]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/clk/bcm/clk-bcm2835.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[karo-tx-linux.git] / drivers / clk / bcm / clk-bcm2835.c
1 /*
2  * Copyright (C) 2010,2015 Broadcom
3  * Copyright (C) 2012 Stephen Warren
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16
17 /**
18  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19  *
20  * The clock tree on the 2835 has several levels.  There's a root
21  * oscillator running at 19.2Mhz.  After the oscillator there are 5
22  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23  * and "HDMI displays".  Those 5 PLLs each can divide their output to
24  * produce up to 4 channels.  Finally, there is the level of clocks to
25  * be consumed by other hardware components (like "H264" or "HDMI
26  * state machine"), which divide off of some subset of the PLL
27  * channels.
28  *
29  * All of the clocks in the tree are exposed in the DT, because the DT
30  * may want to make assignments of the final layer of clocks to the
31  * PLL channels, and some components of the hardware will actually
32  * skip layers of the tree (for example, the pixel clock comes
33  * directly from the PLLH PIX channel without using a CM_*CTL clock
34  * generator).
35  */
36
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/delay.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/platform_device.h>
46 #include <linux/slab.h>
47 #include <dt-bindings/clock/bcm2835.h>
48
49 #define CM_PASSWORD             0x5a000000
50
51 #define CM_GNRICCTL             0x000
52 #define CM_GNRICDIV             0x004
53 # define CM_DIV_FRAC_BITS       12
54 # define CM_DIV_FRAC_MASK       GENMASK(CM_DIV_FRAC_BITS - 1, 0)
55
56 #define CM_VPUCTL               0x008
57 #define CM_VPUDIV               0x00c
58 #define CM_SYSCTL               0x010
59 #define CM_SYSDIV               0x014
60 #define CM_PERIACTL             0x018
61 #define CM_PERIADIV             0x01c
62 #define CM_PERIICTL             0x020
63 #define CM_PERIIDIV             0x024
64 #define CM_H264CTL              0x028
65 #define CM_H264DIV              0x02c
66 #define CM_ISPCTL               0x030
67 #define CM_ISPDIV               0x034
68 #define CM_V3DCTL               0x038
69 #define CM_V3DDIV               0x03c
70 #define CM_CAM0CTL              0x040
71 #define CM_CAM0DIV              0x044
72 #define CM_CAM1CTL              0x048
73 #define CM_CAM1DIV              0x04c
74 #define CM_CCP2CTL              0x050
75 #define CM_CCP2DIV              0x054
76 #define CM_DSI0ECTL             0x058
77 #define CM_DSI0EDIV             0x05c
78 #define CM_DSI0PCTL             0x060
79 #define CM_DSI0PDIV             0x064
80 #define CM_DPICTL               0x068
81 #define CM_DPIDIV               0x06c
82 #define CM_GP0CTL               0x070
83 #define CM_GP0DIV               0x074
84 #define CM_GP1CTL               0x078
85 #define CM_GP1DIV               0x07c
86 #define CM_GP2CTL               0x080
87 #define CM_GP2DIV               0x084
88 #define CM_HSMCTL               0x088
89 #define CM_HSMDIV               0x08c
90 #define CM_OTPCTL               0x090
91 #define CM_OTPDIV               0x094
92 #define CM_PCMCTL               0x098
93 #define CM_PCMDIV               0x09c
94 #define CM_PWMCTL               0x0a0
95 #define CM_PWMDIV               0x0a4
96 #define CM_SLIMCTL              0x0a8
97 #define CM_SLIMDIV              0x0ac
98 #define CM_SMICTL               0x0b0
99 #define CM_SMIDIV               0x0b4
100 /* no definition for 0x0b8  and 0x0bc */
101 #define CM_TCNTCTL              0x0c0
102 # define CM_TCNT_SRC1_SHIFT             12
103 #define CM_TCNTCNT              0x0c4
104 #define CM_TECCTL               0x0c8
105 #define CM_TECDIV               0x0cc
106 #define CM_TD0CTL               0x0d0
107 #define CM_TD0DIV               0x0d4
108 #define CM_TD1CTL               0x0d8
109 #define CM_TD1DIV               0x0dc
110 #define CM_TSENSCTL             0x0e0
111 #define CM_TSENSDIV             0x0e4
112 #define CM_TIMERCTL             0x0e8
113 #define CM_TIMERDIV             0x0ec
114 #define CM_UARTCTL              0x0f0
115 #define CM_UARTDIV              0x0f4
116 #define CM_VECCTL               0x0f8
117 #define CM_VECDIV               0x0fc
118 #define CM_PULSECTL             0x190
119 #define CM_PULSEDIV             0x194
120 #define CM_SDCCTL               0x1a8
121 #define CM_SDCDIV               0x1ac
122 #define CM_ARMCTL               0x1b0
123 #define CM_AVEOCTL              0x1b8
124 #define CM_AVEODIV              0x1bc
125 #define CM_EMMCCTL              0x1c0
126 #define CM_EMMCDIV              0x1c4
127
128 /* General bits for the CM_*CTL regs */
129 # define CM_ENABLE                      BIT(4)
130 # define CM_KILL                        BIT(5)
131 # define CM_GATE_BIT                    6
132 # define CM_GATE                        BIT(CM_GATE_BIT)
133 # define CM_BUSY                        BIT(7)
134 # define CM_BUSYD                       BIT(8)
135 # define CM_FRAC                        BIT(9)
136 # define CM_SRC_SHIFT                   0
137 # define CM_SRC_BITS                    4
138 # define CM_SRC_MASK                    0xf
139 # define CM_SRC_GND                     0
140 # define CM_SRC_OSC                     1
141 # define CM_SRC_TESTDEBUG0              2
142 # define CM_SRC_TESTDEBUG1              3
143 # define CM_SRC_PLLA_CORE               4
144 # define CM_SRC_PLLA_PER                4
145 # define CM_SRC_PLLC_CORE0              5
146 # define CM_SRC_PLLC_PER                5
147 # define CM_SRC_PLLC_CORE1              8
148 # define CM_SRC_PLLD_CORE               6
149 # define CM_SRC_PLLD_PER                6
150 # define CM_SRC_PLLH_AUX                7
151 # define CM_SRC_PLLC_CORE1              8
152 # define CM_SRC_PLLC_CORE2              9
153
154 #define CM_OSCCOUNT             0x100
155
156 #define CM_PLLA                 0x104
157 # define CM_PLL_ANARST                  BIT(8)
158 # define CM_PLLA_HOLDPER                BIT(7)
159 # define CM_PLLA_LOADPER                BIT(6)
160 # define CM_PLLA_HOLDCORE               BIT(5)
161 # define CM_PLLA_LOADCORE               BIT(4)
162 # define CM_PLLA_HOLDCCP2               BIT(3)
163 # define CM_PLLA_LOADCCP2               BIT(2)
164 # define CM_PLLA_HOLDDSI0               BIT(1)
165 # define CM_PLLA_LOADDSI0               BIT(0)
166
167 #define CM_PLLC                 0x108
168 # define CM_PLLC_HOLDPER                BIT(7)
169 # define CM_PLLC_LOADPER                BIT(6)
170 # define CM_PLLC_HOLDCORE2              BIT(5)
171 # define CM_PLLC_LOADCORE2              BIT(4)
172 # define CM_PLLC_HOLDCORE1              BIT(3)
173 # define CM_PLLC_LOADCORE1              BIT(2)
174 # define CM_PLLC_HOLDCORE0              BIT(1)
175 # define CM_PLLC_LOADCORE0              BIT(0)
176
177 #define CM_PLLD                 0x10c
178 # define CM_PLLD_HOLDPER                BIT(7)
179 # define CM_PLLD_LOADPER                BIT(6)
180 # define CM_PLLD_HOLDCORE               BIT(5)
181 # define CM_PLLD_LOADCORE               BIT(4)
182 # define CM_PLLD_HOLDDSI1               BIT(3)
183 # define CM_PLLD_LOADDSI1               BIT(2)
184 # define CM_PLLD_HOLDDSI0               BIT(1)
185 # define CM_PLLD_LOADDSI0               BIT(0)
186
187 #define CM_PLLH                 0x110
188 # define CM_PLLH_LOADRCAL               BIT(2)
189 # define CM_PLLH_LOADAUX                BIT(1)
190 # define CM_PLLH_LOADPIX                BIT(0)
191
192 #define CM_LOCK                 0x114
193 # define CM_LOCK_FLOCKH                 BIT(12)
194 # define CM_LOCK_FLOCKD                 BIT(11)
195 # define CM_LOCK_FLOCKC                 BIT(10)
196 # define CM_LOCK_FLOCKB                 BIT(9)
197 # define CM_LOCK_FLOCKA                 BIT(8)
198
199 #define CM_EVENT                0x118
200 #define CM_DSI1ECTL             0x158
201 #define CM_DSI1EDIV             0x15c
202 #define CM_DSI1PCTL             0x160
203 #define CM_DSI1PDIV             0x164
204 #define CM_DFTCTL               0x168
205 #define CM_DFTDIV               0x16c
206
207 #define CM_PLLB                 0x170
208 # define CM_PLLB_HOLDARM                BIT(1)
209 # define CM_PLLB_LOADARM                BIT(0)
210
211 #define A2W_PLLA_CTRL           0x1100
212 #define A2W_PLLC_CTRL           0x1120
213 #define A2W_PLLD_CTRL           0x1140
214 #define A2W_PLLH_CTRL           0x1160
215 #define A2W_PLLB_CTRL           0x11e0
216 # define A2W_PLL_CTRL_PRST_DISABLE      BIT(17)
217 # define A2W_PLL_CTRL_PWRDN             BIT(16)
218 # define A2W_PLL_CTRL_PDIV_MASK         0x000007000
219 # define A2W_PLL_CTRL_PDIV_SHIFT        12
