]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/char/tty_io.c
tty: Fix oops when scanning the polling list for kgdb
[mv-sheeva.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
116         .c_iflag = ICRNL | IXON,
117         .c_oflag = OPOST | ONLCR,
118         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120                    ECHOCTL | ECHOKE | IEXTEN,
121         .c_cc = INIT_C_CC,
122         .c_ispeed = 38400,
123         .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131
132 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142                                                         size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158 /**
159  *      alloc_tty_struct        -       allocate a tty object
160  *
161  *      Return a new empty tty structure. The data fields have not
162  *      been initialized in any way but has been zeroed
163  *
164  *      Locking: none
165  */
166
167 struct tty_struct *alloc_tty_struct(void)
168 {
169         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170 }
171
172 /**
173  *      free_tty_struct         -       free a disused tty
174  *      @tty: tty struct to free
175  *
176  *      Free the write buffers, tty queue and tty memory itself.
177  *
178  *      Locking: none. Must be called after tty is definitely unused
179  */
180
181 void free_tty_struct(struct tty_struct *tty)
182 {
183         kfree(tty->write_buf);
184         tty_buffer_free_all(tty);
185         kfree(tty);
186 }
187
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190 /**
191  *      tty_name        -       return tty naming
192  *      @tty: tty structure
193  *      @buf: buffer for output
194  *
195  *      Convert a tty structure into a name. The name reflects the kernel
196  *      naming policy and if udev is in use may not reflect user space
197  *
198  *      Locking: none
199  */
200
201 char *tty_name(struct tty_struct *tty, char *buf)
202 {
203         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
204                 strcpy(buf, "NULL tty");
205         else
206                 strcpy(buf, tty->name);
207         return buf;
208 }
209
210 EXPORT_SYMBOL(tty_name);
211
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213                               const char *routine)
214 {
215 #ifdef TTY_PARANOIA_CHECK
216         if (!tty) {
217                 printk(KERN_WARNING
218                         "null TTY for (%d:%d) in %s\n",
219                         imajor(inode), iminor(inode), routine);
220                 return 1;
221         }
222         if (tty->magic != TTY_MAGIC) {
223                 printk(KERN_WARNING
224                         "bad magic number for tty struct (%d:%d) in %s\n",
225                         imajor(inode), iminor(inode), routine);
226                 return 1;
227         }
228 #endif
229         return 0;
230 }
231
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 {
234 #ifdef CHECK_TTY_COUNT
235         struct list_head *p;
236         int count = 0;
237
238         file_list_lock();
239         list_for_each(p, &tty->tty_files) {
240                 count++;
241         }
242         file_list_unlock();
243         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244             tty->driver->subtype == PTY_TYPE_SLAVE &&
245             tty->link && tty->link->count)
246                 count++;
247         if (tty->count != count) {
248                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249                                     "!= #fd's(%d) in %s\n",
250                        tty->name, tty->count, count, routine);
251                 return count;
252         }
253 #endif
254         return 0;
255 }
256
257 /**
258  *      get_tty_driver          -       find device of a tty
259  *      @dev_t: device identifier
260  *      @index: returns the index of the tty
261  *
262  *      This routine returns a tty driver structure, given a device number
263  *      and also passes back the index number.
264  *
265  *      Locking: caller must hold tty_mutex
266  */
267
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 {
270         struct tty_driver *p;
271
272         list_for_each_entry(p, &tty_drivers, tty_drivers) {
273                 dev_t base = MKDEV(p->major, p->minor_start);
274                 if (device < base || device >= base + p->num)
275                         continue;
276                 *index = device - base;
277                 return tty_driver_kref_get(p);
278         }
279         return NULL;
280 }
281
282 #ifdef CONFIG_CONSOLE_POLL
283
284 /**
285  *      tty_find_polling_driver -       find device of a polled tty
286  *      @name: name string to match
287  *      @line: pointer to resulting tty line nr
288  *
289  *      This routine returns a tty driver structure, given a name
290  *      and the condition that the tty driver is capable of polled
291  *      operation.
292  */
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 {
295         struct tty_driver *p, *res = NULL;
296         int tty_line = 0;
297         int len;
298         char *str, *stp;
299
300         for (str = name; *str; str++)
301                 if ((*str >= '0' && *str <= '9') || *str == ',')
302                         break;
303         if (!*str)
304                 return NULL;
305
306         len = str - name;
307         tty_line = simple_strtoul(str, &str, 10);
308
309         mutex_lock(&tty_mutex);
310         /* Search through the tty devices to look for a match */
311         list_for_each_entry(p, &tty_drivers, tty_drivers) {
312                 if (strncmp(name, p->name, len) != 0)
313                         continue;
314                 stp = str;
315                 if (*stp == ',')
316                         stp++;
317                 if (*stp == '\0')
318                         stp = NULL;
319
320                 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
321                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
322                         res = tty_driver_kref_get(p);
323                         *line = tty_line;
324                         break;
325                 }
326         }
327         mutex_unlock(&tty_mutex);
328
329         return res;
330 }
331 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
332 #endif
333
334 /**
335  *      tty_check_change        -       check for POSIX terminal changes
336  *      @tty: tty to check
337  *
338  *      If we try to write to, or set the state of, a terminal and we're
339  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
340  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
341  *
342  *      Locking: ctrl_lock
343  */
344
345 int tty_check_change(struct tty_struct *tty)
346 {
347         unsigned long flags;
348         int ret = 0;
349
350         if (current->signal->tty != tty)
351                 return 0;
352
353         spin_lock_irqsave(&tty->ctrl_lock, flags);
354
355         if (!tty->pgrp) {
356                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
357                 goto out_unlock;
358         }
359         if (task_pgrp(current) == tty->pgrp)
360                 goto out_unlock;
361         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
362         if (is_ignored(SIGTTOU))
363                 goto out;
364         if (is_current_pgrp_orphaned()) {
365                 ret = -EIO;
366                 goto out;
367         }
368         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
369         set_thread_flag(TIF_SIGPENDING);
370         ret = -ERESTARTSYS;
371 out:
372         return ret;
373 out_unlock:
374         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
375         return ret;
376 }
377
378 EXPORT_SYMBOL(tty_check_change);
379
380 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
381                                 size_t count, loff_t *ppos)
382 {
383         return 0;
384 }
385
386 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
387                                  size_t count, loff_t *ppos)
388 {
389         return -EIO;
390 }
391
392 /* No kernel lock held - none needed ;) */
393 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
394 {
395         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
396 }
397
398 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
399                 unsigned long arg)
400 {
401         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
402 }
403
404 static long hung_up_tty_compat_ioctl(struct file *file,
405                                      unsigned int cmd, unsigned long arg)
406 {
407         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408 }
409
410 static const struct file_operations tty_fops = {
411         .llseek         = no_llseek,
412         .read           = tty_read,
413         .write          = tty_write,
414         .poll           = tty_poll,
415         .unlocked_ioctl = tty_ioctl,
416         .compat_ioctl   = tty_compat_ioctl,
417         .open           = tty_open,
418         .release        = tty_release,
419         .fasync         = tty_fasync,
420 };
421
422 static const struct file_operations console_fops = {
423         .llseek         = no_llseek,
424         .read           = tty_read,
425         .write          = redirected_tty_write,
426         .poll           = tty_poll,
427         .unlocked_ioctl = tty_ioctl,
428         .compat_ioctl   = tty_compat_ioctl,
429         .open           = tty_open,
430         .release        = tty_release,
431         .fasync         = tty_fasync,
432 };
433
434 static const struct file_operations hung_up_tty_fops = {
435         .llseek         = no_llseek,
436         .read           = hung_up_tty_read,
437         .write          = hung_up_tty_write,
438         .poll           = hung_up_tty_poll,
439         .unlocked_ioctl = hung_up_tty_ioctl,
440         .compat_ioctl   = hung_up_tty_compat_ioctl,
441         .release        = tty_release,
442 };
443
444 static DEFINE_SPINLOCK(redirect_lock);
445 static struct file *redirect;
446
447 /**
448  *      tty_wakeup      -       request more data
449  *      @tty: terminal
450  *
451  *      Internal and external helper for wakeups of tty. This function
452  *      informs the line discipline if present that the driver is ready
453  *      to receive more output data.
454  */
455
456 void tty_wakeup(struct tty_struct *tty)
457 {
458         struct tty_ldisc *ld;
459
460         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
461                 ld = tty_ldisc_ref(tty);
462                 if (ld) {
463                         if (ld->ops->write_wakeup)
464                                 ld->ops->write_wakeup(tty);
465                         tty_ldisc_deref(ld);
466                 }
467         }
468         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
469 }
470
471 EXPORT_SYMBOL_GPL(tty_wakeup);
472
473 /**
474  *      tty_ldisc_flush -       flush line discipline queue
475  *      @tty: tty
476  *
477  *      Flush the line discipline queue (if any) for this tty. If there
478  *      is no line discipline active this is a no-op.
479  */
480
481 void tty_ldisc_flush(struct tty_struct *tty)
482 {
483         struct tty_ldisc *ld = tty_ldisc_ref(tty);
484         if (ld) {
485                 if (ld->ops->flush_buffer)
486                         ld->ops->flush_buffer(tty);
487                 tty_ldisc_deref(ld);
488         }
489         tty_buffer_flush(tty);
490 }
491
492 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
493
494 /**
495  *      tty_reset_termios       -       reset terminal state
496  *      @tty: tty to reset
497  *
498  *      Restore a terminal to the driver default state
499  */
500
501 static void tty_reset_termios(struct tty_struct *tty)
502 {
503         mutex_lock(&tty->termios_mutex);
504         *tty->termios = tty->driver->init_termios;
505         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
506         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
507         mutex_unlock(&tty->termios_mutex);
508 }
509
510 /**
511  *      do_tty_hangup           -       actual handler for hangup events
512  *      @work: tty device
513  *
514  *      This can be called by the "eventd" kernel thread.  That is process
515  *      synchronous but doesn't hold any locks, so we need to make sure we
516  *      have the appropriate locks for what we're doing.
517  *
518  *      The hangup event clears any pending redirections onto the hung up
519  *      device. It ensures future writes will error and it does the needed
520  *      line discipline hangup and signal delivery. The tty object itself
521  *      remains intact.
522  *
523  *      Locking:
524  *              BKL
525  *                redirect lock for undoing redirection
526  *                file list lock for manipulating list of ttys
527  *                tty_ldisc_lock from called functions
528  *                termios_mutex resetting termios data
529  *                tasklist_lock to walk task list for hangup event
530  *                  ->siglock to protect ->signal/->sighand
531  */
532 static void do_tty_hangup(struct work_struct *work)
533 {
534         struct tty_struct *tty =
535                 container_of(work, struct tty_struct, hangup_work);
536         struct file *cons_filp = NULL;
537         struct file *filp, *f = NULL;
538         struct task_struct *p;
539         struct tty_ldisc *ld;
540         int    closecount = 0, n;
541         unsigned long flags;
542         int refs = 0;
543
544         if (!tty)
545                 return;
546
547         /* inuse_filps is protected by the single kernel lock */
548         lock_kernel();
549
550         spin_lock(&redirect_lock);
551         if (redirect && redirect->private_data == tty) {
552                 f = redirect;
553                 redirect = NULL;
554         }
555         spin_unlock(&redirect_lock);
556
557         check_tty_count(tty, "do_tty_hangup");
558         file_list_lock();
559         /* This breaks for file handles being sent over AF_UNIX sockets ? */
560         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
561                 if (filp->f_op->write == redirected_tty_write)
562                         cons_filp = filp;
563                 if (filp->f_op->write != tty_write)
564                         continue;
565                 closecount++;
566                 tty_fasync(-1, filp, 0);        /* can't block */
567                 filp->f_op = &hung_up_tty_fops;
568         }
569         file_list_unlock();
570         /*
571          * FIXME! What are the locking issues here? This may me overdoing
572          * things... This question is especially important now that we've
573          * removed the irqlock.
