));
3475 outb((RDSR + portp->uartaddr), ioaddr);
3476 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3477 portp->stats.rxlost += len;
3478 portp->stats.rxtotal += len;
3480 len = min(len, buflen);
3483 outb((RDSR + portp->uartaddr), ioaddr);
3484 tty_prepare_flip_string(tty, &ptr, len);
3485 insb((ioaddr + EREG_DATA), ptr, len);
3486 tty_schedule_flip(tty);
3487 portp->stats.rxtotal += len;
3490 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3491 outb((RDSR + portp->uartaddr), ioaddr);
3492 status = inb(ioaddr + EREG_DATA);
3493 ch = inb(ioaddr + EREG_DATA);
3494 if (status & ST_PARITY)
3495 portp->stats.rxparity++;
3496 if (status & ST_FRAMING)
3497 portp->stats.rxframing++;
3498 if (status & ST_OVERRUN)
3499 portp->stats.rxoverrun++;
3500 if (status & ST_BREAK)
3501 portp->stats.rxbreaks++;
3502 if (status & ST_SCHARMASK) {
3503 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3504 portp->stats.txxon++;
3505 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3506 portp->stats.txxoff++;
3509 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3510 if (portp->rxmarkmsk & status) {
3511 if (status & ST_BREAK) {
3513 if (portp->port.flags & ASYNC_SAK) {
3515 BRDENABLE(portp->brdnr, portp->pagenr);
3517 } else if (status & ST_PARITY)
3518 status = TTY_PARITY;
3519 else if (status & ST_FRAMING)
3521 else if(status & ST_OVERRUN)
3522 status = TTY_OVERRUN;
3527 tty_insert_flip_char(tty, ch, status);
3528 tty_schedule_flip(tty);
3531 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3538 outb((EOSRR + portp->uartaddr), ioaddr);
3539 outb(0, (ioaddr + EREG_DATA));
3542 /*****************************************************************************/
3545 * Modem interrupt handler. The is called when the modem signal line
3546 * (DCD) has changed state. Leave most of the work to the off-level
3547 * processing routine.
3550 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3552 struct stlport *portp;
3556 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3558 ioack = inb(ioaddr + EREG_MDACK);
3559 if (((ioack & panelp->ackmask) != 0) ||
3560 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3561 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3564 portp = panelp->ports[(ioack >> 3)];
3566 outb((MISR + portp->uartaddr), ioaddr);
3567 misr = inb(ioaddr + EREG_DATA);
3568 if (misr & MISR_DCD) {
3569 stl_cd_change(portp);
3570 portp->stats.modem++;
3573 outb((EOSRR + portp->uartaddr), ioaddr);
3574 outb(0, (ioaddr + EREG_DATA));
3577 /*****************************************************************************/
3578 /* SC26198 HARDWARE FUNCTIONS */
3579 /*****************************************************************************/
3582 * These functions get/set/update the registers of the sc26198 UARTs.
3583 * Access to the sc26198 registers is via an address/data io port pair.
3584 * (Maybe should make this inline...)
3587 static int stl_sc26198getreg(struct stlport *portp, int regnr)
3589 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3590 return inb(portp->ioaddr + XP_DATA);
3593 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3595 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3596 outb(value, (portp->ioaddr + XP_DATA));
3599 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3601 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3602 if (inb(portp->ioaddr + XP_DATA) != value) {
3603 outb(value, (portp->ioaddr + XP_DATA));
3609 /*****************************************************************************/
3612 * Functions to get and set the sc26198 global registers.
3615 static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3617 outb(regnr, (portp->ioaddr + XP_ADDR));
3618 return inb(portp->ioaddr + XP_DATA);
3622 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3624 outb(regnr, (portp->ioaddr + XP_ADDR));
3625 outb(value, (portp->ioaddr + XP_DATA));
3629 /*****************************************************************************/
3632 * Inbitialize the UARTs in a panel. We don't care what sort of board
3633 * these ports are on - since the port io registers are almost
3634 * identical when dealing with ports.
3637 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3640 int nrchips, ioaddr;
3642 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3644 BRDENABLE(panelp->brdnr, panelp->pagenr);
3647 * Check that each chip is present and started up OK.
