]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/clk/clk-stm32f4.c
Merge branch 'next/late' with mainline
[karo-tx-linux.git] / drivers / clk / clk-stm32f4.c
1 /*
2  * Author: Daniel Thompson <daniel.thompson@linaro.org>
3  *
4  * Inspired by clk-asm9260.c .
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/clk-provider.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/regmap.h>
29 #include <linux/mfd/syscon.h>
30
31 #define STM32F4_RCC_PLLCFGR             0x04
32 #define STM32F4_RCC_CFGR                0x08
33 #define STM32F4_RCC_AHB1ENR             0x30
34 #define STM32F4_RCC_AHB2ENR             0x34
35 #define STM32F4_RCC_AHB3ENR             0x38
36 #define STM32F4_RCC_APB1ENR             0x40
37 #define STM32F4_RCC_APB2ENR             0x44
38 #define STM32F4_RCC_BDCR                0x70
39 #define STM32F4_RCC_CSR                 0x74
40
41 struct stm32f4_gate_data {
42         u8      offset;
43         u8      bit_idx;
44         const char *name;
45         const char *parent_name;
46         unsigned long flags;
47 };
48
49 static const struct stm32f4_gate_data stm32f429_gates[] __initconst = {
50         { STM32F4_RCC_AHB1ENR,  0,      "gpioa",        "ahb_div" },
51         { STM32F4_RCC_AHB1ENR,  1,      "gpiob",        "ahb_div" },
52         { STM32F4_RCC_AHB1ENR,  2,      "gpioc",        "ahb_div" },
53         { STM32F4_RCC_AHB1ENR,  3,      "gpiod",        "ahb_div" },
54         { STM32F4_RCC_AHB1ENR,  4,      "gpioe",        "ahb_div" },
55         { STM32F4_RCC_AHB1ENR,  5,      "gpiof",        "ahb_div" },
56         { STM32F4_RCC_AHB1ENR,  6,      "gpiog",        "ahb_div" },
57         { STM32F4_RCC_AHB1ENR,  7,      "gpioh",        "ahb_div" },
58         { STM32F4_RCC_AHB1ENR,  8,      "gpioi",        "ahb_div" },
59         { STM32F4_RCC_AHB1ENR,  9,      "gpioj",        "ahb_div" },
60         { STM32F4_RCC_AHB1ENR, 10,      "gpiok",        "ahb_div" },
61         { STM32F4_RCC_AHB1ENR, 12,      "crc",          "ahb_div" },
62         { STM32F4_RCC_AHB1ENR, 18,      "bkpsra",       "ahb_div" },
63         { STM32F4_RCC_AHB1ENR, 20,      "ccmdatam",     "ahb_div" },
64         { STM32F4_RCC_AHB1ENR, 21,      "dma1",         "ahb_div" },
65         { STM32F4_RCC_AHB1ENR, 22,      "dma2",         "ahb_div" },
66         { STM32F4_RCC_AHB1ENR, 23,      "dma2d",        "ahb_div" },
67         { STM32F4_RCC_AHB1ENR, 25,      "ethmac",       "ahb_div" },
68         { STM32F4_RCC_AHB1ENR, 26,      "ethmactx",     "ahb_div" },
69         { STM32F4_RCC_AHB1ENR, 27,      "ethmacrx",     "ahb_div" },
70         { STM32F4_RCC_AHB1ENR, 28,      "ethmacptp",    "ahb_div" },
71         { STM32F4_RCC_AHB1ENR, 29,      "otghs",        "ahb_div" },
72         { STM32F4_RCC_AHB1ENR, 30,      "otghsulpi",    "ahb_div" },
73
74         { STM32F4_RCC_AHB2ENR,  0,      "dcmi",         "ahb_div" },
75         { STM32F4_RCC_AHB2ENR,  4,      "cryp",         "ahb_div" },
76         { STM32F4_RCC_AHB2ENR,  5,      "hash",         "ahb_div" },
77         { STM32F4_RCC_AHB2ENR,  6,      "rng",          "pll48" },
78         { STM32F4_RCC_AHB2ENR,  7,      "otgfs",        "pll48" },
79
80         { STM32F4_RCC_AHB3ENR,  0,      "fmc",          "ahb_div",
81                 CLK_IGNORE_UNUSED },
82
83         { STM32F4_RCC_APB1ENR,  0,      "tim2",         "apb1_mul" },
