]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/clk/clk-cdce925.c
Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / clk / clk-cdce925.c
1 /*
2  * Driver for TI Dual PLL CDCE925 clock synthesizer
3  *
4  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
5  * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
6  * basis. Clients can directly request any frequency that the chip can
7  * deliver using the standard clk framework. In addition, the device can
8  * be configured and activated via the devicetree.
9  *
10  * Copyright (C) 2014, Topic Embedded Products
11  * Licenced under GPL
12  */
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 #include <linux/gcd.h>
21
22 /* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
23  * Model this as 2 PLL clocks which are parents to the outputs.
24  */
25 #define NUMBER_OF_PLLS  2
26 #define NUMBER_OF_OUTPUTS       5
27
28 #define CDCE925_REG_GLOBAL1     0x01
29 #define CDCE925_REG_Y1SPIPDIVH  0x02
30 #define CDCE925_REG_PDIVL       0x03
31 #define CDCE925_REG_XCSEL       0x05
32 /* PLL parameters start at 0x10, steps of 0x10 */
33 #define CDCE925_OFFSET_PLL      0x10
34 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
35 #define CDCE925_PLL_MUX_OUTPUTS 0x14
36 #define CDCE925_PLL_MULDIV      0x18
37
38 #define CDCE925_PLL_FREQUENCY_MIN        80000000ul
39 #define CDCE925_PLL_FREQUENCY_MAX       230000000ul
40 struct clk_cdce925_chip;
41
42 struct clk_cdce925_output {
43         struct clk_hw hw;
44         struct clk_cdce925_chip *chip;
45         u8 index;
46         u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
47 };
48 #define to_clk_cdce925_output(_hw) \
49         container_of(_hw, struct clk_cdce925_output, hw)
50
51 struct clk_cdce925_pll {
52         struct clk_hw hw;
53         struct clk_cdce925_chip *chip;
54         u8 index;
55         u16 m;   /* 1..511 */
56         u16 n;   /* 1..4095 */
57 };
58 #define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
59
60 struct clk_cdce925_chip {
61         struct regmap *regmap;
62         struct i2c_client *i2c_client;
63         struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
64         struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
65         struct clk *dt_clk[NUMBER_OF_OUTPUTS];
66         struct clk_onecell_data onecell;
67 };
68
69 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
70
71 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
72         u16 n, u16 m)
73 {
74         if ((!m || !n) || (m == n))
75                 return parent_rate; /* In bypass mode runs at same frequency */
76         return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
77 }
78
79 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
80                 unsigned long parent_rate)
81 {
82         /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
83         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
84
85         return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
86 }
87
88 static void cdce925_pll_find_rate(unsigned long rate,
89                 unsigned long parent_rate, u16 *n, u16 *m)
90 {
91         unsigned long un;
92         unsigned long um;
93         unsigned long g;
94
95         if (rate <= parent_rate) {
96                 /* Can always deliver parent_rate in bypass mode */
97                 rate = parent_rate;
98                 *n = 0;
99                 *m = 0;
100         } else {
101                 /* In PLL mode, need to apply min/max range */
102                 if (rate < CDCE925_PLL_FREQUENCY_MIN)
103                         rate = CDCE925_PLL_FREQUENCY_MIN;
104                 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
105                         rate = CDCE925_PLL_FREQUENCY_MAX;
106
107                 g = gcd(rate, parent_rate);
108                 um = parent_rate / g;
109                 un = rate / g;
110                 /* When outside hw range, reduce to fit (rounding errors) */
111                 while ((un > 4095) || (um > 511)) {
112                         un >>= 1;
113                         um >>= 1;
114                 }
115                 if (un == 0)
116                         un = 1;
117                 if (um == 0)
118                         um = 1;
119
120                 *n = un;
121                 *m = um;
122         }
123 }
124
125 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
126                 unsigned long *parent_rate)
127 {
128         u16 n, m;
129
130         cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
131         return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
132 }
133
134 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
135                 unsigned long parent_rate)
136 {
137         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
138
139         if (!rate || (rate == parent_rate)) {
140                 data->m = 0; /* Bypass mode */
141                 data->n = 0;
142                 return 0;
143         }
144
145         if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
146                 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
147                 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
148                 return -EINVAL;
149         }
150
151         if (rate < parent_rate) {
152                 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
153                         rate, parent_rate);
154                 return -EINVAL;
155         }