3650 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3651 if (brdp->brdtype == BRD_ECHPCI)
3652 outb(panelp->pagenr, brdp->ioctrl);
3654 for (i = 0; i < nrchips; i++) {
3655 ioaddr = panelp->iobase + (i * 4);
3656 outb(SCCR, (ioaddr + XP_ADDR));
3657 outb(CR_RESETALL, (ioaddr + XP_DATA));
3658 outb(TSTR, (ioaddr + XP_ADDR));
3659 if (inb(ioaddr + XP_DATA) != 0) {
3660 printk("STALLION: sc26198 not responding, "
3661 "brd=%d panel=%d chip=%d\n",
3662 panelp->brdnr, panelp->panelnr, i);
3665 chipmask |= (0x1 << i);
3666 outb(GCCR, (ioaddr + XP_ADDR));
3667 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3668 outb(WDTRCR, (ioaddr + XP_ADDR));
3669 outb(0xff, (ioaddr + XP_DATA));
3672 BRDDISABLE(panelp->brdnr);
3676 /*****************************************************************************/
3679 * Initialize hardware specific port registers.
3682 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3684 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3687 if ((brdp == NULL) || (panelp == NULL) ||
3691 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3692 portp->uartaddr = (portp->portnr & 0x07) << 4;
3693 portp->pagenr = panelp->pagenr;
3696 BRDENABLE(portp->brdnr, portp->pagenr);
3697 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3698 BRDDISABLE(portp->brdnr);
3701 /*****************************************************************************/
3704 * Set up the sc26198 registers for a port based on the termios port
3708 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3710 struct stlbrd *brdp;
3711 unsigned long flags;
3712 unsigned int baudrate;
3713 unsigned char mr0, mr1, mr2, clk;
3714 unsigned char imron, imroff, iopr, ipr;
3724 brdp = stl_brds[portp->brdnr];
3729 * Set up the RX char ignore mask with those RX error types we
3732 portp->rxignoremsk = 0;
3733 if (tiosp->c_iflag & IGNPAR)
3734 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3736 if (tiosp->c_iflag & IGNBRK)
3737 portp->rxignoremsk |= SR_RXBREAK;
3739 portp->rxmarkmsk = SR_RXOVERRUN;
3740 if (tiosp->c_iflag & (INPCK | PARMRK))
3741 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3742 if (tiosp->c_iflag & BRKINT)
3743 portp->rxmarkmsk |= SR_RXBREAK;
3746 * Go through the char size, parity and stop bits and set all the
3747 * option register appropriately.
3749 switch (tiosp->c_cflag & CSIZE) {
3764 if (tiosp->c_cflag & CSTOPB)
3769 if (tiosp->c_cflag & PARENB) {
3770 if (tiosp->c_cflag & PARODD)
3771 mr1 |= (MR1_PARENB | MR1_PARODD);
3773 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3777 mr1 |= MR1_ERRBLOCK;
3780 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3781 * space for hardware flow control and the like. This should be set to
3784 mr2 |= MR2_RXFIFOHALF;
3787 * Calculate the baud rate timers. For now we will just assume that
3788 * the input and output baud are the same. The sc26198 has a fixed
3789 * baud rate table, so only discrete baud rates possible.
3791 baudrate = tiosp->c_cflag & CBAUD;
3792 if (baudrate & CBAUDEX) {
3793 baudrate &= ~CBAUDEX;
3794 if ((baudrate < 1) || (baudrate > 4))
3795 tiosp->c_cflag &= ~CBAUDEX;
3799 baudrate = stl_baudrates[baudrate];
3800 if ((tiosp->c_cflag & CBAUD) == B38400) {
3801 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3803 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3805 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3807 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3809 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3810 baudrate = (portp->baud_base / portp->custom_divisor);
3812 if (baudrate > STL_SC26198MAXBAUD)
3813 baudrate = STL_SC26198MAXBAUD;
3816 for (clk = 0; clk < SC26198_NRBAUDS; clk++)
3817 if (baudrate <= sc26198_baudtable[clk])
3821 * Check what form of modem signaling is required and set it up.
3823 if (tiosp->c_cflag & CLOCAL) {
3824 portp->port.flags &= ~ASYNC_CHECK_CD;
3826 iopr |= IOPR_DCDCOS;
3828 portp->port.flags |= ASYNC_CHECK_CD;
3832 * Setup sc26198 enhanced modes if we can. In particular we want to
3833 * handle as much of the flow control as possible automatically. As
3834 * well as saving a few CPU cycles it will also greatly improve flow
3835 * control reliability.