84         { STM32F4_RCC_APB1ENR,  1,      "tim3",         "apb1_mul" },
85         { STM32F4_RCC_APB1ENR,  2,      "tim4",         "apb1_mul" },
86         { STM32F4_RCC_APB1ENR,  3,      "tim5",         "apb1_mul" },
87         { STM32F4_RCC_APB1ENR,  4,      "tim6",         "apb1_mul" },
88         { STM32F4_RCC_APB1ENR,  5,      "tim7",         "apb1_mul" },
89         { STM32F4_RCC_APB1ENR,  6,      "tim12",        "apb1_mul" },
90         { STM32F4_RCC_APB1ENR,  7,      "tim13",        "apb1_mul" },
91         { STM32F4_RCC_APB1ENR,  8,      "tim14",        "apb1_mul" },
92         { STM32F4_RCC_APB1ENR, 11,      "wwdg",         "apb1_div" },
93         { STM32F4_RCC_APB1ENR, 14,      "spi2",         "apb1_div" },
94         { STM32F4_RCC_APB1ENR, 15,      "spi3",         "apb1_div" },
95         { STM32F4_RCC_APB1ENR, 17,      "uart2",        "apb1_div" },
96         { STM32F4_RCC_APB1ENR, 18,      "uart3",        "apb1_div" },
97         { STM32F4_RCC_APB1ENR, 19,      "uart4",        "apb1_div" },
98         { STM32F4_RCC_APB1ENR, 20,      "uart5",        "apb1_div" },
99         { STM32F4_RCC_APB1ENR, 21,      "i2c1",         "apb1_div" },
100         { STM32F4_RCC_APB1ENR, 22,      "i2c2",         "apb1_div" },
101         { STM32F4_RCC_APB1ENR, 23,      "i2c3",         "apb1_div" },
102         { STM32F4_RCC_APB1ENR, 25,      "can1",         "apb1_div" },
103         { STM32F4_RCC_APB1ENR, 26,      "can2",         "apb1_div" },
104         { STM32F4_RCC_APB1ENR, 28,      "pwr",          "apb1_div" },
105         { STM32F4_RCC_APB1ENR, 29,      "dac",          "apb1_div" },
106         { STM32F4_RCC_APB1ENR, 30,      "uart7",        "apb1_div" },
107         { STM32F4_RCC_APB1ENR, 31,      "uart8",        "apb1_div" },
108
109         { STM32F4_RCC_APB2ENR,  0,      "tim1",         "apb2_mul" },
110         { STM32F4_RCC_APB2ENR,  1,      "tim8",         "apb2_mul" },
111         { STM32F4_RCC_APB2ENR,  4,      "usart1",       "apb2_div" },
112         { STM32F4_RCC_APB2ENR,  5,      "usart6",       "apb2_div" },
113         { STM32F4_RCC_APB2ENR,  8,      "adc1",         "apb2_div" },
114         { STM32F4_RCC_APB2ENR,  9,      "adc2",         "apb2_div" },
115         { STM32F4_RCC_APB2ENR, 10,      "adc3",         "apb2_div" },
116         { STM32F4_RCC_APB2ENR, 11,      "sdio",         "pll48" },
117         { STM32F4_RCC_APB2ENR, 12,      "spi1",         "apb2_div" },
118         { STM32F4_RCC_APB2ENR, 13,      "spi4",         "apb2_div" },
119         { STM32F4_RCC_APB2ENR, 14,      "syscfg",       "apb2_div" },
120         { STM32F4_RCC_APB2ENR, 16,      "tim9",         "apb2_mul" },
121         { STM32F4_RCC_APB2ENR, 17,      "tim10",        "apb2_mul" },
122         { STM32F4_RCC_APB2ENR, 18,      "tim11",        "apb2_mul" },
123         { STM32F4_RCC_APB2ENR, 20,      "spi5",         "apb2_div" },
124         { STM32F4_RCC_APB2ENR, 21,      "spi6",         "apb2_div" },
125         { STM32F4_RCC_APB2ENR, 22,      "sai1",         "apb2_div" },
126         { STM32F4_RCC_APB2ENR, 26,      "ltdc",         "apb2_div" },
127 };
128
129 static const struct stm32f4_gate_data stm32f469_gates[] __initconst = {
130         { STM32F4_RCC_AHB1ENR,  0,      "gpioa",        "ahb_div" },
131         { STM32F4_RCC_AHB1ENR,  1,      "gpiob",        "ahb_div" },