574          */
575         ld = tty_ldisc_ref(tty);
576         if (ld != NULL) {
577                 /* We may have no line discipline at this point */
578                 if (ld->ops->flush_buffer)
579                         ld->ops->flush_buffer(tty);
580                 tty_driver_flush_buffer(tty);
581                 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
582                     ld->ops->write_wakeup)
583                         ld->ops->write_wakeup(tty);
584                 if (ld->ops->hangup)
585                         ld->ops->hangup(tty);
586         }
587         /*
588          * FIXME: Once we trust the LDISC code better we can wait here for
589          * ldisc completion and fix the driver call race
590          */
591         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
592         wake_up_interruptible_poll(&tty->read_wait, POLLIN);
593         /*
594          * Shutdown the current line discipline, and reset it to
595          * N_TTY.
596          */
597         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
598                 tty_reset_termios(tty);
599         /* Defer ldisc switch */
600         /* tty_deferred_ldisc_switch(N_TTY);
601
602           This should get done automatically when the port closes and
603           tty_release is called */
604
605         read_lock(&tasklist_lock);
606         if (tty->session) {
607                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
608                         spin_lock_irq(&p->sighand->siglock);
609                         if (p->signal->tty == tty) {
610                                 p->signal->tty = NULL;
611                                 /* We defer the dereferences outside fo
612                                    the tasklist lock */
613                                 refs++;
614                         }
615                         if (!p->signal->leader) {
616                                 spin_unlock_irq(&p->sighand->siglock);
617                                 continue;
618                         }
619                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
620                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
621                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
622                         spin_lock_irqsave(&tty->ctrl_lock, flags);
623                         if (tty->pgrp)
624                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
625                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
626                         spin_unlock_irq(&p->sighand->siglock);
627                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
628         }
629         read_unlock(&tasklist_lock);
630
631         spin_lock_irqsave(&tty->ctrl_lock, flags);
632         tty->flags = 0;
633         put_pid(tty->session);
634         put_pid(tty->pgrp);
635         tty->session = NULL;
636         tty->pgrp = NULL;
637         tty->ctrl_status = 0;
638         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
639
640         /* Account for the p->signal references we killed */
641         while (refs--)
642                 tty_kref_put(tty);
643
644         /*
645          * If one of the devices matches a console pointer, we
646          * cannot just call hangup() because that will cause
647          * tty->count and state->count to go out of sync.
648          * So we just call close() the right number of times.
649          */
650         if (cons_filp) {
651                 if (tty->ops->close)
652                         for (n = 0; n < closecount; n++)
653                                 tty->ops->close(tty, cons_filp);
654         } else if (tty->ops->hangup)
655                 (tty->ops->hangup)(tty);
656         /*
657          * We don't want to have driver/ldisc interactions beyond
658          * the ones we did here. The driver layer expects no
659          * calls after ->hangup() from the ldisc side. However we
660          * can't yet guarantee all that.
661          */
662         set_bit(TTY_HUPPED, &tty->flags);
663         if (ld) {
664                 tty_ldisc_enable(tty);
665                 tty_ldisc_deref(ld);
666         }
667         unlock_kernel();
668         if (f)
669                 fput(f);
670 }
671
672 /**
673  *      tty_hangup              -       trigger a hangup event
674  *      @tty: tty to hangup
675  *
676  *      A carrier loss (virtual or otherwise) has occurred on this like
677  *      schedule a hangup sequence to run after this event.
678  */
679
680 void tty_hangup(struct tty_struct *tty)
681 {
682 #ifdef TTY_DEBUG_HANGUP
683         char    buf[64];
684         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
685 #endif
686         schedule_work(&tty->hangup_work);
687 }
688
689 EXPORT_SYMBOL(tty_hangup);
690
691 /**
692  *      tty_vhangup             -       process vhangup
693  *      @tty: tty to hangup
694  *
695  *      The user has asked via system call for the terminal to be hung up.
696  *      We do this synchronously so that when the syscall returns the process
697  *      is complete. That guarantee is necessary for security reasons.
698  */
699
700 void tty_vhangup(struct tty_struct *tty)
701 {
702 #ifdef TTY_DEBUG_HANGUP
703         char    buf[64];
704
705         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
706 #endif
707         do_tty_hangup(&tty->hangup_work);
708 }
709
710 EXPORT_SYMBOL(tty_vhangup);
711
712 /**
713  *      tty_vhangup_self        -       process vhangup for own ctty
714  *
715  *      Perform a vhangup on the current controlling tty
716  */
717
718 void tty_vhangup_self(void)
719 {
720         struct tty_struct *tty;
721
722         tty = get_current_tty();
723         if (tty) {
724                 tty_vhangup(tty);
725                 tty_kref_put(tty);
726         }
727 }
728
729 /**
730  *      tty_hung_up_p           -       was tty hung up
731  *      @filp: file pointer of tty
732  *
733  *      Return true if the tty has been subject to a vhangup or a carrier
734  *      loss
735  */
736
737 int tty_hung_up_p(struct file *filp)
738 {
739         return (filp->f_op == &hung_up_tty_fops);
740 }
741
742 EXPORT_SYMBOL(tty_hung_up_p);
743
744 static void session_clear_tty(struct pid *session)
745 {
746         struct task_struct *p;
747         do_each_pid_task(session, PIDTYPE_SID, p) {
748                 proc_clear_tty(p);
749         } while_each_pid_task(session, PIDTYPE_SID, p);
750 }
751
752 /**
753  *      disassociate_ctty       -       disconnect controlling tty
754  *      @on_exit: true if exiting so need to "hang up" the session
755  *
756  *      This function is typically called only by the session leader, when
757  *      it wants to disassociate itself from its controlling tty.
758  *
759  *      It performs the following functions:
760  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
761  *      (2)  Clears the tty from being controlling the session
762  *      (3)  Clears the controlling tty for all processes in the
763  *              session group.
764  *
765  *      The argument on_exit is set to 1 if called when a process is
766  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
767  *
768  *      Locking:
769  *              BKL is taken for hysterical raisins
770  *                tty_mutex is taken to protect tty
771  *                ->siglock is taken to protect ->signal/->sighand
772  *                tasklist_lock is taken to walk process list for sessions
773  *                  ->siglock is taken to protect ->signal/->sighand
774  */
775
776 void disassociate_ctty(int on_exit)
777 {
778         struct tty_struct *tty;
779         struct pid *tty_pgrp = NULL;
780
781
782         tty = get_current_tty();
783         if (tty) {
784                 tty_pgrp = get_pid(tty->pgrp);
785                 lock_kernel();
786                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
787                         tty_vhangup(tty);
788                 unlock_kernel();
789                 tty_kref_put(tty);
790         } else if (on_exit) {
791                 struct pid *old_pgrp;
792                 spin_lock_irq(&current->sighand->siglock);
793                 old_pgrp = current->signal->tty_old_pgrp;
794                 current->signal->tty_old_pgrp = NULL;
795                 spin_unlock_irq(&current->sighand->siglock);
796                 if (old_pgrp) {
797                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
798                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
799                         put_pid(old_pgrp);
800                 }
801                 return;
802         }
803         if (tty_pgrp) {
804                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
805                 if (!on_exit)
806                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
807                 put_pid(tty_pgrp);
808         }
809
810         spin_lock_irq(&current->sighand->siglock);
811         put_pid(current->signal->tty_old_pgrp);
812         current->signal->tty_old_pgrp = NULL;
813         spin_unlock_irq(&current->sighand->siglock);
814
815         tty = get_current_tty();
816         if (tty) {
817                 unsigned long flags;
818                 spin_lock_irqsave(&tty->ctrl_lock, flags);
819                 put_pid(tty->session);
820                 put_pid(tty->pgrp);
821                 tty->session = NULL;
822                 tty->pgrp = NULL;
823                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
824                 tty_kref_put(tty);
825         } else {
826 #ifdef TTY_DEBUG_HANGUP
827                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
828                        " = NULL", tty);
829 #endif
830         }
831
832         /* Now clear signal->tty under the lock */
833         read_lock(&tasklist_lock);
834         session_clear_tty(task_session(current));
835         read_unlock(&tasklist_lock);
836 }
837
838 /**
839  *
840  *      no_tty  - Ensure the current process does not have a controlling tty
841  */
842 void no_tty(void)
843 {
844         struct task_struct *tsk = current;
845         lock_kernel();
846         if (tsk->signal->leader)
847                 disassociate_ctty(0);
848         unlock_kernel();
849         proc_clear_tty(tsk);
850 }
851
852
853 /**
854  *      stop_tty        -       propagate flow control
855  *      @tty: tty to stop
856  *
857  *      Perform flow control to the driver. For PTY/TTY pairs we
858  *      must also propagate the TIOCKPKT status. May be called
859  *      on an already stopped device and will not re-call the driver
860  *      method.
861  *
862  *      This functionality is used by both the line disciplines for
863  *      halting incoming flow and by the driver. It may therefore be
864  *      called from any context, may be under the tty atomic_write_lock
865  *      but not always.
866  *
867  *      Locking:
868  *              Uses the tty control lock internally
869  */
870
871 void stop_tty(struct tty_struct *tty)
872 {
873         unsigned long flags;
874         spin_lock_irqsave(&tty->ctrl_lock, flags);
875         if (tty->stopped) {
876                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
877                 return;
878         }
879         tty->stopped = 1;
880         if (tty->link && tty->link->packet) {
881                 tty->ctrl_status &= ~TIOCPKT_START;
882                 tty->ctrl_status |= TIOCPKT_STOP;
883                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
884         }
885         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
886         if (tty->ops->stop)
887                 (tty->ops->stop)(tty);
888 }
889
890 EXPORT_SYMBOL(stop_tty);
891
892 /**
893  *      start_tty       -       propagate flow control
894  *      @tty: tty to start
895  *
896  *      Start a tty that has been stopped if at all possible. Perform
897  *      any necessary wakeups and propagate the TIOCPKT status. If this
898  *      is the tty was previous stopped and is being started then the
899  *      driver start method is invoked and the line discipline woken.
900  *
901  *      Locking:
902  *              ctrl_lock
903  */
904
905 void start_tty(struct tty_struct *tty)
906 {
907         unsigned long flags;
908         spin_lock_irqsave(&tty->ctrl_lock, flags);
909         if (!tty->stopped || tty->flow_stopped) {
910                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
911                 return;
912         }
913         tty->stopped = 0;
914         if (tty->link && tty->link->packet) {
915                 tty->ctrl_status &= ~TIOCPKT_STOP;
916                 tty->ctrl_status |= TIOCPKT_START;
917                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
918         }
919         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
920         if (tty->ops->start)
921                 (tty->ops->start)(tty);
922         /* If we have a running line discipline it may need kicking */
923         tty_wakeup(tty);
924 }
925
926 EXPORT_SYMBOL(start_tty);
927
928 /**
929  *      tty_read        -       read method for tty device files
930  *      @file: pointer to tty file
931  *      @buf: user buffer
932  *      @count: size of user buffer
933  *      @ppos: unused
934  *
935  *      Perform the read system call function on this terminal device. Checks
936  *      for hung up devices before calling the line discipline method.
937  *
938  *      Locking:
939  *              Locks the line discipline internally while needed. Multiple
940  *      read calls may be outstanding in parallel.