3837 if (tiosp->c_iflag & IXON) {
3838 mr0 |= MR0_SWFTX | MR0_SWFT;
3839 imron |= IR_XONXOFF;
3841 imroff |= IR_XONXOFF;
3843 if (tiosp->c_iflag & IXOFF)
3846 if (tiosp->c_cflag & CRTSCTS) {
3852 * All sc26198 register values calculated so go through and set
3856 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3857 portp->portnr, portp->panelnr, portp->brdnr);
3858 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
3859 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
3860 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3861 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3862 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3864 spin_lock_irqsave(&brd_lock, flags);
3865 BRDENABLE(portp->brdnr, portp->pagenr);
3866 stl_sc26198setreg(portp, IMR, 0);
3867 stl_sc26198updatereg(portp, MR0, mr0);
3868 stl_sc26198updatereg(portp, MR1, mr1);
3869 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
3870 stl_sc26198updatereg(portp, MR2, mr2);
3871 stl_sc26198updatereg(portp, IOPIOR,
3872 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
3875 stl_sc26198setreg(portp, TXCSR, clk);
3876 stl_sc26198setreg(portp, RXCSR, clk);
3879 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
3880 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
3882 ipr = stl_sc26198getreg(portp, IPR);
3884 portp->sigs &= ~TIOCM_CD;
3886 portp->sigs |= TIOCM_CD;
3888 portp->imr = (portp->imr & ~imroff) | imron;
3889 stl_sc26198setreg(portp, IMR, portp->imr);
3890 BRDDISABLE(portp->brdnr);
3891 spin_unlock_irqrestore(&brd_lock, flags);
3894 /*****************************************************************************/
3897 * Set the state of the DTR and RTS signals.
3900 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
3902 unsigned char iopioron, iopioroff;
3903 unsigned long flags;
3905 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
3911 iopioroff |= IPR_DTR;
3913 iopioron |= IPR_DTR;
3915 iopioroff |= IPR_RTS;
3917 iopioron |= IPR_RTS;
3919 spin_lock_irqsave(&brd_lock, flags);
3920 BRDENABLE(portp->brdnr, portp->pagenr);
3921 stl_sc26198setreg(portp, IOPIOR,
3922 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
3923 BRDDISABLE(portp->brdnr);
3924 spin_unlock_irqrestore(&brd_lock, flags);
3927 /*****************************************************************************/
3930 * Return the state of the signals.
3933 static int stl_sc26198getsignals(struct stlport *portp)
3936 unsigned long flags;
3939 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
3941 spin_lock_irqsave(&brd_lock, flags);
3942 BRDENABLE(portp->brdnr, portp->pagenr);
3943 ipr = stl_sc26198getreg(portp, IPR);
3944 BRDDISABLE(portp->brdnr);
3945 spin_unlock_irqrestore(&brd_lock, flags);
3948 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
3949 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
3950 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
3951 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
3956 /*****************************************************************************/
3959 * Enable/Disable the Transmitter and/or Receiver.
3962 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
3965 unsigned long flags;
3967 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
3969 ccr = portp->crenable;
3971 ccr &= ~CR_TXENABLE;
3975 ccr &= ~CR_RXENABLE;
3979 spin_lock_irqsave(&brd_lock, flags);
3980 BRDENABLE(portp->brdnr, portp->pagenr);
3981 stl_sc26198setreg(portp, SCCR, ccr);
3982 BRDDISABLE(portp->brdnr);
3983 portp->crenable = ccr;
3984 spin_unlock_irqrestore(&brd_lock, flags);
3987 /*****************************************************************************/
3990 * Start/stop the Transmitter and/or Receiver.
3993 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
3996 unsigned long flags;
3998 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
4006 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4008 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4010 spin_lock_irqsave(&brd_lock, flags);
4011 BRDENABLE(portp->brdnr, portp->pagenr);
4012 stl_sc26198setreg(portp, IMR, imr);
4013 BRDDISABLE(portp->brdnr);
4016 set_bit(ASYI_TXBUSY, &portp->istate);
4017 spin_unlock_irqrestore(&brd_lock, flags);
4020 /*****************************************************************************/
4023 * Disable all interrupts from this port.