132         { STM32F4_RCC_AHB1ENR,  2,      "gpioc",        "ahb_div" },
133         { STM32F4_RCC_AHB1ENR,  3,      "gpiod",        "ahb_div" },
134         { STM32F4_RCC_AHB1ENR,  4,      "gpioe",        "ahb_div" },
135         { STM32F4_RCC_AHB1ENR,  5,      "gpiof",        "ahb_div" },
136         { STM32F4_RCC_AHB1ENR,  6,      "gpiog",        "ahb_div" },
137         { STM32F4_RCC_AHB1ENR,  7,      "gpioh",        "ahb_div" },
138         { STM32F4_RCC_AHB1ENR,  8,      "gpioi",        "ahb_div" },
139         { STM32F4_RCC_AHB1ENR,  9,      "gpioj",        "ahb_div" },
140         { STM32F4_RCC_AHB1ENR, 10,      "gpiok",        "ahb_div" },
141         { STM32F4_RCC_AHB1ENR, 12,      "crc",          "ahb_div" },
142         { STM32F4_RCC_AHB1ENR, 18,      "bkpsra",       "ahb_div" },
143         { STM32F4_RCC_AHB1ENR, 20,      "ccmdatam",     "ahb_div" },
144         { STM32F4_RCC_AHB1ENR, 21,      "dma1",         "ahb_div" },
145         { STM32F4_RCC_AHB1ENR, 22,      "dma2",         "ahb_div" },
146         { STM32F4_RCC_AHB1ENR, 23,      "dma2d",        "ahb_div" },
147         { STM32F4_RCC_AHB1ENR, 25,      "ethmac",       "ahb_div" },
148         { STM32F4_RCC_AHB1ENR, 26,      "ethmactx",     "ahb_div" },
149         { STM32F4_RCC_AHB1ENR, 27,      "ethmacrx",     "ahb_div" },
150         { STM32F4_RCC_AHB1ENR, 28,      "ethmacptp",    "ahb_div" },
151         { STM32F4_RCC_AHB1ENR, 29,      "otghs",        "ahb_div" },
152         { STM32F4_RCC_AHB1ENR, 30,      "otghsulpi",    "ahb_div" },
153
154         { STM32F4_RCC_AHB2ENR,  0,      "dcmi",         "ahb_div" },
155         { STM32F4_RCC_AHB2ENR,  4,      "cryp",         "ahb_div" },
156         { STM32F4_RCC_AHB2ENR,  5,      "hash",         "ahb_div" },
157         { STM32F4_RCC_AHB2ENR,  6,      "rng",          "pll48" },
158         { STM32F4_RCC_AHB2ENR,  7,      "otgfs",        "pll48" },
159
160         { STM32F4_RCC_AHB3ENR,  0,      "fmc",          "ahb_div",
161                 CLK_IGNORE_UNUSED },
162         { STM32F4_RCC_AHB3ENR,  1,      "qspi",         "ahb_div",
163                 CLK_IGNORE_UNUSED },
164
165         { STM32F4_RCC_APB1ENR,  0,      "tim2",         "apb1_mul" },
166         { STM32F4_RCC_APB1ENR,  1,      "tim3",         "apb1_mul" },
167         { STM32F4_RCC_APB1ENR,  2,      "tim4",         "apb1_mul" },
168         { STM32F4_RCC_APB1ENR,  3,      "tim5",         "apb1_mul" },
169         { STM32F4_RCC_APB1ENR,  4,      "tim6",         "apb1_mul" },
170         { STM32F4_RCC_APB1ENR,  5,      "tim7",         "apb1_mul" },
171         { STM32F4_RCC_APB1ENR,  6,      "tim12",        "apb1_mul" },
172         { STM32F4_RCC_APB1ENR,  7,      "tim13",        "apb1_mul" },
173         { STM32F4_RCC_APB1ENR,  8,      "tim14",        "apb1_mul" },
174         { STM32F4_RCC_APB1ENR, 11,      "wwdg",         "apb1_div" },
175         { STM32F4_RCC_APB1ENR, 14,      "spi2",         "apb1_div" },
176         { STM32F4_RCC_APB1ENR, 15,      "spi3",         "apb1_div" },
177         { STM32F4_RCC_APB1ENR, 17,      "uart2",        "apb1_div" },
178         { STM32F4_RCC_APB1ENR, 18,      "uart3",        "apb1_div" },
179         { STM32F4_RCC_APB1ENR, 19,      "uart4",        "apb1_div" },
180         { STM32F4_RCC_APB1ENR, 20,      "uart5",        "apb1_div" },