220 # define A2W_PLL_CTRL_NDIV_MASK         0x0000003ff
221 # define A2W_PLL_CTRL_NDIV_SHIFT        0
222
223 #define A2W_PLLA_ANA0           0x1010
224 #define A2W_PLLC_ANA0           0x1030
225 #define A2W_PLLD_ANA0           0x1050
226 #define A2W_PLLH_ANA0           0x1070
227 #define A2W_PLLB_ANA0           0x10f0
228
229 #define A2W_PLL_KA_SHIFT        7
230 #define A2W_PLL_KA_MASK         GENMASK(9, 7)
231 #define A2W_PLL_KI_SHIFT        19
232 #define A2W_PLL_KI_MASK         GENMASK(21, 19)
233 #define A2W_PLL_KP_SHIFT        15
234 #define A2W_PLL_KP_MASK         GENMASK(18, 15)
235
236 #define A2W_PLLH_KA_SHIFT       19
237 #define A2W_PLLH_KA_MASK        GENMASK(21, 19)
238 #define A2W_PLLH_KI_LOW_SHIFT   22
239 #define A2W_PLLH_KI_LOW_MASK    GENMASK(23, 22)
240 #define A2W_PLLH_KI_HIGH_SHIFT  0
241 #define A2W_PLLH_KI_HIGH_MASK   GENMASK(0, 0)
242 #define A2W_PLLH_KP_SHIFT       1
243 #define A2W_PLLH_KP_MASK        GENMASK(4, 1)
244
245 #define A2W_XOSC_CTRL           0x1190
246 # define A2W_XOSC_CTRL_PLLB_ENABLE      BIT(7)
247 # define A2W_XOSC_CTRL_PLLA_ENABLE      BIT(6)
248 # define A2W_XOSC_CTRL_PLLD_ENABLE      BIT(5)
249 # define A2W_XOSC_CTRL_DDR_ENABLE       BIT(4)
250 # define A2W_XOSC_CTRL_CPR1_ENABLE      BIT(3)
251 # define A2W_XOSC_CTRL_USB_ENABLE       BIT(2)
252 # define A2W_XOSC_CTRL_HDMI_ENABLE      BIT(1)
253 # define A2W_XOSC_CTRL_PLLC_ENABLE      BIT(0)
254
255 #define A2W_PLLA_FRAC           0x1200
256 #define A2W_PLLC_FRAC           0x1220
257 #define A2W_PLLD_FRAC           0x1240
258 #define A2W_PLLH_FRAC           0x1260
259 #define A2W_PLLB_FRAC           0x12e0
260 # define A2W_PLL_FRAC_MASK              ((1 << A2W_PLL_FRAC_BITS) - 1)
261 # define A2W_PLL_FRAC_BITS              20
262
263 #define A2W_PLL_CHANNEL_DISABLE         BIT(8)
264 #define A2W_PLL_DIV_BITS                8
265 #define A2W_PLL_DIV_SHIFT               0
266
267 #define A2W_PLLA_DSI0           0x1300
268 #define A2W_PLLA_CORE           0x1400
269 #define A2W_PLLA_PER            0x1500
270 #define A2W_PLLA_CCP2           0x1600
271
272 #define A2W_PLLC_CORE2          0x1320
273 #define A2W_PLLC_CORE1          0x1420
274 #define A2W_PLLC_PER            0x1520
275 #define A2W_PLLC_CORE0          0x1620
276
277 #define A2W_PLLD_DSI0           0x1340
278 #define A2W_PLLD_CORE           0x1440
279 #define A2W_PLLD_PER            0x1540
280 #define A2W_PLLD_DSI1           0x1640
281
282 #define A2W_PLLH_AUX            0x1360
283 #define A2W_PLLH_RCAL           0x1460
284 #define A2W_PLLH_PIX            0x1560
285 #define A2W_PLLH_STS            0x1660
286
287 #define A2W_PLLH_CTRLR          0x1960
288 #define A2W_PLLH_FRACR          0x1a60
289 #define A2W_PLLH_AUXR           0x1b60
290 #define A2W_PLLH_RCALR          0x1c60
291 #define A2W_PLLH_PIXR           0x1d60
292 #define A2W_PLLH_STSR           0x1e60
293
294 #define A2W_PLLB_ARM            0x13e0
295 #define A2W_PLLB_SP0            0x14e0
296 #define A2W_PLLB_SP1            0x15e0
297 #define A2W_PLLB_SP2            0x16e0
298
299 #define LOCK_TIMEOUT_NS         100000000
300 #define BCM2835_MAX_FB_RATE     1750000000u
301
302 /*
303  * Names of clocks used within the driver that need to be replaced
304  * with an external parent's name.  This array is in the order that
305  * the clocks node in the DT references external clocks.
306  */
307 static const char *const cprman_parent_names[] = {
308         "xosc",
309         "dsi0_byte",
310         "dsi0_ddr2",
311         "dsi0_ddr",
312         "dsi1_byte",
313         "dsi1_ddr2",
314         "dsi1_ddr",
315 };
316
317 struct bcm2835_cprman {
318         struct device *dev;
319         void __iomem *regs;
320         spinlock_t regs_lock; /* spinlock for all clocks */
321
322         /*
323          * Real names of cprman clock parents looked up through
324          * of_clk_get_parent_name(), which will be used in the
325          * parent_names[] arrays for clock registration.
326          */
327         const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
328
329         /* Must be last */
330         struct clk_hw_onecell_data onecell;
331 };
332
333 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
334 {
335         writel(CM_PASSWORD | val, cprman->regs + reg);
336 }
337
338 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
339 {
340         return readl(cprman->regs + reg);
341 }
342
343 /* Does a cycle of measuring a clock through the TCNT clock, which may
344  * source from many other clocks in the system.
345  */
346 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
347                                               u32 tcnt_mux)
348 {
349         u32 osccount = 19200; /* 1ms */
350         u32 count;
351         ktime_t timeout;
352
353         spin_lock(&cprman->regs_lock);
354
355         cprman_write(cprman, CM_TCNTCTL, CM_KILL);
356
357         cprman_write(cprman, CM_TCNTCTL,
358                      (tcnt_mux & CM_SRC_MASK) |
359                      (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
360
361         cprman_write(cprman, CM_OSCCOUNT, osccount);
362
363         /* do a kind delay at the start */
364         mdelay(1);
365
366         /* Finish off whatever is left of OSCCOUNT */
367         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368         while (cprman_read(cprman, CM_OSCCOUNT)) {
369                 if (ktime_after(ktime_get(), timeout)) {
370                         dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
371                         count = 0;
372                         goto out;
373                 }
374                 cpu_relax();
375         }
376
377         /* Wait for BUSY to clear. */
378         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
379         while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
380                 if (ktime_after(ktime_get(), timeout)) {
381                         dev_err(cprman->dev, "timeout waiting for !BUSY\n");
382                         count = 0;
383                         goto out;
384                 }
385                 cpu_relax();
386         }
387
388         count = cprman_read(cprman, CM_TCNTCNT);
389
390         cprman_write(cprman, CM_TCNTCTL, 0);
391
392 out:
393         spin_unlock(&cprman->regs_lock);
394
395         return count * 1000;
396 }
397
398 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
399                                   struct debugfs_reg32 *regs, size_t nregs,
400                                   struct dentry *dentry)
401 {
402         struct dentry *regdump;
403         struct debugfs_regset32 *regset;
404
405         regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
406         if (!regset)
407                 return -ENOMEM;
408
409         regset->regs = regs;
410         regset->nregs = nregs;
411         regset->base = cprman->regs + base;
412
413         regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
414                                           regset);
415
416         return regdump ? 0 : -ENOMEM;
417 }
418
419 /*
420  * These are fixed clocks. They're probably not all root clocks and it may
421  * be possible to turn them on and off but until this is mapped out better
422  * it's the only way they can be used.
423  */
424 void __init bcm2835_init_clocks(void)
425 {
426         struct clk_hw *hw;
427         int ret;
428
429         hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
430         if (IS_ERR(hw))
431                 pr_err("apb_pclk not registered\n");
432
433         hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
434         if (IS_ERR(hw))
435                 pr_err("uart0_pclk not registered\n");
436         ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
437         if (ret)
438                 pr_err("uart0_pclk alias not registered\n");
439
440         hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
441         if (IS_ERR(hw))
442                 pr_err("uart1_pclk not registered\n");
443         ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
444         if (ret)
445                 pr_err("uart1_pclk alias not registered\n");
446 }
447
448 struct bcm2835_pll_data {
449         const char *name;
450         u32 cm_ctrl_reg;
451         u32 a2w_ctrl_reg;
452         u32 frac_reg;
453         u32 ana_reg_base;
454         u32 reference_enable_mask;
455         /* Bit in CM_LOCK to indicate when the PLL has locked. */
456         u32 lock_mask;
457
458         const struct bcm2835_pll_ana_bits *ana;
459
460         unsigned long min_rate;
461         unsigned long max_rate;
462         /*
463          * Highest rate for the VCO before we have to use the
464          * pre-divide-by-2.