156
157         cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
158         return 0;
159 }
160
161
162 /* calculate p = max(0, 4 - int(log2 (n/m))) */
163 static u8 cdce925_pll_calc_p(u16 n, u16 m)
164 {
165         u8 p;
166         u16 r = n / m;
167
168         if (r >= 16)
169                 return 0;
170         p = 4;
171         while (r > 1) {
172                 r >>= 1;
173                 --p;
174         }
175         return p;
176 }
177
178 /* Returns VCO range bits for VCO1_0_RANGE */
179 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
180 {
181         struct clk *parent = clk_get_parent(hw->clk);
182         unsigned long rate = clk_get_rate(parent);
183
184         rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
185         if (rate >= 175000000)
186                 return 0x3;
187         if (rate >= 150000000)
188                 return 0x02;
189         if (rate >= 125000000)
190                 return 0x01;
191         return 0x00;
192 }
193
194 /* I2C clock, hence everything must happen in (un)prepare because this
195  * may sleep */
196 static int cdce925_pll_prepare(struct clk_hw *hw)
197 {
198         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
199         u16 n = data->n;
200         u16 m = data->m;
201         u16 r;
202         u8 q;
203         u8 p;
204         u16 nn;
205         u8 pll[4]; /* Bits are spread out over 4 byte registers */
206         u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
207         unsigned i;
208
209         if ((!m || !n) || (m == n)) {
210                 /* Set PLL mux to bypass mode, leave the rest as is */
211                 regmap_update_bits(data->chip->regmap,
212                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
213         } else {
214                 /* According to data sheet: */
215                 /* p = max(0, 4 - int(log2 (n/m))) */
216                 p = cdce925_pll_calc_p(n, m);
217                 /* nn = n * 2^p */
218                 nn = n * BIT(p);
219                 /* q = int(nn/m) */
220                 q = nn / m;
221                 if ((q < 16) || (1 > 64)) {
222                         pr_debug("%s invalid q=%d\n", __func__, q);
223                         return -EINVAL;
224                 }
225                 r = nn - (m*q);
226                 if (r > 511) {
227                         pr_debug("%s invalid r=%d\n", __func__, r);
228                         return -EINVAL;
229                 }
230                 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
231                         n, m, p, q, r);
232                 /* encode into register bits */
233                 pll[0] = n >> 4;
234                 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
235                 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
236                 pll[3] = ((q & 0x07) << 5) | (p << 2) |
237                                 cdce925_pll_calc_range_bits(hw, n, m);
238                 /* Write to registers */
239                 for (i = 0; i < ARRAY_SIZE(pll); ++i)
240                         regmap_write(data->chip->regmap,
241                                 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
242                 /* Enable PLL */
243                 regmap_update_bits(data->chip->regmap,
244                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
245         }
246
247         return 0;
248 }
249
250 static void cdce925_pll_unprepare(struct clk_hw *hw)
251 {
252         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
253         u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
254
255         regmap_update_bits(data->chip->regmap,
256                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
257 }
258
259 static const struct clk_ops cdce925_pll_ops = {
260         .prepare = cdce925_pll_prepare,
261         .unprepare = cdce925_pll_unprepare,
262         .recalc_rate = cdce925_pll_recalc_rate,
263         .round_rate = cdce925_pll_round_rate,
264         .set_rate = cdce925_pll_set_rate,
265 };
266
267
268 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
269 {
270         switch (data->index) {
271         case 0:
272                 regmap_update_bits(data->chip->regmap,
273                         CDCE925_REG_Y1SPIPDIVH,
274                         0x03, (pdiv >> 8) & 0x03);
275                 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
276                 break;
277         case 1:
278                 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
279                 break;
280         case 2:
281                 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
282                 break;
283         case 3:
284                 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
285                 break;
286         case 4:
287                 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
288                 break;
289         }
290 }
291
292 static void cdce925_clk_activate(struct clk_cdce925_output *data)
293 {
294         switch (data->index) {
295         case 0:
296                 regmap_update_bits(data->chip->regmap,
297                         CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
298                 break;
299         case 1:
300         case 2:
301                 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
302                 break;
303         case 3:
304         case 4:
305                 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
306                 break;
307         }
308 }
309
310 static int cdce925_clk_prepare(struct clk_hw *hw)
311 {
312         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
313
314         cdce925_clk_set_pdiv(data, data->pdiv);
315         cdce925_clk_activate(data);
316         return 0;
317 }
318
319 static void cdce925_clk_unprepare(struct clk_hw *hw)
320 {
321         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
322
323         /* Disable clock by setting divider to "0" */
324         cdce925_clk_set_pdiv(data, 0);
325 }
326
327 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
328                 unsigned long parent_rate)
329 {
330         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
331
332         if (data->pdiv)
333                 return parent_rate / data->pdiv;
334         return 0;
335 }
336
337 static u16 cdce925_calc_divider(unsigned long rate,
338                 unsigned long parent_rate)
339 {
340         unsigned long divider;
341
342         if (!rate)
343                 return 0;
344         if (rate >= parent_rate)
345                 return 1;
346
347         divider = DIV_ROUND_CLOSEST(parent_rate, rate);
348         if (divider > 0x7F)
349                 divider = 0x7F;
350
351         return (u16)divider;
352 }
353
354 static unsigned long cdce925_clk_best_parent_rate(
355         struct clk_hw *hw, unsigned long rate)
356 {
357         struct clk *pll = clk_get_parent(hw->clk);
358         struct clk *root = clk_get_parent(pll);
359         unsigned long root_rate = clk_get_rate(root);
360         unsigned long best_rate_error = rate;
361         u16 pdiv_min;
362         u16 pdiv_max;
363         u16 pdiv_best;
364         u16 pdiv_now;
365
366         if (root_rate % rate == 0)
367                 return root_rate; /* Don't need the PLL, use bypass */
368
369         pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
370         pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
371
372         if (pdiv_min > pdiv_max)
373                 return 0; /* No can do? */
374
375         pdiv_best = pdiv_min;
376         for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
377                 unsigned long target_rate = rate * pdiv_now;
378                 long pll_rate = clk_round_rate(pll, target_rate);
379                 unsigned long actual_rate;
380                 unsigned long rate_error;
381
382                 if (pll_rate <= 0)
383                         continue;
384                 actual_rate = pll_rate / pdiv_now;
385                 rate_error = abs((long)actual_rate - (long)rate);
386                 if (rate_error < best_rate_error) {
387                         pdiv_best = pdiv_now;
388                         best_rate_error = rate_error;
389                 }
390                 /* TODO: Consider PLL frequency based on smaller n/m values
391                  * and pick the better one if the error is equal */
392         }
393
394         return rate * pdiv_best;
395 }
396
397 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
398                 unsigned long *parent_rate)
399 {
400         unsigned long l_parent_rate = *parent_rate;
401         u16 divider = cdce925_calc_divider(rate, l_parent_rate);
402
403         if (l_parent_rate / divider != rate) {
404                 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
405                 divider = cdce925_calc_divider(rate, l_parent_rate);
406                 *parent_rate = l_parent_rate;
407         }
408
409         if (divider)
410                 return (long)(l_parent_rate / divider);
411         return 0;
412 }
413
414 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
415                 unsigned long parent_rate)
416 {
417         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
418
419         data->pdiv = cdce925_calc_divider(rate, parent_rate);
420
421         return 0;
422 }
423
424 static const struct clk_ops cdce925_clk_ops = {
425         .prepare = cdce925_clk_prepare,
426         .unprepare = cdce925_clk_unprepare,
427         .recalc_rate = cdce925_clk_recalc_rate,
428         .round_rate = cdce925_clk_round_rate,
429         .set_rate = cdce925_clk_set_rate,
430 };
431
432
433 static u16 cdce925_y1_calc_divider(unsigned long rate,
434                 unsigned long parent_rate)
435 {
436         unsigned long divider;
437
438         if (!rate)
439                 return 0;
440         if (rate >= parent_rate)
441                 return 1;
442
443         divider = DIV_ROUND_CLOSEST(parent_rate, rate);
444         if (divider > 0x3FF) /* Y1 has 10-bit divider */
445                 divider = 0x3FF;
446
447         return (u16)divider;
448 }
449
450 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
451                 unsigned long *parent_rate)
452 {
453         unsigned long l_parent_rate = *parent_rate;
454         u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
455
456         if (divider)
457                 return (long)(l_parent_rate / divider);
458         return 0;
459 }
460
461 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
462                 unsigned long parent_rate)
463 {
464         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
465
466         data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
467
468         return 0;
469 }
470
471 static const struct clk_ops cdce925_clk_y1_ops = {