941  */
942
943 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
944                         loff_t *ppos)
945 {
946         int i;
947         struct tty_struct *tty;
948         struct inode *inode;
949         struct tty_ldisc *ld;
950
951         tty = (struct tty_struct *)file->private_data;
952         inode = file->f_path.dentry->d_inode;
953         if (tty_paranoia_check(tty, inode, "tty_read"))
954                 return -EIO;
955         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
956                 return -EIO;
957
958         /* We want to wait for the line discipline to sort out in this
959            situation */
960         ld = tty_ldisc_ref_wait(tty);
961         if (ld->ops->read)
962                 i = (ld->ops->read)(tty, file, buf, count);
963         else
964                 i = -EIO;
965         tty_ldisc_deref(ld);
966         if (i > 0)
967                 inode->i_atime = current_fs_time(inode->i_sb);
968         return i;
969 }
970
971 void tty_write_unlock(struct tty_struct *tty)
972 {
973         mutex_unlock(&tty->atomic_write_lock);
974         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
975 }
976
977 int tty_write_lock(struct tty_struct *tty, int ndelay)
978 {
979         if (!mutex_trylock(&tty->atomic_write_lock)) {
980                 if (ndelay)
981                         return -EAGAIN;
982                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
983                         return -ERESTARTSYS;
984         }
985         return 0;
986 }
987
988 /*
989  * Split writes up in sane blocksizes to avoid
990  * denial-of-service type attacks
991  */
992 static inline ssize_t do_tty_write(
993         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
994         struct tty_struct *tty,
995         struct file *file,
996         const char __user *buf,
997         size_t count)
998 {
999         ssize_t ret, written = 0;
1000         unsigned int chunk;
1001
1002         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1003         if (ret < 0)
1004                 return ret;
1005
1006         /*
1007          * We chunk up writes into a temporary buffer. This
1008          * simplifies low-level drivers immensely, since they
1009          * don't have locking issues and user mode accesses.
1010          *
1011          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1012          * big chunk-size..
1013          *
1014          * The default chunk-size is 2kB, because the NTTY
1015          * layer has problems with bigger chunks. It will
1016          * claim to be able to handle more characters than
1017          * it actually does.
1018          *
1019          * FIXME: This can probably go away now except that 64K chunks
1020          * are too likely to fail unless switched to vmalloc...
1021          */
1022         chunk = 2048;
1023         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1024                 chunk = 65536;
1025         if (count < chunk)
1026                 chunk = count;
1027
1028         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1029         if (tty->write_cnt < chunk) {
1030                 unsigned char *buf_chunk;
1031
1032                 if (chunk < 1024)
1033                         chunk = 1024;
1034
1035                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1036                 if (!buf_chunk) {
1037                         ret = -ENOMEM;
1038                         goto out;
1039                 }
1040                 kfree(tty->write_buf);
1041                 tty->write_cnt = chunk;
1042                 tty->write_buf = buf_chunk;
1043         }
1044
1045         /* Do the write .. */
1046         for (;;) {
1047                 size_t size = count;
1048                 if (size > chunk)
1049                         size = chunk;
1050                 ret = -EFAULT;
1051                 if (copy_from_user(tty->write_buf, buf, size))
1052                         break;
1053                 ret = write(tty, file, tty->write_buf, size);
1054                 if (ret <= 0)
1055                         break;
1056                 written += ret;
1057                 buf += ret;
1058                 count -= ret;
1059                 if (!count)
1060                         break;
1061                 ret = -ERESTARTSYS;
1062                 if (signal_pending(current))
1063                         break;
1064                 cond_resched();
1065         }
1066         if (written) {
1067                 struct inode *inode = file->f_path.dentry->d_inode;
1068                 inode->i_mtime = current_fs_time(inode->i_sb);
1069                 ret = written;
1070         }
1071 out:
1072         tty_write_unlock(tty);
1073         return ret;
1074 }
1075
1076 /**
1077  * tty_write_message - write a message to a certain tty, not just the console.
1078  * @tty: the destination tty_struct
1079  * @msg: the message to write
1080  *
1081  * This is used for messages that need to be redirected to a specific tty.
1082  * We don't put it into the syslog queue right now maybe in the future if
1083  * really needed.
1084  *
1085  * We must still hold the BKL and test the CLOSING flag for the moment.
1086  */
1087
1088 void tty_write_message(struct tty_struct *tty, char *msg)
1089 {
1090         lock_kernel();
1091         if (tty) {
1092                 mutex_lock(&tty->atomic_write_lock);
1093                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1094                         tty->ops->write(tty, msg, strlen(msg));
1095                 tty_write_unlock(tty);
1096         }
1097         unlock_kernel();
1098         return;
1099 }
1100
1101
1102 /**
1103  *      tty_write               -       write method for tty device file
1104  *      @file: tty file pointer
1105  *      @buf: user data to write
1106  *      @count: bytes to write
1107  *      @ppos: unused
1108  *
1109  *      Write data to a tty device via the line discipline.
1110  *
1111  *      Locking:
1112  *              Locks the line discipline as required
1113  *              Writes to the tty driver are serialized by the atomic_write_lock
1114  *      and are then processed in chunks to the device. The line discipline
1115  *      write method will not be invoked in parallel for each device.
1116  */
1117
1118 static ssize_t tty_write(struct file *file, const char __user *buf,
1119                                                 size_t count, loff_t *ppos)
1120 {
1121         struct tty_struct *tty;
1122         struct inode *inode = file->f_path.dentry->d_inode;
1123         ssize_t ret;
1124         struct tty_ldisc *ld;
1125
1126         tty = (struct tty_struct *)file->private_data;
1127         if (tty_paranoia_check(tty, inode, "tty_write"))
1128                 return -EIO;
1129         if (!tty || !tty->ops->write ||
1130                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1131                         return -EIO;
1132         /* Short term debug to catch buggy drivers */
1133         if (tty->ops->write_room == NULL)
1134                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1135                         tty->driver->name);
1136         ld = tty_ldisc_ref_wait(tty);
1137         if (!ld->ops->write)
1138                 ret = -EIO;
1139         else
1140                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1141         tty_ldisc_deref(ld);
1142         return ret;
1143 }
1144
1145 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1146                                                 size_t count, loff_t *ppos)
1147 {
1148         struct file *p = NULL;
1149
1150         spin_lock(&redirect_lock);
1151         if (redirect) {
1152                 get_file(redirect);
1153                 p = redirect;
1154         }
1155         spin_unlock(&redirect_lock);
1156
1157         if (p) {
1158                 ssize_t res;
1159                 res = vfs_write(p, buf, count, &p->f_pos);
1160                 fput(p);
1161                 return res;
1162         }
1163         return tty_write(file, buf, count, ppos);
1164 }
1165
1166 static char ptychar[] = "pqrstuvwxyzabcde";
1167
1168 /**
1169  *      pty_line_name   -       generate name for a pty
1170  *      @driver: the tty driver in use
1171  *      @index: the minor number
1172  *      @p: output buffer of at least 6 bytes
1173  *
1174  *      Generate a name from a driver reference and write it to the output
1175  *      buffer.
1176  *
1177  *      Locking: None
1178  */
1179 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1180 {
1181         int i = index + driver->name_base;
1182         /* ->name is initialized to "ttyp", but "tty" is expected */
1183         sprintf(p, "%s%c%x",
1184                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1185                 ptychar[i >> 4 & 0xf], i & 0xf);
1186 }
1187
1188 /**
1189  *      tty_line_name   -       generate name for a tty
1190  *      @driver: the tty driver in use
1191  *      @index: the minor number
1192  *      @p: output buffer of at least 7 bytes
1193  *
1194  *      Generate a name from a driver reference and write it to the output
1195  *      buffer.
1196  *
1197  *      Locking: None
1198  */
1199 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1200 {
1201         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1202 }
1203
1204 /**
1205  *      tty_driver_lookup_tty() - find an existing tty, if any
1206  *      @driver: the driver for the tty
1207  *      @idx:    the minor number
1208  *
1209  *      Return the tty, if found or ERR_PTR() otherwise.
1210  *
1211  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1212  *      be held until the 'fast-open' is also done. Will change once we
1213  *      have refcounting in the driver and per driver locking
1214  */
1215 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1216                 struct inode *inode, int idx)
1217 {
1218         struct tty_struct *tty;
1219
1220         if (driver->ops->lookup)
1221                 return driver->ops->lookup(driver, inode, idx);
1222
1223         tty = driver->ttys[idx];
1224         return tty;
1225 }
1226
1227 /**
1228  *      tty_init_termios        -  helper for termios setup
1229  *      @tty: the tty to set up
1230  *
1231  *      Initialise the termios structures for this tty. Thus runs under
1232  *      the tty_mutex currently so we can be relaxed about ordering.
1233  */
1234
1235 int tty_init_termios(struct tty_struct *tty)
1236 {
1237         struct ktermios *tp;
1238         int idx = tty->index;
1239
1240         tp = tty->driver->termios[idx];
1241         if (tp == NULL) {
1242                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1243                 if (tp == NULL)
1244                         return -ENOMEM;
1245                 memcpy(tp, &tty->driver->init_termios,
1246                                                 sizeof(struct ktermios));
1247                 tty->driver->termios[idx] = tp;
1248         }
1249         tty->termios = tp;
1250         tty->termios_locked = tp + 1;
1251
1252         /* Compatibility until drivers always set this */
1253         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1254         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1255         return 0;
1256 }
1257
1258 /**
1259  *      tty_driver_install_tty() - install a tty entry in the driver
1260  *      @driver: the driver for the tty
1261  *      @tty: the tty
1262  *
1263  *      Install a tty object into the driver tables. The tty->index field
1264  *      will be set by the time this is called. This method is responsible
1265  *      for ensuring any need additional structures are allocated and
1266  *      configured.
1267  *
1268  *      Locking: tty_mutex for now
1269  */
1270 static int tty_driver_install_tty(struct tty_driver *driver,
1271                                                 struct tty_struct *tty)
1272 {
1273         int idx = tty->index;
1274
1275         if (driver->ops->install)
1276                 return driver->ops->install(driver, tty);
1277
1278         if (tty_init_termios(tty) == 0) {
1279                 tty_driver_kref_get(driver);
1280                 tty->count++;
1281                 driver->ttys[idx] = tty;
1282                 return 0;
1283         }
1284         return -ENOMEM;
1285 }
1286
1287 /**
1288  *      tty_driver_remove_tty() - remove a tty from the driver tables
1289  *      @driver: the driver for the tty
1290  *      @idx:    the minor number
1291  *
1292  *      Remvoe a tty object from the driver tables. The tty->index field
1293  *      will be set by the time this is called.
1294  *
1295  *      Locking: tty_mutex for now
1296  */
1297 static void tty_driver_remove_tty(struct tty_driver *driver,
1298                                                 struct tty_struct *tty)
1299 {
1300         if (driver->ops->remove)
1301                 driver->ops->remove(driver, tty);
1302         else
1303                 driver->ttys[tty->index] = NULL;
1304 }
1305
1306 /*
1307  *      tty_reopen()    - fast re-open of an open tty
1308  *      @tty    - the tty to open
1309  *
1310  *      Return 0 on success, -errno on error.
1311  *
1312  *      Locking: tty_mutex must be held from the time the tty was found
1313  *               till this open completes.
1314  */
1315 static int tty_reopen(struct tty_struct *tty)
1316 {
1317         struct tty_driver *driver = tty->driver;
1318
1319         if (test_bit(TTY_CLOSING, &tty->flags))
1320                 return -EIO;
1321
1322         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1323             driver->subtype == PTY_TYPE_MASTER) {
1324                 /*
1325                  * special case for PTY masters: only one open permitted,
1326                  * and the slave side open count is incremented as well.