4026 static void stl_sc26198disableintrs(struct stlport *portp)
4028 unsigned long flags;
4030 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
4032 spin_lock_irqsave(&brd_lock, flags);
4033 BRDENABLE(portp->brdnr, portp->pagenr);
4035 stl_sc26198setreg(portp, IMR, 0);
4036 BRDDISABLE(portp->brdnr);
4037 spin_unlock_irqrestore(&brd_lock, flags);
4040 /*****************************************************************************/
4042 static void stl_sc26198sendbreak(struct stlport *portp, int len)
4044 unsigned long flags;
4046 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
4048 spin_lock_irqsave(&brd_lock, flags);
4049 BRDENABLE(portp->brdnr, portp->pagenr);
4051 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4052 portp->stats.txbreaks++;
4054 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4056 BRDDISABLE(portp->brdnr);
4057 spin_unlock_irqrestore(&brd_lock, flags);
4060 /*****************************************************************************/
4063 * Take flow control actions...
4066 static void stl_sc26198flowctrl(struct stlport *portp, int state)
4068 struct tty_struct *tty;
4069 unsigned long flags;
4072 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4076 tty = tty_port_tty_get(&portp->port);
4080 spin_lock_irqsave(&brd_lock, flags);
4081 BRDENABLE(portp->brdnr, portp->pagenr);
4084 if (tty->termios->c_iflag & IXOFF) {
4085 mr0 = stl_sc26198getreg(portp, MR0);
4086 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4087 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4089 portp->stats.rxxon++;
4090 stl_sc26198wait(portp);
4091 stl_sc26198setreg(portp, MR0, mr0);
4094 * Question: should we return RTS to what it was before? It may
4095 * have been set by an ioctl... Suppose not, since if you have
4096 * hardware flow control set then it is pretty silly to go and
4097 * set the RTS line by hand.
4099 if (tty->termios->c_cflag & CRTSCTS) {
4100 stl_sc26198setreg(portp, MR1,
4101 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4102 stl_sc26198setreg(portp, IOPIOR,
4103 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4104 portp->stats.rxrtson++;
4107 if (tty->termios->c_iflag & IXOFF) {
4108 mr0 = stl_sc26198getreg(portp, MR0);
4109 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4110 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4112 portp->stats.rxxoff++;
4113 stl_sc26198wait(portp);
4114 stl_sc26198setreg(portp, MR0, mr0);
4116 if (tty->termios->c_cflag & CRTSCTS) {
4117 stl_sc26198setreg(portp, MR1,
4118 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4119 stl_sc26198setreg(portp, IOPIOR,
4120 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4121 portp->stats.rxrtsoff++;
4125 BRDDISABLE(portp->brdnr);
4126 spin_unlock_irqrestore(&brd_lock, flags);
4130 /*****************************************************************************/
4133 * Send a flow control character.
4136 static void stl_sc26198sendflow(struct stlport *portp, int state)
4138 struct tty_struct *tty;
4139 unsigned long flags;
4142 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4146 tty = tty_port_tty_get(&portp->port);
4150 spin_lock_irqsave(&brd_lock, flags);
4151 BRDENABLE(portp->brdnr, portp->pagenr);
4153 mr0 = stl_sc26198getreg(portp, MR0);
4154 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4155 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4157 portp->stats.rxxon++;
4158 stl_sc26198wait(portp);
4159 stl_sc26198setreg(portp, MR0, mr0);
4161 mr0 = stl_sc26198getreg(portp, MR0);
4162 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4163 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4165 portp->stats.rxxoff++;
4166 stl_sc26198wait(portp);
4167 stl_sc26198setreg(portp, MR0, mr0);
4169 BRDDISABLE(portp->brdnr);
4170 spin_unlock_irqrestore(&brd_lock, flags);
4174 /*****************************************************************************/
4176 static void stl_sc26198flush(struct stlport *portp)
4178 unsigned long flags;
4180 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4185 spin_lock_irqsave(&brd_lock, flags);
4186 BRDENABLE(portp->brdnr, portp->pagenr);
4187 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4188 stl_sc26198setreg(portp, SCCR, portp->crenable);
4189 BRDDISABLE(portp->brdnr);
4190 portp->tx.tail = portp->tx.head;
4191 spin_unlock_irqrestore(&brd_lock, flags);
4194 /*****************************************************************************/
4197 * Return the current state of data flow on this port. This is only
4198 * really interresting when determining if data has fully completed
4199 * transmission or not... The sc26198 interrupt scheme cannot
4200 * determine when all data has actually drained, so we need to
4201 * check the port statusy register to be sure.