472         .prepare = cdce925_clk_prepare,
473         .unprepare = cdce925_clk_unprepare,
474         .recalc_rate = cdce925_clk_recalc_rate,
475         .round_rate = cdce925_clk_y1_round_rate,
476         .set_rate = cdce925_clk_y1_set_rate,
477 };
478
479
480 static struct regmap_config cdce925_regmap_config = {
481         .name = "configuration0",
482         .reg_bits = 8,
483         .val_bits = 8,
484         .cache_type = REGCACHE_RBTREE,
485         .max_register = 0x2F,
486 };
487
488 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER      0x00
489 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER       0x80
490
491 static int cdce925_regmap_i2c_write(
492         void *context, const void *data, size_t count)
493 {
494         struct device *dev = context;
495         struct i2c_client *i2c = to_i2c_client(dev);
496         int ret;
497         u8 reg_data[2];
498
499         if (count != 2)
500                 return -ENOTSUPP;
501
502         /* First byte is command code */
503         reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
504         reg_data[1] = ((u8 *)data)[1];
505
506         dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
507                         reg_data[0], reg_data[1]);
508
509         ret = i2c_master_send(i2c, reg_data, count);
510         if (likely(ret == count))
511                 return 0;
512         else if (ret < 0)
513                 return ret;
514         else
515                 return -EIO;
516 }
517
518 static int cdce925_regmap_i2c_read(void *context,
519            const void *reg, size_t reg_size, void *val, size_t val_size)
520 {
521         struct device *dev = context;
522         struct i2c_client *i2c = to_i2c_client(dev);
523         struct i2c_msg xfer[2];
524         int ret;
525         u8 reg_data[2];
526
527         if (reg_size != 1)
528                 return -ENOTSUPP;
529
530         xfer[0].addr = i2c->addr;
531         xfer[0].flags = 0;
532         xfer[0].buf = reg_data;
533         if (val_size == 1) {
534                 reg_data[0] =
535                         CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
536                 xfer[0].len = 1;
537         } else {
538                 reg_data[0] =
539                         CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
540                 reg_data[1] = val_size;
541                 xfer[0].len = 2;
542         }
543
544         xfer[1].addr = i2c->addr;
545         xfer[1].flags = I2C_M_RD;
546         xfer[1].len = val_size;
547         xfer[1].buf = val;
548
549         ret = i2c_transfer(i2c->adapter, xfer, 2);
550         if (likely(ret == 2)) {
551                 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
552                                 reg_size, val_size, reg_data[0], *((u8 *)val));
553                 return 0;
554         } else if (ret < 0)
555                 return ret;
556         else
557                 return -EIO;
558 }
559
560 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
561  * just weird, so just use the single byte mode exclusively. */
562 static struct regmap_bus regmap_cdce925_bus = {
563         .write = cdce925_regmap_i2c_write,
564         .read = cdce925_regmap_i2c_read,
565 };
566
567 static int cdce925_probe(struct i2c_client *client,
568                 const struct i2c_device_id *id)
569 {
570         struct clk_cdce925_chip *data;
571         struct device_node *node = client->dev.of_node;
572         const char *parent_name;
573         const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
574         struct clk_init_data init;
575         struct clk *clk;
576         u32 value;
577         int i;
578         int err;
579         struct device_node *np_output;
580         char child_name[6];
581
582         dev_dbg(&client->dev, "%s\n", __func__);
583         data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
584         if (!data)
585                 return -ENOMEM;
586
587         data->i2c_client = client;
588         data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
589                         &client->dev, &cdce925_regmap_config);
590         if (IS_ERR(data->regmap)) {
591                 dev_err(&client->dev, "failed to allocate register map\n");
592                 return PTR_ERR(data->regmap);
593         }
594         i2c_set_clientdata(client, data);
595
596         parent_name = of_clk_get_parent_name(node, 0);
597         if (!parent_name) {
598                 dev_err(&client->dev, "missing parent clock\n");
599                 return -ENODEV;
600         }
601         dev_dbg(&client->dev, "parent is: %s\n", parent_name);
602
603         if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
604                 regmap_write(data->regmap,
605                         CDCE925_REG_XCSEL, (value << 3) & 0xF8);
606         /* PWDN bit */
607         regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
608
609         /* Set input source for Y1 to be the XTAL */
610         regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
611
612         init.ops = &cdce925_pll_ops;
613         init.flags = 0;
614         init.parent_names = &parent_name;
615         init.num_parents = parent_name ? 1 : 0;
616
617         /* Register PLL clocks */
618         for (i = 0; i < NUMBER_OF_PLLS; ++i) {
619                 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
620                         client->dev.of_node->name, i);