1327                  */
1328                 if (tty->count)
1329                         return -EIO;
1330
1331                 tty->link->count++;
1332         }
1333         tty->count++;
1334         tty->driver = driver; /* N.B. why do this every time?? */
1335
1336         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1337
1338         return 0;
1339 }
1340
1341 /**
1342  *      tty_init_dev            -       initialise a tty device
1343  *      @driver: tty driver we are opening a device on
1344  *      @idx: device index
1345  *      @ret_tty: returned tty structure
1346  *      @first_ok: ok to open a new device (used by ptmx)
1347  *
1348  *      Prepare a tty device. This may not be a "new" clean device but
1349  *      could also be an active device. The pty drivers require special
1350  *      handling because of this.
1351  *
1352  *      Locking:
1353  *              The function is called under the tty_mutex, which
1354  *      protects us from the tty struct or driver itself going away.
1355  *
1356  *      On exit the tty device has the line discipline attached and
1357  *      a reference count of 1. If a pair was created for pty/tty use
1358  *      and the other was a pty master then it too has a reference count of 1.
1359  *
1360  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1361  * failed open.  The new code protects the open with a mutex, so it's
1362  * really quite straightforward.  The mutex locking can probably be
1363  * relaxed for the (most common) case of reopening a tty.
1364  */
1365
1366 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1367                                                                 int first_ok)
1368 {
1369         struct tty_struct *tty;
1370         int retval;
1371
1372         /* Check if pty master is being opened multiple times */
1373         if (driver->subtype == PTY_TYPE_MASTER &&
1374                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1375                 return ERR_PTR(-EIO);
1376
1377         /*
1378          * First time open is complex, especially for PTY devices.
1379          * This code guarantees that either everything succeeds and the
1380          * TTY is ready for operation, or else the table slots are vacated
1381          * and the allocated memory released.  (Except that the termios
1382          * and locked termios may be retained.)
1383          */
1384
1385         if (!try_module_get(driver->owner))
1386                 return ERR_PTR(-ENODEV);
1387
1388         tty = alloc_tty_struct();
1389         if (!tty)
1390                 goto fail_no_mem;
1391         initialize_tty_struct(tty, driver, idx);
1392
1393         retval = tty_driver_install_tty(driver, tty);
1394         if (retval < 0) {
1395                 free_tty_struct(tty);
1396                 module_put(driver->owner);
1397                 return ERR_PTR(retval);
1398         }
1399
1400         /*
1401          * Structures all installed ... call the ldisc open routines.
1402          * If we fail here just call release_tty to clean up.  No need
1403          * to decrement the use counts, as release_tty doesn't care.
1404          */
1405
1406         retval = tty_ldisc_setup(tty, tty->link);
1407         if (retval)
1408                 goto release_mem_out;
1409         return tty;
1410
1411 fail_no_mem:
1412         module_put(driver->owner);
1413         return ERR_PTR(-ENOMEM);
1414
1415         /* call the tty release_tty routine to clean out this slot */
1416 release_mem_out:
1417         if (printk_ratelimit())
1418                 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1419                                  "clearing slot %d\n", idx);
1420         release_tty(tty, idx);
1421         return ERR_PTR(retval);
1422 }
1423
1424 void tty_free_termios(struct tty_struct *tty)
1425 {
1426         struct ktermios *tp;
1427         int idx = tty->index;
1428         /* Kill this flag and push into drivers for locking etc */
1429         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1430                 /* FIXME: Locking on ->termios array */
1431                 tp = tty->termios;
1432                 tty->driver->termios[idx] = NULL;
1433                 kfree(tp);
1434         }
1435 }
1436 EXPORT_SYMBOL(tty_free_termios);
1437
1438 void tty_shutdown(struct tty_struct *tty)
1439 {
1440         tty_driver_remove_tty(tty->driver, tty);
1441         tty_free_termios(tty);
1442 }
1443 EXPORT_SYMBOL(tty_shutdown);
1444
1445 /**
1446  *      release_one_tty         -       release tty structure memory
1447  *      @kref: kref of tty we are obliterating
1448  *
1449  *      Releases memory associated with a tty structure, and clears out the
1450  *      driver table slots. This function is called when a device is no longer
1451  *      in use. It also gets called when setup of a device fails.
1452  *
1453  *      Locking:
1454  *              tty_mutex - sometimes only
1455  *              takes the file list lock internally when working on the list
1456  *      of ttys that the driver keeps.
1457  */
1458 static void release_one_tty(struct kref *kref)
1459 {
1460         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1461         struct tty_driver *driver = tty->driver;
1462
1463         if (tty->ops->shutdown)
1464                 tty->ops->shutdown(tty);
1465         else
1466                 tty_shutdown(tty);
1467         tty->magic = 0;
1468         tty_driver_kref_put(driver);
1469         module_put(driver->owner);
1470
1471         file_list_lock();
1472         list_del_init(&tty->tty_files);
1473         file_list_unlock();
1474
1475         free_tty_struct(tty);
1476 }
1477
1478 /**
1479  *      tty_kref_put            -       release a tty kref
1480  *      @tty: tty device
1481  *
1482  *      Release a reference to a tty device and if need be let the kref
1483  *      layer destruct the object for us
1484  */
1485
1486 void tty_kref_put(struct tty_struct *tty)
1487 {
1488         if (tty)
1489                 kref_put(&tty->kref, release_one_tty);
1490 }
1491 EXPORT_SYMBOL(tty_kref_put);
1492
1493 /**
1494  *      release_tty             -       release tty structure memory
1495  *
1496  *      Release both @tty and a possible linked partner (think pty pair),
1497  *      and decrement the refcount of the backing module.
1498  *
1499  *      Locking:
1500  *              tty_mutex - sometimes only
1501  *              takes the file list lock internally when working on the list
1502  *      of ttys that the driver keeps.
1503  *              FIXME: should we require tty_mutex is held here ??
1504  *
1505  */
1506 static void release_tty(struct tty_struct *tty, int idx)
1507 {
1508         /* This should always be true but check for the moment */
1509         WARN_ON(tty->index != idx);
1510
1511         if (tty->link)
1512                 tty_kref_put(tty->link);
1513         tty_kref_put(tty);
1514 }
1515
1516 /*
1517  * Even releasing the tty structures is a tricky business.. We have
1518  * to be very careful that the structures are all released at the
1519  * same time, as interrupts might otherwise get the wrong pointers.
1520  *
1521  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1522  * lead to double frees or releasing memory still in use.
1523  */
1524 void tty_release_dev(struct file *filp)
1525 {
1526         struct tty_struct *tty, *o_tty;
1527         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1528         int     devpts;
1529         int     idx;
1530         char    buf[64];
1531         struct  inode *inode;
1532
1533         inode = filp->f_path.dentry->d_inode;
1534         tty = (struct tty_struct *)filp->private_data;
1535         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1536                 return;
1537
1538         check_tty_count(tty, "tty_release_dev");
1539
1540         tty_fasync(-1, filp, 0);
1541
1542         idx = tty->index;
1543         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1544                       tty->driver->subtype == PTY_TYPE_MASTER);
1545         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1546         o_tty = tty->link;
1547
1548 #ifdef TTY_PARANOIA_CHECK
1549         if (idx < 0 || idx >= tty->driver->num) {
1550                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1551                                   "free (%s)\n", tty->name);
1552                 return;
1553         }
1554         if (!devpts) {
1555                 if (tty != tty->driver->ttys[idx]) {
1556                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1557                                "for (%s)\n", idx, tty->name);
1558                         return;
1559                 }
1560                 if (tty->termios != tty->driver->termios[idx]) {
1561                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1562                                "for (%s)\n",
1563                                idx, tty->name);
1564                         return;
1565                 }
1566         }
1567 #endif
1568
1569 #ifdef TTY_DEBUG_HANGUP
1570         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1571                tty_name(tty, buf), tty->count);
1572 #endif
1573
1574 #ifdef TTY_PARANOIA_CHECK
1575         if (tty->driver->other &&
1576              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1577                 if (o_tty != tty->driver->other->ttys[idx]) {
1578                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1579                                           "not o_tty for (%s)\n",
1580                                idx, tty->name);
1581                         return;
1582                 }
1583                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1584                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1585                                           "not o_termios for (%s)\n",
1586                                idx, tty->name);
1587                         return;
1588                 }
1589                 if (o_tty->link != tty) {
1590                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1591                         return;
1592                 }
1593         }
1594 #endif
1595         if (tty->ops->close)
1596                 tty->ops->close(tty, filp);
1597
1598         /*
1599          * Sanity check: if tty->count is going to zero, there shouldn't be
1600          * any waiters on tty->read_wait or tty->write_wait.  We test the
1601          * wait queues and kick everyone out _before_ actually starting to
1602          * close.  This ensures that we won't block while releasing the tty
1603          * structure.
1604          *
1605          * The test for the o_tty closing is necessary, since the master and
1606          * slave sides may close in any order.  If the slave side closes out
1607          * first, its count will be one, since the master side holds an open.
1608          * Thus this test wouldn't be triggered at the time the slave closes,
1609          * so we do it now.
1610          *
1611          * Note that it's possible for the tty to be opened again while we're
1612          * flushing out waiters.  By recalculating the closing flags before
1613          * each iteration we avoid any problems.
1614          */
1615         while (1) {
1616                 /* Guard against races with tty->count changes elsewhere and
1617                    opens on /dev/tty */
1618
1619                 mutex_lock(&tty_mutex);
1620                 tty_closing = tty->count <= 1;
1621                 o_tty_closing = o_tty &&
1622                         (o_tty->count <= (pty_master ? 1 : 0));
1623                 do_sleep = 0;
1624
1625                 if (tty_closing) {
1626                         if (waitqueue_active(&tty->read_wait)) {
1627                                 wake_up_poll(&tty->read_wait, POLLIN);
1628                                 do_sleep++;
1629                         }
1630                         if (waitqueue_active(&tty->write_wait)) {
1631                                 wake_up_poll(&tty->write_wait, POLLOUT);
1632                                 do_sleep++;
1633                         }
1634                 }
1635                 if (o_tty_closing) {
1636                         if (waitqueue_active(&o_tty->read_wait)) {
1637                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1638                                 do_sleep++;
1639                         }
1640                         if (waitqueue_active(&o_tty->write_wait)) {
1641                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1642                                 do_sleep++;
1643                         }
1644                 }
1645                 if (!do_sleep)
1646                         break;
1647
1648                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1649                                     "active!\n", tty_name(tty, buf));
1650                 mutex_unlock(&tty_mutex);
1651                 schedule();
1652         }
1653
1654         /*
1655          * The closing flags are now consistent with the open counts on
1656          * both sides, and we've completed the last operation that could
1657          * block, so it's safe to proceed with closing.
1658          */
1659         if (pty_master) {
1660                 if (--o_tty->count < 0) {
1661                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1662                                             "(%d) for %s\n",
1663                                o_tty->count, tty_name(o_tty, buf));
1664                         o_tty->count = 0;
1665                 }
1666         }
1667         if (--tty->count < 0) {
1668                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1669                        tty->count, tty_name(tty, buf));
1670                 tty->count = 0;
1671         }
1672
1673         /*
1674          * We've decremented tty->count, so we need to remove this file
1675          * descriptor off the tty->tty_files list; this serves two
1676          * purposes:
1677          *  - check_tty_count sees the correct number of file descriptors
1678          *    associated with this tty.
1679          *  - do_tty_hangup no longer sees this file descriptor as
1680          *    something that needs to be handled for hangups.