465          */
466         unsigned long max_fb_rate;
467 };
468
469 struct bcm2835_pll_ana_bits {
470         u32 mask0;
471         u32 set0;
472         u32 mask1;
473         u32 set1;
474         u32 mask3;
475         u32 set3;
476         u32 fb_prediv_mask;
477 };
478
479 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
480         .mask0 = 0,
481         .set0 = 0,
482         .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
483         .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
484         .mask3 = (u32)~A2W_PLL_KA_MASK,
485         .set3 = (2 << A2W_PLL_KA_SHIFT),
486         .fb_prediv_mask = BIT(14),
487 };
488
489 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
490         .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
491         .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
492         .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
493         .set1 = (6 << A2W_PLLH_KP_SHIFT),
494         .mask3 = 0,
495         .set3 = 0,
496         .fb_prediv_mask = BIT(11),
497 };
498
499 struct bcm2835_pll_divider_data {
500         const char *name;
501         const char *source_pll;
502
503         u32 cm_reg;
504         u32 a2w_reg;
505
506         u32 load_mask;
507         u32 hold_mask;
508         u32 fixed_divider;
509         u32 flags;
510 };
511
512 struct bcm2835_clock_data {
513         const char *name;
514
515         const char *const *parents;
516         int num_mux_parents;
517
518         /* Bitmap encoding which parents accept rate change propagation. */
519         unsigned int set_rate_parent;
520
521         u32 ctl_reg;
522         u32 div_reg;
523
524         /* Number of integer bits in the divider */
525         u32 int_bits;
526         /* Number of fractional bits in the divider */
527         u32 frac_bits;
528
529         u32 flags;
530
531         bool is_vpu_clock;
532         bool is_mash_clock;
533
534         u32 tcnt_mux;
535 };
536
537 struct bcm2835_gate_data {
538         const char *name;
539         const char *parent;
540
541         u32 ctl_reg;
542 };
543
544 struct bcm2835_pll {
545         struct clk_hw hw;
546         struct bcm2835_cprman *cprman;
547         const struct bcm2835_pll_data *data;
548 };
549
550 static int bcm2835_pll_is_on(struct clk_hw *hw)
551 {
552         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
553         struct bcm2835_cprman *cprman = pll->cprman;
554         const struct bcm2835_pll_data *data = pll->data;
555
556         return cprman_read(cprman, data->a2w_ctrl_reg) &
557                 A2W_PLL_CTRL_PRST_DISABLE;
558 }
559
560 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
561                                              unsigned long parent_rate,
562                                              u32 *ndiv, u32 *fdiv)
563 {
564         u64 div;
565
566         div = (u64)rate << A2W_PLL_FRAC_BITS;
567         do_div(div, parent_rate);
568
569         *ndiv = div >> A2W_PLL_FRAC_BITS;
570         *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
571 }
572
573 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
574                                            u32 ndiv, u32 fdiv, u32 pdiv)
575 {
576         u64 rate;
577
578         if (pdiv == 0)
579                 return 0;
580
581         rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
582         do_div(rate, pdiv);
583         return rate >> A2W_PLL_FRAC_BITS;
584 }
585
586 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
587                                    unsigned long *parent_rate)
588 {
589         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
590         const struct bcm2835_pll_data *data = pll->data;
591         u32 ndiv, fdiv;
592
593         rate = clamp(rate, data->min_rate, data->max_rate);
594
595         bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
596
597         return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
598 }
599
600 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
601                                           unsigned long parent_rate)
602 {
603         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
604         struct bcm2835_cprman *cprman = pll->cprman;
605         const struct bcm2835_pll_data *data = pll->data;
606         u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
607         u32 ndiv, pdiv, fdiv;
608         bool using_prediv;
609
610         if (parent_rate == 0)
611                 return 0;
612
613         fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
614         ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
615         pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
616         using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
617                 data->ana->fb_prediv_mask;
618
619         if (using_prediv)
620                 ndiv *= 2;
621
622         return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
623 }
624
625 static void bcm2835_pll_off(struct clk_hw *hw)
626 {
627         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
628         struct bcm2835_cprman *cprman = pll->cprman;
629         const struct bcm2835_pll_data *data = pll->data;
630
631         spin_lock(&cprman->regs_lock);
632         cprman_write(cprman, data->cm_ctrl_reg,
633                      cprman_read(cprman, data->cm_ctrl_reg) |
634                      CM_PLL_ANARST);
635         cprman_write(cprman, data->a2w_ctrl_reg,
636                      cprman_read(cprman, data->a2w_ctrl_reg) |
637                      A2W_PLL_CTRL_PWRDN);
638         spin_unlock(&cprman->regs_lock);
639 }
640
641 static int bcm2835_pll_on(struct clk_hw *hw)
642 {
643         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
644         struct bcm2835_cprman *cprman = pll->cprman;
645         const struct bcm2835_pll_data *data = pll->data;
646         ktime_t timeout;
647
648         cprman_write(cprman, data->a2w_ctrl_reg,
649                      cprman_read(cprman, data->a2w_ctrl_reg) &
650                      ~A2W_PLL_CTRL_PWRDN);
651
652         /* Take the PLL out of reset. */
653         cprman_write(cprman, data->cm_ctrl_reg,
654                      cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
655
656         /* Wait for the PLL to lock. */
657         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
658         while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
659                 if (ktime_after(ktime_get(), timeout)) {
660                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
661                                 clk_hw_get_name(hw));
662                         return -ETIMEDOUT;
663                 }
664
665                 cpu_relax();
666         }
667
668         return 0;
669 }
670
671 static void
672 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
673 {
674         int i;
675
676         /*
677          * ANA register setup is done as a series of writes to
678          * ANA3-ANA0, in that order.  This lets us write all 4
679          * registers as a single cycle of the serdes interface (taking
680          * 100 xosc clocks), whereas if we were to update ana0, 1, and
681          * 3 individually through their partial-write registers, each
682          * would be their own serdes cycle.
683          */
684         for (i = 3; i >= 0; i--)
685                 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
686 }
687
688 static int bcm2835_pll_set_rate(struct clk_hw *hw,
689                                 unsigned long rate, unsigned long parent_rate)
690 {
691         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
692         struct bcm2835_cprman *cprman = pll->cprman;
693         const struct bcm2835_pll_data *data = pll->data;
694         bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
695         u32 ndiv, fdiv, a2w_ctl;
696         u32 ana[4];
697         int i;
698
699         if (rate > data->max_fb_rate) {
700                 use_fb_prediv = true;
701                 rate /= 2;
702         } else {
703                 use_fb_prediv = false;
704         }
705
706         bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
707
708         for (i = 3; i >= 0; i--)
709                 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
710
711         was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
712
713         ana[0] &= ~data->ana->mask0;
714         ana[0] |= data->ana->set0;
715         ana[1] &= ~data->ana->mask1;
716         ana[1] |= data->ana->set1;
717         ana[3] &= ~data->ana->mask3;
718         ana[3] |= data->ana->set3;
719
720         if (was_using_prediv && !use_fb_prediv) {
721                 ana[1] &= ~data->ana->fb_prediv_mask;
722                 do_ana_setup_first = true;
723         } else if (!was_using_prediv && use_fb_prediv) {
724                 ana[1] |= data->ana->fb_prediv_mask;
725                 do_ana_setup_first = false;
726         } else {
727                 do_ana_setup_first = true;
728         }
729
730         /* Unmask the reference clock from the oscillator. */
731         cprman_write(cprman, A2W_XOSC_CTRL,
732                      cprman_read(cprman, A2W_XOSC_CTRL) |
733                      data->reference_enable_mask);
734
735         if (do_ana_setup_first)
736                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
737
738         /* Set the PLL multiplier from the oscillator. */
739         cprman_write(cprman, data->frac_reg, fdiv);
740
741         a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
742         a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
743         a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
744         a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
745         a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
746         cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
747
748         if (!do_ana_setup_first)
749                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
750
751         return 0;
752 }
753
754 static int bcm2835_pll_debug_init(struct clk_hw *hw,
755                                   struct dentry *dentry)
756 {
757         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
758         struct bcm2835_cprman *cprman = pll->cprman;
759         const struct bcm2835_pll_data *data = pll->data;
760         struct debugfs_reg32 *regs;
761
762         regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
763         if (!regs)
764                 return -ENOMEM;
765
766         regs[0].name = "cm_ctrl";
767         regs[0].offset = data->cm_ctrl_reg;
768         regs[1].name = "a2w_ctrl";
769         regs[1].offset = data->a2w_ctrl_reg;
770         regs[2].name = "frac";
771         regs[2].offset = data->frac_reg;
772         regs[3].name = "ana0";
773         regs[3].offset = data->ana_reg_base + 0 * 4;
774         regs[4].name = "ana1";
775         regs[4].offset = data->ana_reg_base + 1 * 4;
776         regs[5].name = "ana2";
777         regs[5].offset = data->ana_reg_base + 2 * 4;
778         regs[6].name = "ana3";
779         regs[6].offset = data->ana_reg_base + 3 * 4;
780
781         return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
782 }
783
784 static const struct clk_ops bcm2835_pll_clk_ops = {
785         .is_prepared = bcm2835_pll_is_on,
786         .prepare = bcm2835_pll_on,
787         .unprepare = bcm2835_pll_off,
788         .recalc_rate = bcm2835_pll_get_rate,
789         .set_rate = bcm2835_pll_set_rate,
790         .round_rate = bcm2835_pll_round_rate,
791         .debug_init = bcm2835_pll_debug_init,
792 };
793
794 struct bcm2835_pll_divider {
795         struct clk_divider div;
796         struct bcm2835_cprman *cprman;
797         const struct bcm2835_pll_divider_data *data;
798 };
799
800 static struct bcm2835_pll_divider *
801 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
802 {
803         return container_of(hw, struct bcm2835_pll_divider, div.hw);
804 }
805
806 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
807 {
808         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
809         struct bcm2835_cprman *cprman = divider->cprman;
810         const struct bcm2835_pll_divider_data *data = divider->data;
811
812         return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
813 }
814
815 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
816                                            unsigned long rate,
817                                            unsigned long *parent_rate)
818 {
819         return clk_divider_ops.round_rate(hw, rate, parent_rate);
820 }
821
822 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
823                                                   unsigned long parent_rate)
824 {
825         return clk_divider_ops.recalc_rate(hw, parent_rate);
826 }
827
828 static void bcm2835_pll_divider_off(struct clk_hw *hw)
829 {
830         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
831         struct bcm2835_cprman *cprman = divider->cprman;
832         const struct bcm2835_pll_divider_data *data = divider->data;
833
834         spin_lock(&cprman->regs_lock);
835         cprman_write(cprman, data->cm_reg,
836                      (cprman_read(cprman, data->cm_reg) &
837                       ~data->load_mask) | data->hold_mask);
838         cprman_write(cprman, data->a2w_reg,
839                      cprman_read(cprman, data->a2w_reg) |
840                      A2W_PLL_CHANNEL_DISABLE);
841         spin_unlock(&cprman->regs_lock);
842 }
843
844 static int bcm2835_pll_divider_on(struct clk_hw *hw)
845 {
846         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
847         struct bcm2835_cprman *cprman = divider->cprman;
848         const struct bcm2835_pll_divider_data *data = divider->data;
849
850         spin_lock(&cprman->regs_lock);
851         cprman_write(cprman, data->a2w_reg,
852                      cprman_read(cprman, data->a2w_reg) &
853                      ~A2W_PLL_CHANNEL_DISABLE);
854
855         cprman_write(cprman, data->cm_reg,
856                      cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
857         spin_unlock(&cprman->regs_lock);
858
859         return 0;
860 }
861
862 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
863                                         unsigned long rate,
864                                         unsigned long parent_rate)
865 {
866         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
867         struct bcm2835_cprman *cprman = divider->cprman;
868         const struct bcm2835_pll_divider_data *data = divider->data;
869         u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
870
871         div = DIV_ROUND_UP_ULL(parent_rate, rate);
872
873         div = min(div, max_div);
874         if (div == max_div)
875                 div = 0;
876
877         cprman_write(cprman, data->a2w_reg, div);
878         cm = cprman_read(cprman, data->cm_reg);
879         cprman_write(cprman, data->cm_reg, cm | data->load_mask);
880         cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
881
882         return 0;
883 }
884
885 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
886                                           struct dentry *dentry)
887 {
888         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
889         struct bcm2835_cprman *cprman = divider->cprman;
890         const struct bcm2835_pll_divider_data *data = divider->data;
891         struct debugfs_reg32 *regs;
892
893         regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
894         if (!regs)
895                 return -ENOMEM;
896
897         regs[0].name = "cm";
898         regs[0].offset = data->cm_reg;
899         regs[1].name = "a2w";
900         regs[1].offset = data->a2w_reg;
901
902         return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
903 }
904
905 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
906         .is_prepared = bcm2835_pll_divider_is_on,
907         .prepare = bcm2835_pll_divider_on,
908         .unprepare = bcm2835_pll_divider_off,
909         .recalc_rate = bcm2835_pll_divider_get_rate,
910         .set_rate = bcm2835_pll_divider_set_rate,
911         .round_rate = bcm2835_pll_divider_round_rate,
912         .debug_init = bcm2835_pll_divider_debug_init,
913 };
914
915 /*
916  * The CM dividers do fixed-point division, so we can't use the
917  * generic integer divider code like the PLL dividers do (and we can't
918  * fake it by having some fixed shifts preceding it in the clock tree,
919  * because we'd run out of bits in a 32-bit unsigned long).