4204 static int stl_sc26198datastate(struct stlport *portp)
4206 unsigned long flags;
4209 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4213 if (test_bit(ASYI_TXBUSY, &portp->istate))
4216 spin_lock_irqsave(&brd_lock, flags);
4217 BRDENABLE(portp->brdnr, portp->pagenr);
4218 sr = stl_sc26198getreg(portp, SR);
4219 BRDDISABLE(portp->brdnr);
4220 spin_unlock_irqrestore(&brd_lock, flags);
4222 return (sr & SR_TXEMPTY) ? 0 : 1;
4225 /*****************************************************************************/
4228 * Delay for a small amount of time, to give the sc26198 a chance
4229 * to process a command...
4232 static void stl_sc26198wait(struct stlport *portp)
4236 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4241 for (i = 0; i < 20; i++)
4242 stl_sc26198getglobreg(portp, TSTR);
4245 /*****************************************************************************/
4248 * If we are TX flow controlled and in IXANY mode then we may
4249 * need to unflow control here. We gotta do this because of the
4250 * automatic flow control modes of the sc26198.
4253 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4257 mr0 = stl_sc26198getreg(portp, MR0);
4258 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4259 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4260 stl_sc26198wait(portp);
4261 stl_sc26198setreg(portp, MR0, mr0);
4262 clear_bit(ASYI_TXFLOWED, &portp->istate);
4265 /*****************************************************************************/
4268 * Interrupt service routine for sc26198 panels.
4271 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4273 struct stlport *portp;
4276 spin_lock(&brd_lock);
4279 * Work around bug in sc26198 chip... Cannot have A6 address
4280 * line of UART high, else iack will be returned as 0.
4282 outb(0, (iobase + 1));
4284 iack = inb(iobase + XP_IACK);
4285 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4287 if (iack & IVR_RXDATA)
4288 stl_sc26198rxisr(portp, iack);
4289 else if (iack & IVR_TXDATA)
4290 stl_sc26198txisr(portp);
4292 stl_sc26198otherisr(portp, iack);
4294 spin_unlock(&brd_lock);
4297 /*****************************************************************************/
4300 * Transmit interrupt handler. This has gotta be fast! Handling TX
4301 * chars is pretty simple, stuff as many as possible from the TX buffer
4302 * into the sc26198 FIFO.
4303 * In practice it is possible that interrupts are enabled but that the
4304 * port has been hung up. Need to handle not having any TX buffer here,
4305 * this is done by using the side effect that head and tail will also
4306 * be NULL if the buffer has been freed.
4309 static void stl_sc26198txisr(struct stlport *portp)
4311 struct tty_struct *tty;
4312 unsigned int ioaddr;
4317 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4319 ioaddr = portp->ioaddr;
4320 head = portp->tx.head;
4321 tail = portp->tx.tail;
4322 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4323 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4324 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4325 set_bit(ASYI_TXLOW, &portp->istate);
4326 tty = tty_port_tty_get(&portp->port);
4334 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4335 mr0 = inb(ioaddr + XP_DATA);
4336 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4337 portp->imr &= ~IR_TXRDY;
4338 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4339 outb(portp->imr, (ioaddr + XP_DATA));
4340 clear_bit(ASYI_TXBUSY, &portp->istate);
4342 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4343 outb(mr0, (ioaddr + XP_DATA));
4346 len = min(len, SC26198_TXFIFOSIZE);
4347 portp->stats.txtotal += len;
4348 stlen = min_t(unsigned int, len,
4349 (portp->tx.buf + STL_TXBUFSIZE) - tail);
4350 outb(GTXFIFO, (ioaddr + XP_ADDR));
4351 outsb((ioaddr + XP_DATA), tail, stlen);
4354 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4355 tail = portp->tx.buf;
4357 outsb((ioaddr + XP_DATA), tail, len);
4360 portp->tx.tail = tail;
4364 /*****************************************************************************/
4367 * Receive character interrupt handler. Determine if we have good chars
4368 * or bad chars and then process appropriately. Good chars are easy
4369 * just shove the lot into the RX buffer and set all status byte to 0.
4370 * If a bad RX char then process as required. This routine needs to be
4371 * fast! In practice it is possible that we get an interrupt on a port
4372 * that is closed. This can happen on hangups - since they completely
4373 * shutdown a port not in user context. Need to handle this case.