1681          */
1682         file_kill(filp);
1683         filp->private_data = NULL;
1684
1685         /*
1686          * Perform some housekeeping before deciding whether to return.
1687          *
1688          * Set the TTY_CLOSING flag if this was the last open.  In the
1689          * case of a pty we may have to wait around for the other side
1690          * to close, and TTY_CLOSING makes sure we can't be reopened.
1691          */
1692         if (tty_closing)
1693                 set_bit(TTY_CLOSING, &tty->flags);
1694         if (o_tty_closing)
1695                 set_bit(TTY_CLOSING, &o_tty->flags);
1696
1697         /*
1698          * If _either_ side is closing, make sure there aren't any
1699          * processes that still think tty or o_tty is their controlling
1700          * tty.
1701          */
1702         if (tty_closing || o_tty_closing) {
1703                 read_lock(&tasklist_lock);
1704                 session_clear_tty(tty->session);
1705                 if (o_tty)
1706                         session_clear_tty(o_tty->session);
1707                 read_unlock(&tasklist_lock);
1708         }
1709
1710         mutex_unlock(&tty_mutex);
1711
1712         /* check whether both sides are closing ... */
1713         if (!tty_closing || (o_tty && !o_tty_closing))
1714                 return;
1715
1716 #ifdef TTY_DEBUG_HANGUP
1717         printk(KERN_DEBUG "freeing tty structure...");
1718 #endif
1719         /*
1720          * Ask the line discipline code to release its structures
1721          */
1722         tty_ldisc_release(tty, o_tty);
1723         /*
1724          * The release_tty function takes care of the details of clearing
1725          * the slots and preserving the termios structure.
1726          */
1727         release_tty(tty, idx);
1728
1729         /* Make this pty number available for reallocation */
1730         if (devpts)
1731                 devpts_kill_index(inode, idx);
1732 }
1733
1734 /**
1735  *      __tty_open              -       open a tty device
1736  *      @inode: inode of device file
1737  *      @filp: file pointer to tty
1738  *
1739  *      tty_open and tty_release keep up the tty count that contains the
1740  *      number of opens done on a tty. We cannot use the inode-count, as
1741  *      different inodes might point to the same tty.
1742  *
1743  *      Open-counting is needed for pty masters, as well as for keeping
1744  *      track of serial lines: DTR is dropped when the last close happens.
1745  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1746  *
1747  *      The termios state of a pty is reset on first open so that
1748  *      settings don't persist across reuse.
1749  *
1750  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1751  *               tty->count should protect the rest.
1752  *               ->siglock protects ->signal/->sighand
1753  */
1754
1755 static int __tty_open(struct inode *inode, struct file *filp)
1756 {
1757         struct tty_struct *tty = NULL;
1758         int noctty, retval;
1759         struct tty_driver *driver;
1760         int index;
1761         dev_t device = inode->i_rdev;
1762         unsigned saved_flags = filp->f_flags;
1763
1764         nonseekable_open(inode, filp);
1765
1766 retry_open:
1767         noctty = filp->f_flags & O_NOCTTY;
1768         index  = -1;
1769         retval = 0;
1770
1771         mutex_lock(&tty_mutex);
1772
1773         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1774                 tty = get_current_tty();
1775                 if (!tty) {
1776                         mutex_unlock(&tty_mutex);
1777                         return -ENXIO;
1778                 }
1779                 driver = tty_driver_kref_get(tty->driver);
1780                 index = tty->index;
1781                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1782                 /* noctty = 1; */
1783                 /* FIXME: Should we take a driver reference ? */
1784                 tty_kref_put(tty);
1785                 goto got_driver;
1786         }
1787 #ifdef CONFIG_VT
1788         if (device == MKDEV(TTY_MAJOR, 0)) {
1789                 extern struct tty_driver *console_driver;
1790                 driver = tty_driver_kref_get(console_driver);
1791                 index = fg_console;
1792                 noctty = 1;
1793                 goto got_driver;
1794         }
1795 #endif
1796         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1797                 struct tty_driver *console_driver = console_device(&index);
1798                 if (console_driver) {
1799                         driver = tty_driver_kref_get(console_driver);
1800                         if (driver) {
1801                                 /* Don't let /dev/console block */
1802                                 filp->f_flags |= O_NONBLOCK;
1803                                 noctty = 1;
1804                                 goto got_driver;
1805                         }
1806                 }
1807                 mutex_unlock(&tty_mutex);
1808                 return -ENODEV;
1809         }
1810
1811         driver = get_tty_driver(device, &index);
1812         if (!driver) {
1813                 mutex_unlock(&tty_mutex);
1814                 return -ENODEV;
1815         }
1816 got_driver:
1817         if (!tty) {
1818                 /* check whether we're reopening an existing tty */
1819                 tty = tty_driver_lookup_tty(driver, inode, index);
1820
1821                 if (IS_ERR(tty)) {
1822                         mutex_unlock(&tty_mutex);
1823                         return PTR_ERR(tty);
1824                 }
1825         }
1826
1827         if (tty) {
1828                 retval = tty_reopen(tty);
1829                 if (retval)
1830                         tty = ERR_PTR(retval);
1831         } else
1832                 tty = tty_init_dev(driver, index, 0);
1833
1834         mutex_unlock(&tty_mutex);
1835         tty_driver_kref_put(driver);
1836         if (IS_ERR(tty))
1837                 return PTR_ERR(tty);
1838
1839         filp->private_data = tty;
1840         file_move(filp, &tty->tty_files);
1841         check_tty_count(tty, "tty_open");
1842         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1843             tty->driver->subtype == PTY_TYPE_MASTER)
1844                 noctty = 1;
1845 #ifdef TTY_DEBUG_HANGUP
1846         printk(KERN_DEBUG "opening %s...", tty->name);
1847 #endif
1848         if (!retval) {
1849                 if (tty->ops->open)
1850                         retval = tty->ops->open(tty, filp);
1851                 else
1852                         retval = -ENODEV;
1853         }
1854         filp->f_flags = saved_flags;
1855
1856         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1857                                                 !capable(CAP_SYS_ADMIN))
1858                 retval = -EBUSY;
1859
1860         if (retval) {
1861 #ifdef TTY_DEBUG_HANGUP
1862                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1863                        tty->name);
1864 #endif
1865                 tty_release_dev(filp);
1866                 if (retval != -ERESTARTSYS)
1867                         return retval;
1868                 if (signal_pending(current))
1869                         return retval;
1870                 schedule();
1871                 /*
1872                  * Need to reset f_op in case a hangup happened.
1873                  */
1874                 if (filp->f_op == &hung_up_tty_fops)
1875                         filp->f_op = &tty_fops;
1876                 goto retry_open;
1877         }
1878
1879         mutex_lock(&tty_mutex);
1880         spin_lock_irq(&current->sighand->siglock);
1881         if (!noctty &&
1882             current->signal->leader &&
1883             !current->signal->tty &&
1884             tty->session == NULL)
1885                 __proc_set_tty(current, tty);
1886         spin_unlock_irq(&current->sighand->siglock);
1887         mutex_unlock(&tty_mutex);
1888         return 0;
1889 }
1890
1891 /* BKL pushdown: scary code avoidance wrapper */
1892 static int tty_open(struct inode *inode, struct file *filp)
1893 {
1894         int ret;
1895
1896         lock_kernel();
1897         ret = __tty_open(inode, filp);
1898         unlock_kernel();
1899         return ret;
1900 }
1901
1902
1903
1904
1905 /**
1906  *      tty_release             -       vfs callback for close
1907  *      @inode: inode of tty
1908  *      @filp: file pointer for handle to tty
1909  *
1910  *      Called the last time each file handle is closed that references
1911  *      this tty. There may however be several such references.
1912  *
1913  *      Locking:
1914  *              Takes bkl. See tty_release_dev
1915  */
1916
1917 static int tty_release(struct inode *inode, struct file *filp)
1918 {
1919         lock_kernel();
1920         tty_release_dev(filp);
1921         unlock_kernel();
1922         return 0;
1923 }
1924
1925 /**
1926  *      tty_poll        -       check tty status
1927  *      @filp: file being polled
1928  *      @wait: poll wait structures to update
1929  *
1930  *      Call the line discipline polling method to obtain the poll
1931  *      status of the device.
1932  *
1933  *      Locking: locks called line discipline but ldisc poll method
1934  *      may be re-entered freely by other callers.
1935  */
1936
1937 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1938 {
1939         struct tty_struct *tty;
1940         struct tty_ldisc *ld;
1941         int ret = 0;
1942
1943         tty = (struct tty_struct *)filp->private_data;
1944         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1945                 return 0;
1946
1947         ld = tty_ldisc_ref_wait(tty);
1948         if (ld->ops->poll)
1949                 ret = (ld->ops->poll)(tty, filp, wait);
1950         tty_ldisc_deref(ld);
1951         return ret;
1952 }
1953
1954 static int tty_fasync(int fd, struct file *filp, int on)
1955 {
1956         struct tty_struct *tty;
1957         unsigned long flags;
1958         int retval = 0;
1959
1960         lock_kernel();
1961         tty = (struct tty_struct *)filp->private_data;
1962         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1963                 goto out;
1964
1965         retval = fasync_helper(fd, filp, on, &tty->fasync);
1966         if (retval <= 0)
1967                 goto out;
1968
1969         if (on) {
1970                 enum pid_type type;
1971                 struct pid *pid;
1972                 if (!waitqueue_active(&tty->read_wait))
1973                         tty->minimum_to_wake = 1;
1974                 spin_lock_irqsave(&tty->ctrl_lock, flags);
1975                 if (tty->pgrp) {
1976                         pid = tty->pgrp;
1977                         type = PIDTYPE_PGID;
1978                 } else {
1979                         pid = task_pid(current);
1980                         type = PIDTYPE_PID;
1981                 }
1982                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1983                 retval = __f_setown(filp, pid, type, 0);
1984                 if (retval)
1985                         goto out;
1986         } else {
1987                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1988                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
1989         }
1990         retval = 0;
1991 out:
1992         unlock_kernel();
1993         return retval;
1994 }
1995
1996 /**
1997  *      tiocsti                 -       fake input character
1998  *      @tty: tty to fake input into
1999  *      @p: pointer to character
2000  *
2001  *      Fake input to a tty device. Does the necessary locking and
2002  *      input management.
2003  *
2004  *      FIXME: does not honour flow control ??
2005  *
2006  *      Locking:
2007  *              Called functions take tty_ldisc_lock
2008  *              current->signal->tty check is safe without locks
2009  *
2010  *      FIXME: may race normal receive processing
2011  */
2012
2013 static int tiocsti(struct tty_struct *tty, char __user *p)
2014 {
2015         char ch, mbz = 0;
2016         struct tty_ldisc *ld;
2017
2018         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2019                 return -EPERM;
2020         if (get_user(ch, p))
2021                 return -EFAULT;
2022         tty_audit_tiocsti(tty, ch);
2023         ld = tty_ldisc_ref_wait(tty);
2024         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2025         tty_ldisc_deref(ld);
2026         return 0;
2027 }
2028
2029 /**
2030  *      tiocgwinsz              -       implement window query ioctl
2031  *      @tty; tty
2032  *      @arg: user buffer for result
2033  *
2034  *      Copies the kernel idea of the window size into the user buffer.
2035  *
2036  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2037  *              is consistent.