920  */
921 struct bcm2835_clock {
922         struct clk_hw hw;
923         struct bcm2835_cprman *cprman;
924         const struct bcm2835_clock_data *data;
925 };
926
927 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
928 {
929         return container_of(hw, struct bcm2835_clock, hw);
930 }
931
932 static int bcm2835_clock_is_on(struct clk_hw *hw)
933 {
934         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
935         struct bcm2835_cprman *cprman = clock->cprman;
936         const struct bcm2835_clock_data *data = clock->data;
937
938         return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
939 }
940
941 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
942                                     unsigned long rate,
943                                     unsigned long parent_rate,
944                                     bool round_up)
945 {
946         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
947         const struct bcm2835_clock_data *data = clock->data;
948         u32 unused_frac_mask =
949                 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
950         u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
951         u64 rem;
952         u32 div, mindiv, maxdiv;
953
954         rem = do_div(temp, rate);
955         div = temp;
956
957         /* Round up and mask off the unused bits */
958         if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
959                 div += unused_frac_mask + 1;
960         div &= ~unused_frac_mask;
961
962         /* different clamping limits apply for a mash clock */
963         if (data->is_mash_clock) {
964                 /* clamp to min divider of 2 */
965                 mindiv = 2 << CM_DIV_FRAC_BITS;
966                 /* clamp to the highest possible integer divider */
967                 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
968         } else {
969                 /* clamp to min divider of 1 */
970                 mindiv = 1 << CM_DIV_FRAC_BITS;
971                 /* clamp to the highest possible fractional divider */
972                 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
973                                  CM_DIV_FRAC_BITS - data->frac_bits);
974         }
975
976         /* apply the clamping  limits */
977         div = max_t(u32, div, mindiv);
978         div = min_t(u32, div, maxdiv);
979
980         return div;
981 }
982
983 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
984                                             unsigned long parent_rate,
985                                             u32 div)
986 {
987         const struct bcm2835_clock_data *data = clock->data;
988         u64 temp;
989
990         if (data->int_bits == 0 && data->frac_bits == 0)
991                 return parent_rate;
992
993         /*
994          * The divisor is a 12.12 fixed point field, but only some of
995          * the bits are populated in any given clock.
996          */
997         div >>= CM_DIV_FRAC_BITS - data->frac_bits;
998         div &= (1 << (data->int_bits + data->frac_bits)) - 1;
999
1000         if (div == 0)
1001                 return 0;
1002
1003         temp = (u64)parent_rate << data->frac_bits;
1004
1005         do_div(temp, div);
1006
1007         return temp;
1008 }
1009
1010 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1011                                             unsigned long parent_rate)
1012 {
1013         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1014         struct bcm2835_cprman *cprman = clock->cprman;
1015         const struct bcm2835_clock_data *data = clock->data;
1016         u32 div;
1017
1018         if (data->int_bits == 0 && data->frac_bits == 0)
1019                 return parent_rate;
1020
1021         div = cprman_read(cprman, data->div_reg);
1022
1023         return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1024 }
1025
1026 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1027 {
1028         struct bcm2835_cprman *cprman = clock->cprman;
1029         const struct bcm2835_clock_data *data = clock->data;
1030         ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1031
1032         while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1033                 if (ktime_after(ktime_get(), timeout)) {
1034                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1035                                 clk_hw_get_name(&clock->hw));
1036                         return;
1037                 }
1038                 cpu_relax();
1039         }
1040 }
1041
1042 static void bcm2835_clock_off(struct clk_hw *hw)
1043 {
1044         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1045         struct bcm2835_cprman *cprman = clock->cprman;
1046         const struct bcm2835_clock_data *data = clock->data;
1047
1048         spin_lock(&cprman->regs_lock);
1049         cprman_write(cprman, data->ctl_reg,
1050                      cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1051         spin_unlock(&cprman->regs_lock);
1052
1053         /* BUSY will remain high until the divider completes its cycle. */
1054         bcm2835_clock_wait_busy(clock);
1055 }
1056
1057 static int bcm2835_clock_on(struct clk_hw *hw)
1058 {
1059         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1060         struct bcm2835_cprman *cprman = clock->cprman;
1061         const struct bcm2835_clock_data *data = clock->data;
1062
1063         spin_lock(&cprman->regs_lock);
1064         cprman_write(cprman, data->ctl_reg,
1065                      cprman_read(cprman, data->ctl_reg) |
1066                      CM_ENABLE |
1067                      CM_GATE);
1068         spin_unlock(&cprman->regs_lock);
1069
1070         /* Debug code to measure the clock once it's turned on to see
1071          * if it's ticking at the rate we expect.
1072          */
1073         if (data->tcnt_mux && false) {
1074                 dev_info(cprman->dev,
1075                          "clk %s: rate %ld, measure %ld\n",
1076                          data->name,
1077                          clk_hw_get_rate(hw),
1078                          bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1079         }
1080
1081         return 0;
1082 }
1083
1084 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1085                                   unsigned long rate, unsigned long parent_rate)
1086 {
1087         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1088         struct bcm2835_cprman *cprman = clock->cprman;
1089         const struct bcm2835_clock_data *data = clock->data;
1090         u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1091         u32 ctl;
1092
1093         spin_lock(&cprman->regs_lock);
1094
1095         /*
1096          * Setting up frac support
1097          *
1098          * In principle it is recommended to stop/start the clock first,
1099          * but as we set CLK_SET_RATE_GATE during registration of the
1100          * clock this requirement should be take care of by the
1101          * clk-framework.
1102          */
1103         ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1104         ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1105         cprman_write(cprman, data->ctl_reg, ctl);
1106
1107         cprman_write(cprman, data->div_reg, div);
1108
1109         spin_unlock(&cprman->regs_lock);
1110
1111         return 0;
1112 }
1113
1114 static bool
1115 bcm2835_clk_is_pllc(struct clk_hw *hw)
1116 {
1117         if (!hw)
1118                 return false;
1119
1120         return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1121 }
1122
1123 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1124                                                         int parent_idx,
1125                                                         unsigned long rate,
1126                                                         u32 *div,
1127                                                         unsigned long *prate)
1128 {
1129         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1130         struct bcm2835_cprman *cprman = clock->cprman;
1131         const struct bcm2835_clock_data *data = clock->data;
1132         unsigned long best_rate = 0;
1133         u32 curdiv, mindiv, maxdiv;
1134         struct clk_hw *parent;
1135
1136         parent = clk_hw_get_parent_by_index(hw, parent_idx);
1137
1138         if (!(BIT(parent_idx) & data->set_rate_parent)) {
1139                 *prate = clk_hw_get_rate(parent);
1140                 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1141
1142                 return bcm2835_clock_rate_from_divisor(clock, *prate,
1143                                                        *div);
1144         }
1145
1146         if (data->frac_bits)
1147                 dev_warn(cprman->dev,
1148                         "frac bits are not used when propagating rate change");
1149
1150         /* clamp to min divider of 2 if we're dealing with a mash clock */
1151         mindiv = data->is_mash_clock ? 2 : 1;
1152         maxdiv = BIT(data->int_bits) - 1;
1153
1154         /* TODO: Be smart, and only test a subset of the available divisors. */
1155         for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1156                 unsigned long tmp_rate;
1157
1158                 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1159                 tmp_rate /= curdiv;
1160                 if (curdiv == mindiv ||
1161                     (tmp_rate > best_rate && tmp_rate <= rate))
1162                         best_rate = tmp_rate;
1163
1164                 if (best_rate == rate)
1165                         break;
1166         }
1167
1168         *div = curdiv << CM_DIV_FRAC_BITS;
1169         *prate = curdiv * best_rate;
1170
1171         return best_rate;
1172 }
1173
1174 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1175                                         struct clk_rate_request *req)
1176 {
1177         struct clk_hw *parent, *best_parent = NULL;
1178         bool current_parent_is_pllc;
1179         unsigned long rate, best_rate = 0;
1180         unsigned long prate, best_prate = 0;
1181         size_t i;
1182         u32 div;
1183
1184         current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1185
1186         /*
1187          * Select parent clock that results in the closest but lower rate
1188          */
1189         for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1190                 parent = clk_hw_get_parent_by_index(hw, i);
1191                 if (!parent)
1192                         continue;
1193
1194                 /*
1195                  * Don't choose a PLLC-derived clock as our parent
1196                  * unless it had been manually set that way.  PLLC's
1197                  * frequency gets adjusted by the firmware due to
1198                  * over-temp or under-voltage conditions, without
1199                  * prior notification to our clock consumer.