4376 static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4378 struct tty_struct *tty;
4379 unsigned int len, buflen, ioaddr;
4381 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4383 tty = tty_port_tty_get(&portp->port);
4384 ioaddr = portp->ioaddr;
4385 outb(GIBCR, (ioaddr + XP_ADDR));
4386 len = inb(ioaddr + XP_DATA) + 1;
4388 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4389 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4390 len = min_t(unsigned int, len, sizeof(stl_unwanted));
4391 outb(GRXFIFO, (ioaddr + XP_ADDR));
4392 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4393 portp->stats.rxlost += len;
4394 portp->stats.rxtotal += len;
4396 len = min(len, buflen);
4399 outb(GRXFIFO, (ioaddr + XP_ADDR));
4400 tty_prepare_flip_string(tty, &ptr, len);
4401 insb((ioaddr + XP_DATA), ptr, len);
4402 tty_schedule_flip(tty);
4403 portp->stats.rxtotal += len;
4407 stl_sc26198rxbadchars(portp);
4411 * If we are TX flow controlled and in IXANY mode then we may need
4412 * to unflow control here. We gotta do this because of the automatic
4413 * flow control modes of the sc26198.
4415 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4416 if ((tty != NULL) &&
4417 (tty->termios != NULL) &&
4418 (tty->termios->c_iflag & IXANY)) {
4419 stl_sc26198txunflow(portp, tty);
4425 /*****************************************************************************/
4428 * Process an RX bad character.
4431 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4433 struct tty_struct *tty;
4434 unsigned int ioaddr;
4436 tty = tty_port_tty_get(&portp->port);
4437 ioaddr = portp->ioaddr;
4439 if (status & SR_RXPARITY)
4440 portp->stats.rxparity++;
4441 if (status & SR_RXFRAMING)
4442 portp->stats.rxframing++;
4443 if (status & SR_RXOVERRUN)
4444 portp->stats.rxoverrun++;
4445 if (status & SR_RXBREAK)
4446 portp->stats.rxbreaks++;
4448 if ((tty != NULL) &&
4449 ((portp->rxignoremsk & status) == 0)) {
4450 if (portp->rxmarkmsk & status) {
4451 if (status & SR_RXBREAK) {
4453 if (portp->port.flags & ASYNC_SAK) {
4455 BRDENABLE(portp->brdnr, portp->pagenr);
4457 } else if (status & SR_RXPARITY)
4458 status = TTY_PARITY;
4459 else if (status & SR_RXFRAMING)
4461 else if(status & SR_RXOVERRUN)
4462 status = TTY_OVERRUN;
4468 tty_insert_flip_char(tty, ch, status);
4469 tty_schedule_flip(tty);
4472 portp->stats.rxtotal++;
4477 /*****************************************************************************/
4480 * Process all characters in the RX FIFO of the UART. Check all char
4481 * status bytes as well, and process as required. We need to check
4482 * all bytes in the FIFO, in case some more enter the FIFO while we
4483 * are here. To get the exact character error type we need to switch
4484 * into CHAR error mode (that is why we need to make sure we empty
4488 static void stl_sc26198rxbadchars(struct stlport *portp)
4490 unsigned char status, mr1;
4494 * To get the precise error type for each character we must switch
4495 * back into CHAR error mode.
4497 mr1 = stl_sc26198getreg(portp, MR1);
4498 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4500 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4501 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4502 ch = stl_sc26198getreg(portp, RXFIFO);
4503 stl_sc26198rxbadch(portp, status, ch);
4507 * To get correct interrupt class we must switch back into BLOCK
4510 stl_sc26198setreg(portp, MR1, mr1);
4513 /*****************************************************************************/
4516 * Other interrupt handler. This includes modem signals, flow
4517 * control actions, etc. Most stuff is left to off-level interrupt
4521 static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4523 unsigned char cir, ipr, xisr;
4525 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4527 cir = stl_sc26198getglobreg(portp, CIR);
4529 switch (cir & CIR_SUBTYPEMASK) {
4531 ipr = stl_sc26198getreg(portp, IPR);
4532 if (ipr & IPR_DCDCHANGE) {
4533 stl_cd_change(portp);
4534 portp->stats.modem++;
4537 case CIR_SUBXONXOFF:
4538 xisr = stl_sc26198getreg(portp, XISR);
4539 if (xisr & XISR_RXXONGOT) {
4540 set_bit(ASYI_TXFLOWED, &portp->istate);
4541 portp->stats.txxoff++;
4543 if (xisr & XISR_RXXOFFGOT) {
4544 clear_bit(ASYI_TXFLOWED, &portp->istate);
4545 portp->stats.txxon++;
4549 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4550 stl_sc26198rxbadchars(portp);
4557 static void stl_free_isabrds(void)
4559 struct stlbrd *brdp;
4562 for (i = 0; i < stl_nrbrds; i++) {
4563 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4566 free_irq(brdp->irq, brdp);
4568 stl_cleanup_panels(brdp);
4570 release_region(brdp->ioaddr1, brdp->iosize1);
4571 if (brdp->iosize2 > 0)
4572 release_region(brdp->ioaddr2, brdp->iosize2);
4580 * Loadable module initialization stuff.