2038  */
2039
2040 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2041 {
2042         int err;
2043
2044         mutex_lock(&tty->termios_mutex);
2045         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2046         mutex_unlock(&tty->termios_mutex);
2047
2048         return err ? -EFAULT: 0;
2049 }
2050
2051 /**
2052  *      tty_do_resize           -       resize event
2053  *      @tty: tty being resized
2054  *      @rows: rows (character)
2055  *      @cols: cols (character)
2056  *
2057  *      Update the termios variables and send the neccessary signals to
2058  *      peform a terminal resize correctly
2059  */
2060
2061 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2062 {
2063         struct pid *pgrp;
2064         unsigned long flags;
2065
2066         /* Lock the tty */
2067         mutex_lock(&tty->termios_mutex);
2068         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2069                 goto done;
2070         /* Get the PID values and reference them so we can
2071            avoid holding the tty ctrl lock while sending signals */
2072         spin_lock_irqsave(&tty->ctrl_lock, flags);
2073         pgrp = get_pid(tty->pgrp);
2074         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2075
2076         if (pgrp)
2077                 kill_pgrp(pgrp, SIGWINCH, 1);
2078         put_pid(pgrp);
2079
2080         tty->winsize = *ws;
2081 done:
2082         mutex_unlock(&tty->termios_mutex);
2083         return 0;
2084 }
2085
2086 /**
2087  *      tiocswinsz              -       implement window size set ioctl
2088  *      @tty; tty side of tty
2089  *      @arg: user buffer for result
2090  *
2091  *      Copies the user idea of the window size to the kernel. Traditionally
2092  *      this is just advisory information but for the Linux console it
2093  *      actually has driver level meaning and triggers a VC resize.
2094  *
2095  *      Locking:
2096  *              Driver dependant. The default do_resize method takes the
2097  *      tty termios mutex and ctrl_lock. The console takes its own lock
2098  *      then calls into the default method.
2099  */
2100
2101 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2102 {
2103         struct winsize tmp_ws;
2104         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2105                 return -EFAULT;
2106
2107         if (tty->ops->resize)
2108                 return tty->ops->resize(tty, &tmp_ws);
2109         else
2110                 return tty_do_resize(tty, &tmp_ws);
2111 }
2112
2113 /**
2114  *      tioccons        -       allow admin to move logical console
2115  *      @file: the file to become console
2116  *
2117  *      Allow the adminstrator to move the redirected console device
2118  *
2119  *      Locking: uses redirect_lock to guard the redirect information
2120  */
2121
2122 static int tioccons(struct file *file)
2123 {
2124         if (!capable(CAP_SYS_ADMIN))
2125                 return -EPERM;
2126         if (file->f_op->write == redirected_tty_write) {
2127                 struct file *f;
2128                 spin_lock(&redirect_lock);
2129                 f = redirect;
2130                 redirect = NULL;
2131                 spin_unlock(&redirect_lock);
2132                 if (f)
2133                         fput(f);
2134                 return 0;
2135         }
2136         spin_lock(&redirect_lock);
2137         if (redirect) {
2138                 spin_unlock(&redirect_lock);
2139                 return -EBUSY;
2140         }
2141         get_file(file);
2142         redirect = file;
2143         spin_unlock(&redirect_lock);
2144         return 0;
2145 }
2146
2147 /**
2148  *      fionbio         -       non blocking ioctl
2149  *      @file: file to set blocking value
2150  *      @p: user parameter
2151  *
2152  *      Historical tty interfaces had a blocking control ioctl before
2153  *      the generic functionality existed. This piece of history is preserved
2154  *      in the expected tty API of posix OS's.
2155  *
2156  *      Locking: none, the open fle handle ensures it won't go away.
2157  */
2158
2159 static int fionbio(struct file *file, int __user *p)
2160 {
2161         int nonblock;
2162
2163         if (get_user(nonblock, p))
2164                 return -EFAULT;
2165
2166         spin_lock(&file->f_lock);
2167         if (nonblock)
2168                 file->f_flags |= O_NONBLOCK;
2169         else
2170                 file->f_flags &= ~O_NONBLOCK;
2171         spin_unlock(&file->f_lock);
2172         return 0;
2173 }
2174
2175 /**
2176  *      tiocsctty       -       set controlling tty
2177  *      @tty: tty structure
2178  *      @arg: user argument
2179  *
2180  *      This ioctl is used to manage job control. It permits a session
2181  *      leader to set this tty as the controlling tty for the session.
2182  *
2183  *      Locking:
2184  *              Takes tty_mutex() to protect tty instance
2185  *              Takes tasklist_lock internally to walk sessions
2186  *              Takes ->siglock() when updating signal->tty
2187  */
2188
2189 static int tiocsctty(struct tty_struct *tty, int arg)
2190 {
2191         int ret = 0;
2192         if (current->signal->leader && (task_session(current) == tty->session))
2193                 return ret;
2194
2195         mutex_lock(&tty_mutex);
2196         /*
2197          * The process must be a session leader and
2198          * not have a controlling tty already.
2199          */
2200         if (!current->signal->leader || current->signal->tty) {
2201                 ret = -EPERM;
2202                 goto unlock;
2203         }
2204
2205         if (tty->session) {
2206                 /*
2207                  * This tty is already the controlling
2208                  * tty for another session group!
2209                  */
2210                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2211                         /*
2212                          * Steal it away
2213                          */
2214                         read_lock(&tasklist_lock);
2215                         session_clear_tty(tty->session);
2216                         read_unlock(&tasklist_lock);
2217                 } else {
2218                         ret = -EPERM;
2219                         goto unlock;
2220                 }
2221         }
2222         proc_set_tty(current, tty);
2223 unlock:
2224         mutex_unlock(&tty_mutex);
2225         return ret;
2226 }
2227
2228 /**
2229  *      tty_get_pgrp    -       return a ref counted pgrp pid
2230  *      @tty: tty to read
2231  *
2232  *      Returns a refcounted instance of the pid struct for the process
2233  *      group controlling the tty.
2234  */
2235
2236 struct pid *tty_get_pgrp(struct tty_struct *tty)
2237 {
2238         unsigned long flags;
2239         struct pid *pgrp;
2240
2241         spin_lock_irqsave(&tty->ctrl_lock, flags);
2242         pgrp = get_pid(tty->pgrp);
2243         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2244
2245         return pgrp;
2246 }
2247 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2248
2249 /**
2250  *      tiocgpgrp               -       get process group
2251  *      @tty: tty passed by user
2252  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2253  *      @p: returned pid
2254  *
2255  *      Obtain the process group of the tty. If there is no process group
2256  *      return an error.
2257  *
2258  *      Locking: none. Reference to current->signal->tty is safe.
2259  */
2260
2261 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2262 {
2263         struct pid *pid;
2264         int ret;
2265         /*
2266          * (tty == real_tty) is a cheap way of
2267          * testing if the tty is NOT a master pty.
2268          */
2269         if (tty == real_tty && current->signal->tty != real_tty)
2270                 return -ENOTTY;
2271         pid = tty_get_pgrp(real_tty);
2272         ret =  put_user(pid_vnr(pid), p);
2273         put_pid(pid);
2274         return ret;
2275 }
2276
2277 /**
2278  *      tiocspgrp               -       attempt to set process group
2279  *      @tty: tty passed by user
2280  *      @real_tty: tty side device matching tty passed by user
2281  *      @p: pid pointer
2282  *
2283  *      Set the process group of the tty to the session passed. Only
2284  *      permitted where the tty session is our session.
2285  *
2286  *      Locking: RCU, ctrl lock
2287  */
2288
2289 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2290 {
2291         struct pid *pgrp;
2292         pid_t pgrp_nr;
2293         int retval = tty_check_change(real_tty);
2294         unsigned long flags;
2295
2296         if (retval == -EIO)
2297                 return -ENOTTY;
2298         if (retval)
2299                 return retval;
2300         if (!current->signal->tty ||
2301             (current->signal->tty != real_tty) ||
2302             (real_tty->session != task_session(current)))
2303                 return -ENOTTY;
2304         if (get_user(pgrp_nr, p))
2305                 return -EFAULT;
2306         if (pgrp_nr < 0)
2307                 return -EINVAL;
2308         rcu_read_lock();
2309         pgrp = find_vpid(pgrp_nr);
2310         retval = -ESRCH;
2311         if (!pgrp)
2312                 goto out_unlock;
2313         retval = -EPERM;
2314         if (session_of_pgrp(pgrp) != task_session(current))
2315                 goto out_unlock;
2316         retval = 0;
2317         spin_lock_irqsave(&tty->ctrl_lock, flags);
2318         put_pid(real_tty->pgrp);
2319         real_tty->pgrp = get_pid(pgrp);
2320         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2321 out_unlock:
2322         rcu_read_unlock();
2323         return retval;
2324 }
2325
2326 /**
2327  *      tiocgsid                -       get session id
2328  *      @tty: tty passed by user
2329  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2330  *      @p: pointer to returned session id
2331  *
2332  *      Obtain the session id of the tty. If there is no session
2333  *      return an error.
2334  *
2335  *      Locking: none. Reference to current->signal->tty is safe.
2336  */
2337
2338 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2339 {
2340         /*
2341          * (tty == real_tty) is a cheap way of
2342          * testing if the tty is NOT a master pty.
2343         */
2344         if (tty == real_tty && current->signal->tty != real_tty)
2345                 return -ENOTTY;
2346         if (!real_tty->session)
2347                 return -ENOTTY;
2348         return put_user(pid_vnr(real_tty->session), p);
2349 }
2350
2351 /**
2352  *      tiocsetd        -       set line discipline
2353  *      @tty: tty device
2354  *      @p: pointer to user data
2355  *
2356  *      Set the line discipline according to user request.
2357  *
2358  *      Locking: see tty_set_ldisc, this function is just a helper
2359  */
2360
2361 static int tiocsetd(struct tty_struct *tty, int __user *p)
2362 {
2363         int ldisc;
2364         int ret;
2365
2366         if (get_user(ldisc, p))
2367                 return -EFAULT;
2368
2369         lock_kernel();
2370         ret = tty_set_ldisc(tty, ldisc);
2371         unlock_kernel();
2372
2373         return ret;
2374 }
2375
2376 /**
2377  *      send_break      -       performed time break
2378  *      @tty: device to break on
2379  *      @duration: timeout in mS
2380  *
2381  *      Perform a timed break on hardware that lacks its own driver level
2382  *      timed break functionality.
2383  *
2384  *      Locking:
2385  *              atomic_write_lock serializes
2386  *
2387  */
2388
2389 static int send_break(struct tty_struct *tty, unsigned int duration)
2390 {
2391         int retval;
2392
2393         if (tty->ops->break_ctl == NULL)
2394                 return 0;
2395
2396         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2397                 retval = tty->ops->break_ctl(tty, duration);
2398         else {
2399                 /* Do the work ourselves */
2400                 if (tty_write_lock(tty, 0) < 0)
2401                         return -EINTR;
2402                 retval = tty->ops->break_ctl(tty, -1);
2403                 if (retval)
2404                         goto out;
2405                 if (!signal_pending(current))
2406                         msleep_interruptible(duration);
2407                 retval = tty->ops->break_ctl(tty, 0);
2408 out:
2409                 tty_write_unlock(tty);
2410                 if (signal_pending(current))
2411                         retval = -EINTR;
2412         }
2413         return retval;
2414 }
2415
2416 /**
2417  *      tty_tiocmget            -       get modem status
2418  *      @tty: tty device
2419  *      @file: user file pointer
2420  *      @p: pointer to result
2421  *
2422  *      Obtain the modem status bits from the tty driver if the feature
2423  *      is supported. Return -EINVAL if it is not available.