1200                  */
1201                 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1202                         continue;
1203
1204                 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1205                                                           &div, &prate);
1206                 if (rate > best_rate && rate <= req->rate) {
1207                         best_parent = parent;
1208                         best_prate = prate;
1209                         best_rate = rate;
1210                 }
1211         }
1212
1213         if (!best_parent)
1214                 return -EINVAL;
1215
1216         req->best_parent_hw = best_parent;
1217         req->best_parent_rate = best_prate;
1218
1219         req->rate = best_rate;
1220
1221         return 0;
1222 }
1223
1224 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1225 {
1226         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1227         struct bcm2835_cprman *cprman = clock->cprman;
1228         const struct bcm2835_clock_data *data = clock->data;
1229         u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1230
1231         cprman_write(cprman, data->ctl_reg, src);
1232         return 0;
1233 }
1234
1235 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1236 {
1237         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1238         struct bcm2835_cprman *cprman = clock->cprman;
1239         const struct bcm2835_clock_data *data = clock->data;
1240         u32 src = cprman_read(cprman, data->ctl_reg);
1241
1242         return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1243 }
1244
1245 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1246         {
1247                 .name = "ctl",
1248                 .offset = 0,
1249         },
1250         {
1251                 .name = "div",
1252                 .offset = 4,
1253         },
1254 };
1255
1256 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1257                                     struct dentry *dentry)
1258 {
1259         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1260         struct bcm2835_cprman *cprman = clock->cprman;
1261         const struct bcm2835_clock_data *data = clock->data;
1262
1263         return bcm2835_debugfs_regset(
1264                 cprman, data->ctl_reg,
1265                 bcm2835_debugfs_clock_reg32,
1266                 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1267                 dentry);
1268 }
1269
1270 static const struct clk_ops bcm2835_clock_clk_ops = {
1271         .is_prepared = bcm2835_clock_is_on,
1272         .prepare = bcm2835_clock_on,
1273         .unprepare = bcm2835_clock_off,
1274         .recalc_rate = bcm2835_clock_get_rate,
1275         .set_rate = bcm2835_clock_set_rate,
1276         .determine_rate = bcm2835_clock_determine_rate,
1277         .set_parent = bcm2835_clock_set_parent,
1278         .get_parent = bcm2835_clock_get_parent,
1279         .debug_init = bcm2835_clock_debug_init,
1280 };
1281
1282 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1283 {
1284         return true;
1285 }
1286
1287 /*
1288  * The VPU clock can never be disabled (it doesn't have an ENABLE
1289  * bit), so it gets its own set of clock ops.
1290  */
1291 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1292         .is_prepared = bcm2835_vpu_clock_is_on,
1293         .recalc_rate = bcm2835_clock_get_rate,
1294         .set_rate = bcm2835_clock_set_rate,
1295         .determine_rate = bcm2835_clock_determine_rate,
1296         .set_parent = bcm2835_clock_set_parent,
1297         .get_parent = bcm2835_clock_get_parent,
1298         .debug_init = bcm2835_clock_debug_init,
1299 };
1300
1301 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1302                                            const struct bcm2835_pll_data *data)
1303 {
1304         struct bcm2835_pll *pll;
1305         struct clk_init_data init;
1306         int ret;
1307
1308         memset(&init, 0, sizeof(init));
1309
1310         /* All of the PLLs derive from the external oscillator. */
1311         init.parent_names = &cprman->real_parent_names[0];
1312         init.num_parents = 1;
1313         init.name = data->name;
1314         init.ops = &bcm2835_pll_clk_ops;
1315         init.flags = CLK_IGNORE_UNUSED;
1316
1317         pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1318         if (!pll)
1319                 return NULL;
1320
1321         pll->cprman = cprman;
1322         pll->data = data;
1323         pll->hw.init = &init;
1324
1325         ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1326         if (ret)
1327                 return NULL;
1328         return &pll->hw;
1329 }
1330
1331 static struct clk_hw *
1332 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1333                              const struct bcm2835_pll_divider_data *data)
1334 {
1335         struct bcm2835_pll_divider *divider;
1336         struct clk_init_data init;
1337         const char *divider_name;
1338         int ret;
1339
1340         if (data->fixed_divider != 1) {
1341                 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1342                                               "%s_prediv", data->name);
1343                 if (!divider_name)
1344                         return NULL;
1345         } else {
1346                 divider_name = data->name;
1347         }
1348
1349         memset(&init, 0, sizeof(init));
1350
1351         init.parent_names = &data->source_pll;
1352         init.num_parents = 1;
1353         init.name = divider_name;
1354         init.ops = &bcm2835_pll_divider_clk_ops;
1355         init.flags = data->flags | CLK_IGNORE_UNUSED;
1356
1357         divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1358         if (!divider)
1359                 return NULL;
1360
1361         divider->div.reg = cprman->regs + data->a2w_reg;
1362         divider->div.shift = A2W_PLL_DIV_SHIFT;
1363         divider->div.width = A2W_PLL_DIV_BITS;
1364         divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1365         divider->div.lock = &cprman->regs_lock;
1366         divider->div.hw.init = &init;
1367         divider->div.table = NULL;
1368
1369         divider->cprman = cprman;
1370         divider->data = data;
1371
1372         ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1373         if (ret)
1374                 return ERR_PTR(ret);
1375
1376         /*
1377          * PLLH's channels have a fixed divide by 10 afterwards, which
1378          * is what our consumers are actually using.
1379          */
1380         if (data->fixed_divider != 1) {
1381                 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1382                                                     divider_name,
1383                                                     CLK_SET_RATE_PARENT,
1384                                                     1,
1385                                                     data->fixed_divider);
1386         }
1387
1388         return &divider->div.hw;
1389 }
1390
1391 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1392                                           const struct bcm2835_clock_data *data)
1393 {
1394         struct bcm2835_clock *clock;
1395         struct clk_init_data init;
1396         const char *parents[1 << CM_SRC_BITS];
1397         size_t i, j;
1398         int ret;
1399
1400         /*
1401          * Replace our strings referencing parent clocks with the
1402          * actual clock-output-name of the parent.
1403          */
1404         for (i = 0; i < data->num_mux_parents; i++) {
1405                 parents[i] = data->parents[i];
1406
1407                 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1408                         if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1409                                 parents[i] = cprman->real_parent_names[j];
1410                                 break;
1411                         }
1412                 }
1413         }
1414
1415         memset(&init, 0, sizeof(init));
1416         init.parent_names = parents;
1417         init.num_parents = data->num_mux_parents;
1418         init.name = data->name;
1419         init.flags = data->flags | CLK_IGNORE_UNUSED;
1420
1421         /*
1422          * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1423          * rate changes on at least of the parents.
1424          */
1425         if (data->set_rate_parent)
1426                 init.flags |= CLK_SET_RATE_PARENT;
1427
1428         if (data->is_vpu_clock) {
1429                 init.ops = &bcm2835_vpu_clock_clk_ops;
1430         } else {
1431                 init.ops = &bcm2835_clock_clk_ops;
1432                 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1433
1434                 /* If the clock wasn't actually enabled at boot, it's not
1435                  * critical.
1436                  */
1437                 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1438                         init.flags &= ~CLK_IS_CRITICAL;
1439         }
1440
1441         clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1442         if (!clock)
1443                 return NULL;
1444
1445         clock->cprman = cprman;
1446         clock->data = data;
1447         clock->hw.init = &init;
1448
1449         ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1450         if (ret)
1451                 return ERR_PTR(ret);
1452         return &clock->hw;
1453 }
1454
1455 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1456                                          const struct bcm2835_gate_data *data)
1457 {
1458         return clk_register_gate(cprman->dev, data->name, data->parent,
1459                                  CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1460                                  cprman->regs + data->ctl_reg,
1461                                  CM_GATE_BIT, 0, &cprman->regs_lock);
1462 }
1463
1464 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1465                                                const void *data);
1466 struct bcm2835_clk_desc {
1467         bcm2835_clk_register clk_register;
1468         const void *data;
1469 };
1470
1471 /* assignment helper macros for different clock types */
1472 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1473                             .data = __VA_ARGS__ }
1474 #define REGISTER_PLL(...)       _REGISTER(&bcm2835_register_pll,        \
1475                                           &(struct bcm2835_pll_data)    \
1476                                           {__VA_ARGS__})
1477 #define REGISTER_PLL_DIV(...)   _REGISTER(&bcm2835_register_pll_divider, \
1478                                           &(struct bcm2835_pll_divider_data) \
1479                                           {__VA_ARGS__})
1480 #define REGISTER_CLK(...)       _REGISTER(&bcm2835_register_clock,      \
1481                                           &(struct bcm2835_clock_data)  \
1482                                           {__VA_ARGS__})
1483 #define REGISTER_GATE(...)      _REGISTER(&bcm2835_register_gate,       \
1484                                           &(struct bcm2835_gate_data)   \
1485                                           {__VA_ARGS__})
1486
1487 /* parent mux arrays plus helper macros */
1488
1489 /* main oscillator parent mux */
1490 static const char *const bcm2835_clock_osc_parents[] = {
1491         "gnd",
1492         "xosc",
1493         "testdebug0",
1494         "testdebug1"
1495 };
1496
1497 #define REGISTER_OSC_CLK(...)   REGISTER_CLK(                           \
1498         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),       \
1499         .parents = bcm2835_clock_osc_parents,                           \
1500         __VA_ARGS__)
1501
1502 /* main peripherial parent mux */
1503 static const char *const bcm2835_clock_per_parents[] = {
1504         "gnd",
1505         "xosc",
1506         "testdebug0",
1507         "testdebug1",
1508         "plla_per",
1509         "pllc_per",
1510         "plld_per",
1511         "pllh_aux",
1512 };
1513
1514 #define REGISTER_PER_CLK(...)   REGISTER_CLK(                           \
1515         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),       \
1516         .parents = bcm2835_clock_per_parents,                           \
1517         __VA_ARGS__)
1518
1519 /* main vpu parent mux */
1520 static const char *const bcm2835_clock_vpu_parents[] = {
1521         "gnd",
1522         "xosc",
1523         "testdebug0",
1524         "testdebug1",
1525         "plla_core",
1526         "pllc_core0",
1527         "plld_core",
1528         "pllh_aux",
1529         "pllc_core1",
1530         "pllc_core2",
1531 };
1532
1533 #define REGISTER_VPU_CLK(...)   REGISTER_CLK(                           \
1534         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),       \
1535         .parents = bcm2835_clock_vpu_parents,                           \
1536         __VA_ARGS__)
1537
1538 /*
1539  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1540  * analog PHY.  The _inv variants are generated internally to cprman,
1541  * but we don't use them so they aren't hooked up.