621                 init.name = pll_clk_name[i];
622                 data->pll[i].chip = data;
623                 data->pll[i].hw.init = &init;
624                 data->pll[i].index = i;
625                 clk = devm_clk_register(&client->dev, &data->pll[i].hw);
626                 if (IS_ERR(clk)) {
627                         dev_err(&client->dev, "Failed register PLL %d\n", i);
628                         err = PTR_ERR(clk);
629                         goto error;
630                 }
631                 sprintf(child_name, "PLL%d", i+1);
632                 np_output = of_get_child_by_name(node, child_name);
633                 if (!np_output)
634                         continue;
635                 if (!of_property_read_u32(np_output,
636                         "clock-frequency", &value)) {
637                         err = clk_set_rate(clk, value);
638                         if (err)
639                                 dev_err(&client->dev,
640                                         "unable to set PLL frequency %ud\n",
641                                         value);
642                 }
643                 if (!of_property_read_u32(np_output,
644                         "spread-spectrum", &value)) {
645                         u8 flag = of_property_read_bool(np_output,
646                                 "spread-spectrum-center") ? 0x80 : 0x00;
647                         regmap_update_bits(data->regmap,
648                                 0x16 + (i*CDCE925_OFFSET_PLL),
649                                 0x80, flag);
650                         regmap_update_bits(data->regmap,
651                                 0x12 + (i*CDCE925_OFFSET_PLL),
652                                 0x07, value & 0x07);
653                 }
654         }
655
656         /* Register output clock Y1 */
657         init.ops = &cdce925_clk_y1_ops;
658         init.flags = 0;
659         init.num_parents = 1;
660         init.parent_names = &parent_name; /* Mux Y1 to input */
661         init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
662         data->clk[0].chip = data;
663         data->clk[0].hw.init = &init;
664         data->clk[0].index = 0;
665         data->clk[0].pdiv = 1;
666         clk = devm_clk_register(&client->dev, &data->clk[0].hw);
667         kfree(init.name); /* clock framework made a copy of the name */
668         if (IS_ERR(clk)) {
669                 dev_err(&client->dev, "clock registration Y1 failed\n");
670                 err = PTR_ERR(clk);
671                 goto error;
672         }
673         data->dt_clk[0] = clk;
674
675         /* Register output clocks Y2 .. Y5*/
676         init.ops = &cdce925_clk_ops;
677         init.flags = CLK_SET_RATE_PARENT;
678         init.num_parents = 1;
679         for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
680                 init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
681                         client->dev.of_node->name, i+1);
682                 data->clk[i].chip = data;
683                 data->clk[i].hw.init = &init;
684                 data->clk[i].index = i;
685                 data->clk[i].pdiv = 1;
686                 switch (i) {
687                 case 1:
688                 case 2:
689                         /* Mux Y2/3 to PLL1 */
690                         init.parent_names = &pll_clk_name[0];
691                         break;
692                 case 3:
693                 case 4:
694                         /* Mux Y4/5 to PLL2 */
695                         init.parent_names = &pll_clk_name[1];
696                         break;
697                 }
698                 clk = devm_clk_register(&client->dev, &data->clk[i].hw);
699                 kfree(init.name); /* clock framework made a copy of the name */
700                 if (IS_ERR(clk)) {
701                         dev_err(&client->dev, "clock registration failed\n");
702                         err = PTR_ERR(clk);
703                         goto error;
704                 }
705                 data->dt_clk[i] = clk;
706         }
707
708         /* Register the output clocks */
709         data->onecell.clk_num = NUMBER_OF_OUTPUTS;
710         data->onecell.clks = data->dt_clk;
711         err = of_clk_add_provider(client->dev.of_node, of_clk_src_onecell_get,
712                 &data->onecell);
713         if (err)
714                 dev_err(&client->dev, "unable to add OF clock provider\n");
715
716         err = 0;
717
718 error:
719         for (i = 0; i < NUMBER_OF_PLLS; ++i)
720                 /* clock framework made a copy of the name */
721                 kfree(pll_clk_name[i]);
722
723         return err;
724 }
725
726 static const struct i2c_device_id cdce925_id[] = {
727         { "cdce925", 0 },
728         { }
729 };
730 MODULE_DEVICE_TABLE(i2c, cdce925_id);
731
732 static const struct of_device_id clk_cdce925_of_match[] = {
733         { .compatible = "ti,cdce925" },
734         { },
735 };
736 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
737
738 static struct i2c_driver cdce925_driver = {
739         .driver = {
740                 .name = "cdce925",
741                 .of_match_table = of_match_ptr(clk_cdce925_of_match),
742         },
743         .probe          = cdce925_probe,
744         .id_table       = cdce925_id,
745 };
746 module_i2c_driver(cdce925_driver);
747
748 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
749 MODULE_DESCRIPTION("cdce925 driver");
750 MODULE_LICENSE("GPL");