2424  *
2425  *      Locking: none (up to the driver)
2426  */
2427
2428 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2429 {
2430         int retval = -EINVAL;
2431
2432         if (tty->ops->tiocmget) {
2433                 retval = tty->ops->tiocmget(tty, file);
2434
2435                 if (retval >= 0)
2436                         retval = put_user(retval, p);
2437         }
2438         return retval;
2439 }
2440
2441 /**
2442  *      tty_tiocmset            -       set modem status
2443  *      @tty: tty device
2444  *      @file: user file pointer
2445  *      @cmd: command - clear bits, set bits or set all
2446  *      @p: pointer to desired bits
2447  *
2448  *      Set the modem status bits from the tty driver if the feature
2449  *      is supported. Return -EINVAL if it is not available.
2450  *
2451  *      Locking: none (up to the driver)
2452  */
2453
2454 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2455              unsigned __user *p)
2456 {
2457         int retval;
2458         unsigned int set, clear, val;
2459
2460         if (tty->ops->tiocmset == NULL)
2461                 return -EINVAL;
2462
2463         retval = get_user(val, p);
2464         if (retval)
2465                 return retval;
2466         set = clear = 0;
2467         switch (cmd) {
2468         case TIOCMBIS:
2469                 set = val;
2470                 break;
2471         case TIOCMBIC:
2472                 clear = val;
2473                 break;
2474         case TIOCMSET:
2475                 set = val;
2476                 clear = ~val;
2477                 break;
2478         }
2479         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2480         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2481         return tty->ops->tiocmset(tty, file, set, clear);
2482 }
2483
2484 /*
2485  * Split this up, as gcc can choke on it otherwise..
2486  */
2487 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2488 {
2489         struct tty_struct *tty, *real_tty;
2490         void __user *p = (void __user *)arg;
2491         int retval;
2492         struct tty_ldisc *ld;
2493         struct inode *inode = file->f_dentry->d_inode;
2494
2495         tty = (struct tty_struct *)file->private_data;
2496         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2497                 return -EINVAL;
2498
2499         real_tty = tty;
2500         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2501             tty->driver->subtype == PTY_TYPE_MASTER)
2502                 real_tty = tty->link;
2503
2504
2505         /*
2506          * Factor out some common prep work
2507          */
2508         switch (cmd) {
2509         case TIOCSETD:
2510         case TIOCSBRK:
2511         case TIOCCBRK:
2512         case TCSBRK:
2513         case TCSBRKP:
2514                 retval = tty_check_change(tty);
2515                 if (retval)
2516                         return retval;
2517                 if (cmd != TIOCCBRK) {
2518                         tty_wait_until_sent(tty, 0);
2519                         if (signal_pending(current))
2520                                 return -EINTR;
2521                 }
2522                 break;
2523         }
2524
2525         /*
2526          *      Now do the stuff.
2527          */
2528         switch (cmd) {
2529         case TIOCSTI:
2530                 return tiocsti(tty, p);
2531         case TIOCGWINSZ:
2532                 return tiocgwinsz(real_tty, p);
2533         case TIOCSWINSZ:
2534                 return tiocswinsz(real_tty, p);
2535         case TIOCCONS:
2536                 return real_tty != tty ? -EINVAL : tioccons(file);
2537         case FIONBIO:
2538                 return fionbio(file, p);
2539         case TIOCEXCL:
2540                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2541                 return 0;
2542         case TIOCNXCL:
2543                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2544                 return 0;
2545         case TIOCNOTTY:
2546                 if (current->signal->tty != tty)
2547                         return -ENOTTY;
2548                 no_tty();
2549                 return 0;
2550         case TIOCSCTTY:
2551                 return tiocsctty(tty, arg);
2552         case TIOCGPGRP:
2553                 return tiocgpgrp(tty, real_tty, p);
2554         case TIOCSPGRP:
2555                 return tiocspgrp(tty, real_tty, p);
2556         case TIOCGSID:
2557                 return tiocgsid(tty, real_tty, p);
2558         case TIOCGETD:
2559                 return put_user(tty->ldisc.ops->num, (int __user *)p);
2560         case TIOCSETD:
2561                 return tiocsetd(tty, p);
2562         /*
2563          * Break handling
2564          */
2565         case TIOCSBRK:  /* Turn break on, unconditionally */
2566                 if (tty->ops->break_ctl)
2567                         return tty->ops->break_ctl(tty, -1);
2568                 return 0;
2569         case TIOCCBRK:  /* Turn break off, unconditionally */
2570                 if (tty->ops->break_ctl)
2571                         return tty->ops->break_ctl(tty, 0);
2572                 return 0;
2573         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2574                 /* non-zero arg means wait for all output data
2575                  * to be sent (performed above) but don't send break.
2576                  * This is used by the tcdrain() termios function.
2577                  */
2578                 if (!arg)
2579                         return send_break(tty, 250);
2580                 return 0;
2581         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2582                 return send_break(tty, arg ? arg*100 : 250);
2583
2584         case TIOCMGET:
2585                 return tty_tiocmget(tty, file, p);
2586         case TIOCMSET:
2587         case TIOCMBIC:
2588         case TIOCMBIS:
2589                 return tty_tiocmset(tty, file, cmd, p);
2590         case TCFLSH:
2591                 switch (arg) {
2592                 case TCIFLUSH:
2593                 case TCIOFLUSH:
2594                 /* flush tty buffer and allow ldisc to process ioctl */
2595                         tty_buffer_flush(tty);
2596                         break;
2597                 }
2598                 break;
2599         }
2600         if (tty->ops->ioctl) {
2601                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2602                 if (retval != -ENOIOCTLCMD)
2603                         return retval;
2604         }
2605         ld = tty_ldisc_ref_wait(tty);
2606         retval = -EINVAL;
2607         if (ld->ops->ioctl) {
2608                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2609                 if (retval == -ENOIOCTLCMD)
2610                         retval = -EINVAL;
2611         }
2612         tty_ldisc_deref(ld);
2613         return retval;
2614 }
2615
2616 #ifdef CONFIG_COMPAT
2617 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2618                                 unsigned long arg)
2619 {
2620         struct inode *inode = file->f_dentry->d_inode;
2621         struct tty_struct *tty = file->private_data;
2622         struct tty_ldisc *ld;
2623         int retval = -ENOIOCTLCMD;
2624
2625         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2626                 return -EINVAL;
2627
2628         if (tty->ops->compat_ioctl) {
2629                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2630                 if (retval != -ENOIOCTLCMD)
2631                         return retval;
2632         }
2633
2634         ld = tty_ldisc_ref_wait(tty);
2635         if (ld->ops->compat_ioctl)
2636                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2637         tty_ldisc_deref(ld);
2638
2639         return retval;
2640 }
2641 #endif
2642
2643 /*
2644  * This implements the "Secure Attention Key" ---  the idea is to
2645  * prevent trojan horses by killing all processes associated with this
2646  * tty when the user hits the "Secure Attention Key".  Required for
2647  * super-paranoid applications --- see the Orange Book for more details.
2648  *
2649  * This code could be nicer; ideally it should send a HUP, wait a few
2650  * seconds, then send a INT, and then a KILL signal.  But you then
2651  * have to coordinate with the init process, since all processes associated
2652  * with the current tty must be dead before the new getty is allowed
2653  * to spawn.
2654  *
2655  * Now, if it would be correct ;-/ The current code has a nasty hole -
2656  * it doesn't catch files in flight. We may send the descriptor to ourselves
2657  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2658  *
2659  * Nasty bug: do_SAK is being called in interrupt context.  This can
2660  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2661  */
2662 void __do_SAK(struct tty_struct *tty)
2663 {
2664 #ifdef TTY_SOFT_SAK
2665         tty_hangup(tty);
2666 #else
2667         struct task_struct *g, *p;
2668         struct pid *session;
2669         int             i;
2670         struct file     *filp;
2671         struct fdtable *fdt;
2672
2673         if (!tty)
2674                 return;
2675         session = tty->session;
2676
2677         tty_ldisc_flush(tty);
2678
2679         tty_driver_flush_buffer(tty);
2680
2681         read_lock(&tasklist_lock);
2682         /* Kill the entire session */
2683         do_each_pid_task(session, PIDTYPE_SID, p) {
2684                 printk(KERN_NOTICE "SAK: killed process %d"
2685                         " (%s): task_session(p)==tty->session\n",
2686                         task_pid_nr(p), p->comm);
2687                 send_sig(SIGKILL, p, 1);
2688         } while_each_pid_task(session, PIDTYPE_SID, p);
2689         /* Now kill any processes that happen to have the
2690          * tty open.
2691          */
2692         do_each_thread(g, p) {
2693                 if (p->signal->tty == tty) {
2694                         printk(KERN_NOTICE "SAK: killed process %d"
2695                             " (%s): task_session(p)==tty->session\n",
2696                             task_pid_nr(p), p->comm);
2697                         send_sig(SIGKILL, p, 1);
2698                         continue;
2699                 }
2700                 task_lock(p);
2701                 if (p->files) {
2702                         /*
2703                          * We don't take a ref to the file, so we must
2704                          * hold ->file_lock instead.
2705                          */
2706                         spin_lock(&p->files->file_lock);
2707                         fdt = files_fdtable(p->files);
2708                         for (i = 0; i < fdt->max_fds; i++) {
2709                                 filp = fcheck_files(p->files, i);
2710                                 if (!filp)
2711                                         continue;
2712                                 if (filp->f_op->read == tty_read &&
2713                                     filp->private_data == tty) {
2714                                         printk(KERN_NOTICE "SAK: killed process %d"
2715                                             " (%s): fd#%d opened to the tty\n",
2716                                             task_pid_nr(p), p->comm, i);
2717                                         force_sig(SIGKILL, p);
2718                                         break;
2719                                 }
2720                         }
2721                         spin_unlock(&p->files->file_lock);
2722                 }
2723                 task_unlock(p);
2724         } while_each_thread(g, p);
2725         read_unlock(&tasklist_lock);
2726 #endif
2727 }
2728
2729 static void do_SAK_work(struct work_struct *work)
2730 {
2731         struct tty_struct *tty =
2732                 container_of(work, struct tty_struct, SAK_work);
2733         __do_SAK(tty);
2734 }
2735
2736 /*
2737  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2738  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2739  * the values which we write to it will be identical to the values which it
2740  * already has. --akpm
2741  */
2742 void do_SAK(struct tty_struct *tty)
2743 {
2744         if (!tty)
2745                 return;
2746         schedule_work(&tty->SAK_work);
2747 }
2748
2749 EXPORT_SYMBOL(do_SAK);
2750
2751 /**
2752  *      initialize_tty_struct
2753  *      @tty: tty to initialize
2754  *
2755  *      This subroutine initializes a tty structure that has been newly
2756  *      allocated.
2757  *
2758  *      Locking: none - tty in question must not be exposed at this point
2759  */
2760
2761 void initialize_tty_struct(struct tty_struct *tty,
2762                 struct tty_driver *driver, int idx)
2763 {
2764         memset(tty, 0, sizeof(struct tty_struct));
2765         kref_init(&tty->kref);
2766         tty->magic = TTY_MAGIC;
2767         tty_ldisc_init(tty);
2768         tty->session = NULL;
2769         tty->pgrp = NULL;
2770         tty->overrun_time = jiffies;
2771         tty->buf.head = tty->buf.tail = NULL;
2772         tty_buffer_init(tty);
2773         mutex_init(&tty->termios_mutex);
2774         init_waitqueue_head(&tty->write_wait);
2775         init_waitqueue_head(&tty->read_wait);
2776         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2777         mutex_init(&tty->atomic_read_lock);
2778         mutex_init(&tty->atomic_write_lock);
2779         mutex_init(&tty->output_lock);
2780         mutex_init(&tty->echo_lock);
2781         spin_lock_init(&tty->read_lock);
2782         spin_lock_init(&tty->ctrl_lock);
2783         INIT_LIST_HEAD(&tty->tty_files);
2784         INIT_WORK(&tty->SAK_work, do_SAK_work);
2785
2786         tty->driver = driver;
2787         tty->ops = driver->ops;
2788         tty->index = idx;
2789         tty_line_name(driver, idx, tty->name);
2790 }
2791
2792 /**
2793  *      tty_put_char    -       write one character to a tty
2794  *      @tty: tty
2795  *      @ch: character
2796  *
2797  *      Write one byte to the tty using the provided put_char method
2798  *      if present. Returns the number of characters successfully output.