1542  */
1543 static const char *const bcm2835_clock_dsi0_parents[] = {
1544         "gnd",
1545         "xosc",
1546         "testdebug0",
1547         "testdebug1",
1548         "dsi0_ddr",
1549         "dsi0_ddr_inv",
1550         "dsi0_ddr2",
1551         "dsi0_ddr2_inv",
1552         "dsi0_byte",
1553         "dsi0_byte_inv",
1554 };
1555
1556 static const char *const bcm2835_clock_dsi1_parents[] = {
1557         "gnd",
1558         "xosc",
1559         "testdebug0",
1560         "testdebug1",
1561         "dsi1_ddr",
1562         "dsi1_ddr_inv",
1563         "dsi1_ddr2",
1564         "dsi1_ddr2_inv",
1565         "dsi1_byte",
1566         "dsi1_byte_inv",
1567 };
1568
1569 #define REGISTER_DSI0_CLK(...)  REGISTER_CLK(                           \
1570         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),      \
1571         .parents = bcm2835_clock_dsi0_parents,                          \
1572         __VA_ARGS__)
1573
1574 #define REGISTER_DSI1_CLK(...)  REGISTER_CLK(                           \
1575         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),      \
1576         .parents = bcm2835_clock_dsi1_parents,                          \
1577         __VA_ARGS__)
1578
1579 /*
1580  * the real definition of all the pll, pll_dividers and clocks
1581  * these make use of the above REGISTER_* macros
1582  */
1583 static const struct bcm2835_clk_desc clk_desc_array[] = {
1584         /* the PLL + PLL dividers */
1585
1586         /*
1587          * PLLA is the auxiliary PLL, used to drive the CCP2
1588          * (Compact Camera Port 2) transmitter clock.
1589          *
1590          * It is in the PX LDO power domain, which is on when the
1591          * AUDIO domain is on.
1592          */
1593         [BCM2835_PLLA]          = REGISTER_PLL(
1594                 .name = "plla",
1595                 .cm_ctrl_reg = CM_PLLA,
1596                 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1597                 .frac_reg = A2W_PLLA_FRAC,
1598                 .ana_reg_base = A2W_PLLA_ANA0,
1599                 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1600                 .lock_mask = CM_LOCK_FLOCKA,
1601
1602                 .ana = &bcm2835_ana_default,
1603
1604                 .min_rate = 600000000u,
1605                 .max_rate = 2400000000u,
1606                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1607         [BCM2835_PLLA_CORE]     = REGISTER_PLL_DIV(
1608                 .name = "plla_core",
1609                 .source_pll = "plla",
1610                 .cm_reg = CM_PLLA,
1611                 .a2w_reg = A2W_PLLA_CORE,
1612                 .load_mask = CM_PLLA_LOADCORE,
1613                 .hold_mask = CM_PLLA_HOLDCORE,
1614                 .fixed_divider = 1,
1615                 .flags = CLK_SET_RATE_PARENT),
1616         [BCM2835_PLLA_PER]      = REGISTER_PLL_DIV(
1617                 .name = "plla_per",
1618                 .source_pll = "plla",
1619                 .cm_reg = CM_PLLA,
1620                 .a2w_reg = A2W_PLLA_PER,
1621                 .load_mask = CM_PLLA_LOADPER,
1622                 .hold_mask = CM_PLLA_HOLDPER,
1623                 .fixed_divider = 1,
1624                 .flags = CLK_SET_RATE_PARENT),
1625         [BCM2835_PLLA_DSI0]     = REGISTER_PLL_DIV(
1626                 .name = "plla_dsi0",
1627                 .source_pll = "plla",
1628                 .cm_reg = CM_PLLA,
1629                 .a2w_reg = A2W_PLLA_DSI0,
1630                 .load_mask = CM_PLLA_LOADDSI0,
1631                 .hold_mask = CM_PLLA_HOLDDSI0,
1632                 .fixed_divider = 1),
1633         [BCM2835_PLLA_CCP2]     = REGISTER_PLL_DIV(
1634                 .name = "plla_ccp2",
1635                 .source_pll = "plla",
1636                 .cm_reg = CM_PLLA,
1637                 .a2w_reg = A2W_PLLA_CCP2,
1638                 .load_mask = CM_PLLA_LOADCCP2,
1639                 .hold_mask = CM_PLLA_HOLDCCP2,
1640                 .fixed_divider = 1,
1641                 .flags = CLK_SET_RATE_PARENT),
1642
1643         /* PLLB is used for the ARM's clock. */
1644         [BCM2835_PLLB]          = REGISTER_PLL(
1645                 .name = "pllb",
1646                 .cm_ctrl_reg = CM_PLLB,
1647                 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1648                 .frac_reg = A2W_PLLB_FRAC,
1649                 .ana_reg_base = A2W_PLLB_ANA0,
1650                 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1651                 .lock_mask = CM_LOCK_FLOCKB,
1652
1653                 .ana = &bcm2835_ana_default,
1654
1655                 .min_rate = 600000000u,
1656                 .max_rate = 3000000000u,
1657                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1658         [BCM2835_PLLB_ARM]      = REGISTER_PLL_DIV(
1659                 .name = "pllb_arm",
1660                 .source_pll = "pllb",
1661                 .cm_reg = CM_PLLB,
1662                 .a2w_reg = A2W_PLLB_ARM,
1663                 .load_mask = CM_PLLB_LOADARM,
1664                 .hold_mask = CM_PLLB_HOLDARM,
1665                 .fixed_divider = 1,
1666                 .flags = CLK_SET_RATE_PARENT),
1667
1668         /*
1669          * PLLC is the core PLL, used to drive the core VPU clock.
1670          *
1671          * It is in the PX LDO power domain, which is on when the
1672          * AUDIO domain is on.
1673          */
1674         [BCM2835_PLLC]          = REGISTER_PLL(
1675                 .name = "pllc",
1676                 .cm_ctrl_reg = CM_PLLC,
1677                 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1678                 .frac_reg = A2W_PLLC_FRAC,
1679                 .ana_reg_base = A2W_PLLC_ANA0,
1680                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1681                 .lock_mask = CM_LOCK_FLOCKC,
1682
1683                 .ana = &bcm2835_ana_default,
1684
1685                 .min_rate = 600000000u,
1686                 .max_rate = 3000000000u,
1687                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1688         [BCM2835_PLLC_CORE0]    = REGISTER_PLL_DIV(
1689                 .name = "pllc_core0",
1690                 .source_pll = "pllc",
1691                 .cm_reg = CM_PLLC,
1692                 .a2w_reg = A2W_PLLC_CORE0,
1693                 .load_mask = CM_PLLC_LOADCORE0,
1694                 .hold_mask = CM_PLLC_HOLDCORE0,
1695                 .fixed_divider = 1,
1696                 .flags = CLK_SET_RATE_PARENT),
1697         [BCM2835_PLLC_CORE1]    = REGISTER_PLL_DIV(
1698                 .name = "pllc_core1",
1699                 .source_pll = "pllc",
1700                 .cm_reg = CM_PLLC,
1701                 .a2w_reg = A2W_PLLC_CORE1,
1702                 .load_mask = CM_PLLC_LOADCORE1,
1703                 .hold_mask = CM_PLLC_HOLDCORE1,
1704                 .fixed_divider = 1,
1705                 .flags = CLK_SET_RATE_PARENT),
1706         [BCM2835_PLLC_CORE2]    = REGISTER_PLL_DIV(
1707                 .name = "pllc_core2",
1708                 .source_pll = "pllc",
1709                 .cm_reg = CM_PLLC,
1710                 .a2w_reg = A2W_PLLC_CORE2,
1711                 .load_mask = CM_PLLC_LOADCORE2,
1712                 .hold_mask = CM_PLLC_HOLDCORE2,
1713                 .fixed_divider = 1,
1714                 .flags = CLK_SET_RATE_PARENT),
1715         [BCM2835_PLLC_PER]      = REGISTER_PLL_DIV(
1716                 .name = "pllc_per",
1717                 .source_pll = "pllc",
1718                 .cm_reg = CM_PLLC,
1719                 .a2w_reg = A2W_PLLC_PER,
1720                 .load_mask = CM_PLLC_LOADPER,
1721                 .hold_mask = CM_PLLC_HOLDPER,
1722                 .fixed_divider = 1,
1723                 .flags = CLK_SET_RATE_PARENT),
1724
1725         /*
1726          * PLLD is the display PLL, used to drive DSI display panels.