4582 static int __init stallion_module_init(void)
4584 struct stlbrd *brdp;
4585 struct stlconf conf;
4589 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4591 spin_lock_init(&stallion_lock);
4592 spin_lock_init(&brd_lock);
4594 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4600 stl_serial->owner = THIS_MODULE;
4601 stl_serial->driver_name = stl_drvname;
4602 stl_serial->name = "ttyE";
4603 stl_serial->major = STL_SERIALMAJOR;
4604 stl_serial->minor_start = 0;
4605 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4606 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4607 stl_serial->init_termios = stl_deftermios;
4608 stl_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4609 tty_set_operations(stl_serial, &stl_ops);
4611 retval = tty_register_driver(stl_serial);
4613 printk("STALLION: failed to register serial driver\n");
4618 * Find any dynamically supported boards. That is via module load
4621 for (i = stl_nrbrds; i < stl_nargs; i++) {
4622 memset(&conf, 0, sizeof(conf));
4623 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
4625 if ((brdp = stl_allocbrd()) == NULL)
4628 brdp->brdtype = conf.brdtype;
4629 brdp->ioaddr1 = conf.ioaddr1;
4630 brdp->ioaddr2 = conf.ioaddr2;
4631 brdp->irq = conf.irq;
4632 brdp->irqtype = conf.irqtype;
4633 stl_brds[brdp->brdnr] = brdp;
4634 if (stl_brdinit(brdp)) {
4635 stl_brds[brdp->brdnr] = NULL;
4638 for (j = 0; j < brdp->nrports; j++)
4639 tty_register_device(stl_serial,
4640 brdp->brdnr * STL_MAXPORTS + j, NULL);
4645 /* this has to be _after_ isa finding because of locking */
4646 retval = pci_register_driver(&stl_pcidriver);
4647 if (retval && stl_nrbrds == 0) {
4648 printk(KERN_ERR "STALLION: can't register pci driver\n");
4653 * Set up a character driver for per board stuff. This is mainly used
4654 * to do stats ioctls on the ports.
4656 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4657 printk("STALLION: failed to register serial board device\n");
4659 stallion_class = class_create(THIS_MODULE, "staliomem");
4660 if (IS_ERR(stallion_class))
4661 printk("STALLION: failed to create class\n");
4662 for (i = 0; i < 4; i++)
4663 device_create(stallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4664 NULL, "staliomem%d", i);
4668 tty_unregister_driver(stl_serial);
4670 put_tty_driver(stl_serial);
4675 static void __exit stallion_module_exit(void)
4677 struct stlbrd *brdp;
4680 pr_debug("cleanup_module()\n");
4682 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4686 * Free up all allocated resources used by the ports. This includes
4687 * memory and interrupts. As part of this process we will also do
4688 * a hangup on every open port - to try to flush out any processes
4689 * hanging onto ports.
4691 for (i = 0; i < stl_nrbrds; i++) {
4692 if ((brdp = stl_brds[i]) == NULL || (brdp->state & STL_PROBED))
4694 for (j = 0; j < brdp->nrports; j++)
4695 tty_unregister_device(stl_serial,
4696 brdp->brdnr * STL_MAXPORTS + j);
4699 for (i = 0; i < 4; i++)
4700 device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4701 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4702 class_destroy(stallion_class);
4704 pci_unregister_driver(&stl_pcidriver);
4708 tty_unregister_driver(stl_serial);
4709 put_tty_driver(stl_serial);
4712 module_init(stallion_module_init);
4713 module_exit(stallion_module_exit);
4715 MODULE_AUTHOR("Greg Ungerer");
4716 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4717 MODULE_LICENSE("GPL");