2799  *
2800  *      Note: the specific put_char operation in the driver layer may go
2801  *      away soon. Don't call it directly, use this method
2802  */
2803
2804 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2805 {
2806         if (tty->ops->put_char)
2807                 return tty->ops->put_char(tty, ch);
2808         return tty->ops->write(tty, &ch, 1);
2809 }
2810 EXPORT_SYMBOL_GPL(tty_put_char);
2811
2812 struct class *tty_class;
2813
2814 /**
2815  *      tty_register_device - register a tty device
2816  *      @driver: the tty driver that describes the tty device
2817  *      @index: the index in the tty driver for this tty device
2818  *      @device: a struct device that is associated with this tty device.
2819  *              This field is optional, if there is no known struct device
2820  *              for this tty device it can be set to NULL safely.
2821  *
2822  *      Returns a pointer to the struct device for this tty device
2823  *      (or ERR_PTR(-EFOO) on error).
2824  *
2825  *      This call is required to be made to register an individual tty device
2826  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2827  *      that bit is not set, this function should not be called by a tty
2828  *      driver.
2829  *
2830  *      Locking: ??
2831  */
2832
2833 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2834                                    struct device *device)
2835 {
2836         char name[64];
2837         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2838
2839         if (index >= driver->num) {
2840                 printk(KERN_ERR "Attempt to register invalid tty line number "
2841                        " (%d).\n", index);
2842                 return ERR_PTR(-EINVAL);
2843         }
2844
2845         if (driver->type == TTY_DRIVER_TYPE_PTY)
2846                 pty_line_name(driver, index, name);
2847         else
2848                 tty_line_name(driver, index, name);
2849
2850         return device_create(tty_class, device, dev, NULL, name);
2851 }
2852 EXPORT_SYMBOL(tty_register_device);
2853
2854 /**
2855  *      tty_unregister_device - unregister a tty device
2856  *      @driver: the tty driver that describes the tty device
2857  *      @index: the index in the tty driver for this tty device
2858  *
2859  *      If a tty device is registered with a call to tty_register_device() then
2860  *      this function must be called when the tty device is gone.
2861  *
2862  *      Locking: ??
2863  */
2864
2865 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2866 {
2867         device_destroy(tty_class,
2868                 MKDEV(driver->major, driver->minor_start) + index);
2869 }
2870 EXPORT_SYMBOL(tty_unregister_device);
2871
2872 struct tty_driver *alloc_tty_driver(int lines)
2873 {
2874         struct tty_driver *driver;
2875
2876         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2877         if (driver) {
2878                 kref_init(&driver->kref);
2879                 driver->magic = TTY_DRIVER_MAGIC;
2880                 driver->num = lines;
2881                 /* later we'll move allocation of tables here */
2882         }
2883         return driver;
2884 }
2885 EXPORT_SYMBOL(alloc_tty_driver);
2886
2887 static void destruct_tty_driver(struct kref *kref)
2888 {
2889         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2890         int i;
2891         struct ktermios *tp;
2892         void *p;
2893
2894         if (driver->flags & TTY_DRIVER_INSTALLED) {
2895                 /*
2896                  * Free the termios and termios_locked structures because
2897                  * we don't want to get memory leaks when modular tty
2898                  * drivers are removed from the kernel.
2899                  */
2900                 for (i = 0; i < driver->num; i++) {
2901                         tp = driver->termios[i];
2902                         if (tp) {
2903                                 driver->termios[i] = NULL;
2904                                 kfree(tp);
2905                         }
2906                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2907                                 tty_unregister_device(driver, i);
2908                 }
2909                 p = driver->ttys;
2910                 proc_tty_unregister_driver(driver);
2911                 driver->ttys = NULL;
2912                 driver->termios = NULL;
2913                 kfree(p);
2914                 cdev_del(&driver->cdev);
2915         }
2916         kfree(driver);
2917 }
2918
2919 void tty_driver_kref_put(struct tty_driver *driver)
2920 {
2921         kref_put(&driver->kref, destruct_tty_driver);
2922 }
2923 EXPORT_SYMBOL(tty_driver_kref_put);
2924
2925 void tty_set_operations(struct tty_driver *driver,
2926                         const struct tty_operations *op)
2927 {
2928         driver->ops = op;
2929 };
2930 EXPORT_SYMBOL(tty_set_operations);
2931
2932 void put_tty_driver(struct tty_driver *d)
2933 {
2934         tty_driver_kref_put(d);
2935 }
2936 EXPORT_SYMBOL(put_tty_driver);
2937
2938 /*
2939  * Called by a tty driver to register itself.
2940  */
2941 int tty_register_driver(struct tty_driver *driver)
2942 {
2943         int error;
2944         int i;
2945         dev_t dev;
2946         void **p = NULL;
2947
2948         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2949                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2950                 if (!p)
2951                         return -ENOMEM;
2952         }
2953
2954         if (!driver->major) {
2955                 error = alloc_chrdev_region(&dev, driver->minor_start,
2956                                                 driver->num, driver->name);
2957                 if (!error) {
2958                         driver->major = MAJOR(dev);
2959                         driver->minor_start = MINOR(dev);
2960                 }
2961         } else {
2962                 dev = MKDEV(driver->major, driver->minor_start);
2963                 error = register_chrdev_region(dev, driver->num, driver->name);
2964         }
2965         if (error < 0) {
2966                 kfree(p);
2967                 return error;
2968         }
2969
2970         if (p) {
2971                 driver->ttys = (struct tty_struct **)p;
2972                 driver->termios = (struct ktermios **)(p + driver->num);
2973         } else {
2974                 driver->ttys = NULL;
2975                 driver->termios = NULL;
2976         }
2977
2978         cdev_init(&driver->cdev, &tty_fops);
2979         driver->cdev.owner = driver->owner;
2980         error = cdev_add(&driver->cdev, dev, driver->num);
2981         if (error) {
2982                 unregister_chrdev_region(dev, driver->num);
2983                 driver->ttys = NULL;
2984                 driver->termios = NULL;
2985                 kfree(p);
2986                 return error;
2987         }
2988
2989         mutex_lock(&tty_mutex);
2990         list_add(&driver->tty_drivers, &tty_drivers);
2991         mutex_unlock(&tty_mutex);
2992
2993         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2994                 for (i = 0; i < driver->num; i++)
2995                     tty_register_device(driver, i, NULL);
2996         }
2997         proc_tty_register_driver(driver);
2998         driver->flags |= TTY_DRIVER_INSTALLED;
2999         return 0;
3000 }
3001
3002 EXPORT_SYMBOL(tty_register_driver);
3003
3004 /*
3005  * Called by a tty driver to unregister itself.
3006  */
3007 int tty_unregister_driver(struct tty_driver *driver)
3008 {
3009 #if 0
3010         /* FIXME */
3011         if (driver->refcount)
3012                 return -EBUSY;
3013 #endif
3014         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3015                                 driver->num);
3016         mutex_lock(&tty_mutex);
3017         list_del(&driver->tty_drivers);
3018         mutex_unlock(&tty_mutex);
3019         return 0;
3020 }
3021
3022 EXPORT_SYMBOL(tty_unregister_driver);
3023
3024 dev_t tty_devnum(struct tty_struct *tty)
3025 {
3026         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3027 }
3028 EXPORT_SYMBOL(tty_devnum);
3029
3030 void proc_clear_tty(struct task_struct *p)
3031 {
3032         unsigned long flags;
3033         struct tty_struct *tty;
3034         spin_lock_irqsave(&p->sighand->siglock, flags);
3035         tty = p->signal->tty;
3036         p->signal->tty = NULL;
3037         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3038         tty_kref_put(tty);
3039 }
3040
3041 /* Called under the sighand lock */
3042
3043 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3044 {
3045         if (tty) {
3046                 unsigned long flags;
3047                 /* We should not have a session or pgrp to put here but.... */
3048                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3049                 put_pid(tty->session);
3050                 put_pid(tty->pgrp);
3051                 tty->pgrp = get_pid(task_pgrp(tsk));
3052                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3053                 tty->session = get_pid(task_session(tsk));
3054                 if (tsk->signal->tty) {
3055                         printk(KERN_DEBUG "tty not NULL!!\n");
3056                         tty_kref_put(tsk->signal->tty);
3057                 }
3058         }
3059         put_pid(tsk->signal->tty_old_pgrp);
3060         tsk->signal->tty = tty_kref_get(tty);
3061         tsk->signal->tty_old_pgrp = NULL;
3062 }
3063
3064 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3065 {
3066         spin_lock_irq(&tsk->sighand->siglock);
3067         __proc_set_tty(tsk, tty);
3068         spin_unlock_irq(&tsk->sighand->siglock);
3069 }
3070
3071 struct tty_struct *get_current_tty(void)
3072 {
3073         struct tty_struct *tty;
3074         unsigned long flags;
3075
3076         spin_lock_irqsave(&current->sighand->siglock, flags);
3077         tty = tty_kref_get(current->signal->tty);
3078         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3079         return tty;
3080 }
3081 EXPORT_SYMBOL_GPL(get_current_tty);
3082
3083 void tty_default_fops(struct file_operations *fops)
3084 {
3085         *fops = tty_fops;
3086 }
3087
3088 /*
3089  * Initialize the console device. This is called *early*, so
3090  * we can't necessarily depend on lots of kernel help here.
3091  * Just do some early initializations, and do the complex setup
3092  * later.
3093  */
3094 void __init console_init(void)
3095 {
3096         initcall_t *call;
3097
3098         /* Setup the default TTY line discipline. */
3099         tty_ldisc_begin();
3100
3101         /*
3102          * set up the console device so that later boot sequences can
3103          * inform about problems etc..
3104          */
3105         call = __con_initcall_start;
3106         while (call < __con_initcall_end) {
3107                 (*call)();
3108                 call++;
3109         }
3110 }
3111
3112 static int __init tty_class_init(void)
3113 {
3114         tty_class = class_create(THIS_MODULE, "tty");
3115         if (IS_ERR(tty_class))
3116                 return PTR_ERR(tty_class);
3117         return 0;
3118 }
3119
3120 postcore_initcall(tty_class_init);
3121
3122 /* 3/2004 jmc: why do these devices exist? */
3123
3124 static struct cdev tty_cdev, console_cdev;
3125
3126 /*
3127  * Ok, now we can initialize the rest of the tty devices and can count
3128  * on memory allocations, interrupts etc..
3129  */
3130 static int __init tty_init(void)
3131 {
3132         cdev_init(&tty_cdev, &tty_fops);
3133         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3134             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3135                 panic("Couldn't register /dev/tty driver\n");
3136         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3137                               "tty");
3138
3139         cdev_init(&console_cdev, &console_fops);
3140         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3141             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3142                 panic("Couldn't register /dev/console driver\n");
3143         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3144                               "console");
3145
3146 #ifdef CONFIG_VT
3147         vty_init(&console_fops);
3148 #endif
3149         return 0;
3150 }
3151 module_init(tty_init);