1727          *
1728          * It is in the PX LDO power domain, which is on when the
1729          * AUDIO domain is on.
1730          */
1731         [BCM2835_PLLD]          = REGISTER_PLL(
1732                 .name = "plld",
1733                 .cm_ctrl_reg = CM_PLLD,
1734                 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1735                 .frac_reg = A2W_PLLD_FRAC,
1736                 .ana_reg_base = A2W_PLLD_ANA0,
1737                 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1738                 .lock_mask = CM_LOCK_FLOCKD,
1739
1740                 .ana = &bcm2835_ana_default,
1741
1742                 .min_rate = 600000000u,
1743                 .max_rate = 2400000000u,
1744                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1745         [BCM2835_PLLD_CORE]     = REGISTER_PLL_DIV(
1746                 .name = "plld_core",
1747                 .source_pll = "plld",
1748                 .cm_reg = CM_PLLD,
1749                 .a2w_reg = A2W_PLLD_CORE,
1750                 .load_mask = CM_PLLD_LOADCORE,
1751                 .hold_mask = CM_PLLD_HOLDCORE,
1752                 .fixed_divider = 1,
1753                 .flags = CLK_SET_RATE_PARENT),
1754         [BCM2835_PLLD_PER]      = REGISTER_PLL_DIV(
1755                 .name = "plld_per",
1756                 .source_pll = "plld",
1757                 .cm_reg = CM_PLLD,
1758                 .a2w_reg = A2W_PLLD_PER,
1759                 .load_mask = CM_PLLD_LOADPER,
1760                 .hold_mask = CM_PLLD_HOLDPER,
1761                 .fixed_divider = 1,
1762                 .flags = CLK_SET_RATE_PARENT),
1763         [BCM2835_PLLD_DSI0]     = REGISTER_PLL_DIV(
1764                 .name = "plld_dsi0",
1765                 .source_pll = "plld",
1766                 .cm_reg = CM_PLLD,
1767                 .a2w_reg = A2W_PLLD_DSI0,
1768                 .load_mask = CM_PLLD_LOADDSI0,
1769                 .hold_mask = CM_PLLD_HOLDDSI0,
1770                 .fixed_divider = 1),
1771         [BCM2835_PLLD_DSI1]     = REGISTER_PLL_DIV(
1772                 .name = "plld_dsi1",
1773                 .source_pll = "plld",
1774                 .cm_reg = CM_PLLD,
1775                 .a2w_reg = A2W_PLLD_DSI1,
1776                 .load_mask = CM_PLLD_LOADDSI1,
1777                 .hold_mask = CM_PLLD_HOLDDSI1,
1778                 .fixed_divider = 1),
1779
1780         /*
1781          * PLLH is used to supply the pixel clock or the AUX clock for the
1782          * TV encoder.
1783          *
1784          * It is in the HDMI power domain.
1785          */
1786         [BCM2835_PLLH]          = REGISTER_PLL(
1787                 "pllh",
1788                 .cm_ctrl_reg = CM_PLLH,
1789                 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1790                 .frac_reg = A2W_PLLH_FRAC,
1791                 .ana_reg_base = A2W_PLLH_ANA0,
1792                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1793                 .lock_mask = CM_LOCK_FLOCKH,
1794
1795                 .ana = &bcm2835_ana_pllh,
1796
1797                 .min_rate = 600000000u,
1798                 .max_rate = 3000000000u,
1799                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1800         [BCM2835_PLLH_RCAL]     = REGISTER_PLL_DIV(
1801                 .name = "pllh_rcal",
1802                 .source_pll = "pllh",
1803                 .cm_reg = CM_PLLH,
1804                 .a2w_reg = A2W_PLLH_RCAL,
1805                 .load_mask = CM_PLLH_LOADRCAL,
1806                 .hold_mask = 0,
1807                 .fixed_divider = 10,
1808                 .flags = CLK_SET_RATE_PARENT),
1809         [BCM2835_PLLH_AUX]      = REGISTER_PLL_DIV(
1810                 .name = "pllh_aux",
1811                 .source_pll = "pllh",
1812                 .cm_reg = CM_PLLH,
1813                 .a2w_reg = A2W_PLLH_AUX,
1814                 .load_mask = CM_PLLH_LOADAUX,
1815                 .hold_mask = 0,
1816                 .fixed_divider = 1,
1817                 .flags = CLK_SET_RATE_PARENT),
1818         [BCM2835_PLLH_PIX]      = REGISTER_PLL_DIV(
1819                 .name = "pllh_pix",
1820                 .source_pll = "pllh",
1821                 .cm_reg = CM_PLLH,
1822                 .a2w_reg = A2W_PLLH_PIX,
1823                 .load_mask = CM_PLLH_LOADPIX,
1824                 .hold_mask = 0,
1825                 .fixed_divider = 10,
1826                 .flags = CLK_SET_RATE_PARENT),
1827
1828         /* the clocks */
1829
1830         /* clocks with oscillator parent mux */
1831
1832         /* One Time Programmable Memory clock.  Maximum 10Mhz. */
1833         [BCM2835_CLOCK_OTP]     = REGISTER_OSC_CLK(
1834                 .name = "otp",
1835                 .ctl_reg = CM_OTPCTL,
1836                 .div_reg = CM_OTPDIV,
1837                 .int_bits = 4,
1838                 .frac_bits = 0,
1839                 .tcnt_mux = 6),
1840         /*
1841          * Used for a 1Mhz clock for the system clocksource, and also used
1842          * bythe watchdog timer and the camera pulse generator.
1843          */
1844         [BCM2835_CLOCK_TIMER]   = REGISTER_OSC_CLK(
1845                 .name = "timer",
1846                 .ctl_reg = CM_TIMERCTL,
1847                 .div_reg = CM_TIMERDIV,
1848                 .int_bits = 6,
1849                 .frac_bits = 12),
1850         /*
1851          * Clock for the temperature sensor.
1852          * Generally run at 2Mhz, max 5Mhz.
1853          */
1854         [BCM2835_CLOCK_TSENS]   = REGISTER_OSC_CLK(
1855                 .name = "tsens",
1856                 .ctl_reg = CM_TSENSCTL,
1857                 .div_reg = CM_TSENSDIV,
1858                 .int_bits = 5,
1859                 .frac_bits = 0),
1860         [BCM2835_CLOCK_TEC]     = REGISTER_OSC_CLK(
1861                 .name = "tec",
1862                 .ctl_reg = CM_TECCTL,
1863                 .div_reg = CM_TECDIV,
1864                 .int_bits = 6,
1865                 .frac_bits = 0),
1866
1867         /* clocks with vpu parent mux */
1868         [BCM2835_CLOCK_H264]    = REGISTER_VPU_CLK(
1869                 .name = "h264",
1870                 .ctl_reg = CM_H264CTL,
1871                 .div_reg = CM_H264DIV,
1872                 .int_bits = 4,
1873                 .frac_bits = 8,
1874                 .tcnt_mux = 1),
1875         [BCM2835_CLOCK_ISP]     = REGISTER_VPU_CLK(
1876                 .name = "isp",
1877                 .ctl_reg = CM_ISPCTL,
1878                 .div_reg = CM_ISPDIV,
1879                 .int_bits = 4,
1880                 .frac_bits = 8,
1881                 .tcnt_mux = 2),
1882
1883         /*
1884          * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1885          * in the SDRAM controller can't be used.
1886          */
1887         [BCM2835_CLOCK_SDRAM]   = REGISTER_VPU_CLK(
1888                 .name = "sdram",
1889                 .ctl_reg = CM_SDCCTL,
1890                 .div_reg = CM_SDCDIV,
1891                 .int_bits = 6,
1892                 .frac_bits = 0,
1893                 .tcnt_mux = 3),
1894         [BCM2835_CLOCK_V3D]     = REGISTER_VPU_CLK(
1895                 .name = "v3d",
1896                 .ctl_reg = CM_V3DCTL,
1897                 .div_reg = CM_V3DDIV,
1898                 .int_bits = 4,
1899                 .frac_bits = 8,
1900                 .tcnt_mux = 4),
1901         /*
1902          * VPU clock.  This doesn't have an enable bit, since it drives
1903          * the bus for everything else, and is special so it doesn't need
1904          * to be gated for rate changes.  It is also known as "clk_audio"
1905          * in various hardware documentation.
1906          */
1907         [BCM2835_CLOCK_VPU]     = REGISTER_VPU_CLK(
1908                 .name = "vpu",
1909                 .ctl_reg = CM_VPUCTL,
1910                 .div_reg = CM_VPUDIV,
1911                 .int_bits = 12,
1912                 .frac_bits = 8,
1913                 .flags = CLK_IS_CRITICAL,
1914                 .is_vpu_clock = true,
1915                 .tcnt_mux = 5),
1916
1917         /* clocks with per parent mux */
1918         [BCM2835_CLOCK_AVEO]    = REGISTER_PER_CLK(
1919                 .name = "aveo",
1920                 .ctl_reg = CM_AVEOCTL,
1921                 .div_reg = CM_AVEODIV,
1922                 .int_bits = 4,
1923                 .frac_bits = 0,
1924                 .tcnt_mux = 38),
1925         [BCM2835_CLOCK_CAM0]    = REGISTER_PER_CLK(
1926                 .name = "cam0",
1927                 .ctl_reg = CM_CAM0CTL,
1928                 .div_reg = CM_CAM0DIV,
1929                 .int_bits = 4,
1930                 .frac_bits = 8,
1931                 .tcnt_mux = 14),
1932         [BCM2835_CLOCK_CAM1]    = REGISTER_PER_CLK(
1933                 .name = "cam1",
1934                 .ctl_reg = CM_CAM1CTL,
1935                 .div_reg = CM_CAM1DIV,
1936                 .int_bits = 4,
1937                 .frac_bits = 8,
1938                 .tcnt_mux = 15),
1939         [BCM2835_CLOCK_DFT]     = REGISTER_PER_CLK(
1940                 .name = "dft",
1941                 .ctl_reg = CM_DFTCTL,
1942                 .div_reg = CM_DFTDIV,
1943                 .int_bits = 5,
1944                 .frac_bits = 0),
1945         [BCM2835_CLOCK_DPI]     = REGISTER_PER_CLK(
1946                 .name = "dpi",
1947                 .ctl_reg = CM_DPICTL,
1948                 .div_reg = CM_DPIDIV,
1949                 .int_bits = 4,
1950                 .frac_bits = 8,
1951                 .tcnt_mux = 17),
1952
1953         /* Arasan EMMC clock */
1954         [BCM2835_CLOCK_EMMC]    = REGISTER_PER_CLK(
1955                 .name = "emmc",
1956                 .ctl_reg = CM_EMMCCTL,
1957                 .div_reg = CM_EMMCDIV,
1958                 .int_bits = 4,
1959                 .frac_bits = 8,
1960                 .tcnt_mux = 39),
1961
1962         /* General purpose (GPIO) clocks */
1963         [BCM2835_CLOCK_GP0]     = REGISTER_PER_CLK(
1964                 .name = "gp0",
1965                 .ctl_reg = CM_GP0CTL,
1966                 .div_reg = CM_GP0DIV,
1967                 .int_bits = 12,
1968                 .frac_bits = 12,
1969                 .is_mash_clock = true,
1970                 .tcnt_mux = 20),
1971         [BCM2835_CLOCK_GP1]     = REGISTER_PER_CLK(
1972                 .name = "gp1",
1973                 .ctl_reg = CM_GP1CTL,
1974                 .div_reg = CM_GP1DIV,
1975                 .int_bits = 12,
1976                 .frac_bits = 12,
1977                 .flags = CLK_IS_CRITICAL,
1978                 .is_mash_clock = true,
1979                 .tcnt_mux = 21),
1980         [BCM2835_CLOCK_GP2]     = REGISTER_PER_CLK(
1981                 .name = "gp2",
1982                 .ctl_reg = CM_GP2CTL,
1983                 .div_reg = CM_GP2DIV,
1984                 .int_bits = 12,
1985                 .frac_bits = 12,
1986                 .flags = CLK_IS_CRITICAL),
1987
1988         /* HDMI state machine */
1989         [BCM2835_CLOCK_HSM]     = REGISTER_PER_CLK(
1990                 .name = "hsm",
1991                 .ctl_reg = CM_HSMCTL,
1992                 .div_reg = CM_HSMDIV,
1993                 .int_bits = 4,
1994                 .frac_bits = 8,
1995                 .tcnt_mux = 22),
1996         [BCM2835_CLOCK_PCM]     = REGISTER_PER_CLK(
1997                 .name = "pcm",
1998                 .ctl_reg = CM_PCMCTL,
1999                 .div_reg = CM_PCMDIV,
2000                 .int_bits = 12,
2001                 .frac_bits = 12,
2002                 .is_mash_clock = true,
2003                 .tcnt_mux = 23),
2004         [BCM2835_CLOCK_PWM]     = REGISTER_PER_CLK(
2005                 .name = "pwm",
2006                 .ctl_reg = CM_PWMCTL,
2007                 .div_reg = CM_PWMDIV,
2008                 .int_bits = 12,
2009                 .frac_bits = 12,
2010                 .is_mash_clock = true,
2011                 .tcnt_mux = 24),
2012         [BCM2835_CLOCK_SLIM]    = REGISTER_PER_CLK(
2013                 .name = "slim",
2014                 .ctl_reg = CM_SLIMCTL,
2015                 .div_reg = CM_SLIMDIV,
2016                 .int_bits = 12,
2017                 .frac_bits = 12,
2018                 .is_mash_clock = true,
2019                 .tcnt_mux = 25),
2020         [BCM2835_CLOCK_SMI]     = REGISTER_PER_CLK(
2021                 .name = "smi",
2022                 .ctl_reg = CM_SMICTL,
2023                 .div_reg = CM_SMIDIV,
2024                 .int_bits = 4,
2025                 .frac_bits = 8,
2026                 .tcnt_mux = 27),
2027         [BCM2835_CLOCK_UART]    = REGISTER_PER_CLK(
2028                 .name = "uart",
2029                 .ctl_reg = CM_UARTCTL,
2030                 .div_reg = CM_UARTDIV,
2031                 .int_bits = 10,
2032                 .frac_bits = 12,
2033                 .tcnt_mux = 28),
2034
2035         /* TV encoder clock.  Only operating frequency is 108Mhz.  */
2036         [BCM2835_CLOCK_VEC]     = REGISTER_PER_CLK(
2037                 .name = "vec",
2038                 .ctl_reg = CM_VECCTL,
2039                 .div_reg = CM_VECDIV,
2040                 .int_bits = 4,
2041                 .frac_bits = 0,
2042                 /*
2043                  * Allow rate change propagation only on PLLH_AUX which is
2044                  * assigned index 7 in the parent array.
2045                  */
2046                 .set_rate_parent = BIT(7),
2047                 .tcnt_mux = 29),
2048
2049         /* dsi clocks */
2050         [BCM2835_CLOCK_DSI0E]   = REGISTER_PER_CLK(
2051                 .name = "dsi0e",
2052                 .ctl_reg = CM_DSI0ECTL,
2053                 .div_reg = CM_DSI0EDIV,
2054                 .int_bits = 4,
2055                 .frac_bits = 8,
2056                 .tcnt_mux = 18),
2057         [BCM2835_CLOCK_DSI1E]   = REGISTER_PER_CLK(
2058                 .name = "dsi1e",
2059                 .ctl_reg = CM_DSI1ECTL,
2060                 .div_reg = CM_DSI1EDIV,
2061                 .int_bits = 4,
2062                 .frac_bits = 8,
2063                 .tcnt_mux = 19),
2064         [BCM2835_CLOCK_DSI0P]   = REGISTER_DSI0_CLK(
2065                 .name = "dsi0p",
2066                 .ctl_reg = CM_DSI0PCTL,
2067                 .div_reg = CM_DSI0PDIV,
2068                 .int_bits = 0,
2069                 .frac_bits = 0,
2070                 .tcnt_mux = 12),
2071         [BCM2835_CLOCK_DSI1P]   = REGISTER_DSI1_CLK(
2072                 .name = "dsi1p",
2073                 .ctl_reg = CM_DSI1PCTL,
2074                 .div_reg = CM_DSI1PDIV,
2075                 .int_bits = 0,
2076                 .frac_bits = 0,
2077                 .tcnt_mux = 13),
2078
2079         /* the gates */
2080
2081         /*
2082          * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2083          * you have the debug bit set in the power manager, which we
2084          * don't bother exposing) are individual gates off of the
2085          * non-stop vpu clock.
2086          */
2087         [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2088                 .name = "peri_image",
2089                 .parent = "vpu",
2090                 .ctl_reg = CM_PERIICTL),
2091 };
2092
2093 /*
2094  * Permanently take a reference on the parent of the SDRAM clock.
2095  *
2096  * While the SDRAM is being driven by its dedicated PLL most of the
2097  * time, there is a little loop running in the firmware that
2098  * periodically switches the SDRAM to using our CM clock to do PVT
2099  * recalibration, with the assumption that the previously configured
2100  * SDRAM parent is still enabled and running.
2101  */
2102 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2103 {
2104         struct clk *parent = clk_get_parent(sdc);
2105
2106         if (IS_ERR(parent))
2107                 return PTR_ERR(parent);
2108
2109         return clk_prepare_enable(parent);
2110 }
2111
2112 static int bcm2835_clk_probe(struct platform_device *pdev)
2113 {
2114         struct device *dev = &pdev->dev;
2115         struct clk_hw **hws;
2116         struct bcm2835_cprman *cprman;
2117         struct resource *res;
2118         const struct bcm2835_clk_desc *desc;
2119         const size_t asize = ARRAY_SIZE(clk_desc_array);
2120         size_t i;
2121         int ret;
2122
2123         cprman = devm_kzalloc(dev, sizeof(*cprman) +
2124                               sizeof(*cprman->onecell.hws) * asize,
2125                               GFP_KERNEL);
2126         if (!cprman)
2127                 return -ENOMEM;
2128
2129         spin_lock_init(&cprman->regs_lock);
2130         cprman->dev = dev;
2131         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2132         cprman->regs = devm_ioremap_resource(dev, res);
2133         if (IS_ERR(cprman->regs))
2134                 return PTR_ERR(cprman->regs);
2135
2136         memcpy(cprman->real_parent_names, cprman_parent_names,
2137                sizeof(cprman_parent_names));
2138         of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2139                            ARRAY_SIZE(cprman_parent_names));
2140
2141         /*
2142          * Make sure the external oscillator has been registered.
2143          *
2144          * The other (DSI) clocks are not present on older device
2145          * trees, which we still need to support for backwards
2146          * compatibility.
2147          */
2148         if (!cprman->real_parent_names[0])
2149                 return -ENODEV;
2150
2151         platform_set_drvdata(pdev, cprman);
2152
2153         cprman->onecell.num = asize;
2154         hws = cprman->onecell.hws;
2155
2156         for (i = 0; i < asize; i++) {
2157                 desc = &clk_desc_array[i];
2158                 if (desc->clk_register && desc->data)
2159                         hws[i] = desc->clk_register(cprman, desc->data);
2160         }
2161
2162         ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2163         if (ret)
2164                 return ret;
2165
2166         return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2167                                       &cprman->onecell);
2168 }
2169
2170 static const struct of_device_id bcm2835_clk_of_match[] = {
2171         { .compatible = "brcm,bcm2835-cprman", },
2172         {}
2173 };
2174 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2175
2176 static struct platform_driver bcm2835_clk_driver = {
2177         .driver = {
2178                 .name = "bcm2835-clk",
2179                 .of_match_table = bcm2835_clk_of_match,
2180         },
2181         .probe          = bcm2835_clk_probe,
2182 };
2183
2184 builtin_platform_driver(bcm2835_clk_driver);
2185
2186 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2187 MODULE_DESCRIPTION("BCM2835 clock driver");
2188 MODULE_LICENSE("GPL v2");