181         { STM32F4_RCC_APB1ENR, 21,      "i2c1",         "apb1_div" },
182         { STM32F4_RCC_APB1ENR, 22,      "i2c2",         "apb1_div" },
183         { STM32F4_RCC_APB1ENR, 23,      "i2c3",         "apb1_div" },
184         { STM32F4_RCC_APB1ENR, 25,      "can1",         "apb1_div" },
185         { STM32F4_RCC_APB1ENR, 26,      "can2",         "apb1_div" },
186         { STM32F4_RCC_APB1ENR, 28,      "pwr",          "apb1_div" },
187         { STM32F4_RCC_APB1ENR, 29,      "dac",          "apb1_div" },
188         { STM32F4_RCC_APB1ENR, 30,      "uart7",        "apb1_div" },
189         { STM32F4_RCC_APB1ENR, 31,      "uart8",        "apb1_div" },
190
191         { STM32F4_RCC_APB2ENR,  0,      "tim1",         "apb2_mul" },
192         { STM32F4_RCC_APB2ENR,  1,      "tim8",         "apb2_mul" },
193         { STM32F4_RCC_APB2ENR,  4,      "usart1",       "apb2_div" },
194         { STM32F4_RCC_APB2ENR,  5,      "usart6",       "apb2_div" },
195         { STM32F4_RCC_APB2ENR,  8,      "adc1",         "apb2_div" },
196         { STM32F4_RCC_APB2ENR,  9,      "adc2",         "apb2_div" },
197         { STM32F4_RCC_APB2ENR, 10,      "adc3",         "apb2_div" },
198         { STM32F4_RCC_APB2ENR, 11,      "sdio",         "pll48" },
199         { STM32F4_RCC_APB2ENR, 12,      "spi1",         "apb2_div" },
200         { STM32F4_RCC_APB2ENR, 13,      "spi4",         "apb2_div" },
201         { STM32F4_RCC_APB2ENR, 14,      "syscfg",       "apb2_div" },
202         { STM32F4_RCC_APB2ENR, 16,      "tim9",         "apb2_mul" },
203         { STM32F4_RCC_APB2ENR, 17,      "tim10",        "apb2_mul" },
204         { STM32F4_RCC_APB2ENR, 18,      "tim11",        "apb2_mul" },
205         { STM32F4_RCC_APB2ENR, 20,      "spi5",         "apb2_div" },
206         { STM32F4_RCC_APB2ENR, 21,      "spi6",         "apb2_div" },
207         { STM32F4_RCC_APB2ENR, 22,      "sai1",         "apb2_div" },
208         { STM32F4_RCC_APB2ENR, 26,      "ltdc",         "apb2_div" },
209 };
210
211 enum { SYSTICK, FCLK, CLK_LSI, CLK_LSE, CLK_HSE_RTC, CLK_RTC, END_PRIMARY_CLK };
212
213 /*
214  * This bitmask tells us which bit offsets (0..192) on STM32F4[23]xxx
215  * have gate bits associated with them. Its combined hweight is 71.
216  */
217 #define MAX_GATE_MAP 3
218
219 static const u64 stm32f42xx_gate_map[MAX_GATE_MAP] = { 0x000000f17ef417ffull,
220                                                        0x0000000000000001ull,
221                                                        0x04777f33f6fec9ffull };
222
223 static const u64 stm32f46xx_gate_map[MAX_GATE_MAP] = { 0x000000f17ef417ffull,
224                                                        0x0000000000000003ull,
225                                                        0x0c777f33f6fec9ffull };
226
227 static const u64 *stm32f4_gate_map;
228
229 static struct clk_hw **clks;
230
231 static DEFINE_SPINLOCK(stm32f4_clk_lock);
232 static void __iomem *base;
233
234 static struct regmap *pdrm;
235
236 /*
237  * "Multiplier" device for APBx clocks.
238  *
239  * The APBx dividers are power-of-two dividers and, if *not* running in 1:1
240  * mode, they also tap out the one of the low order state bits to run the
241  * timers. ST datasheets represent this feature as a (conditional) clock
242  * multiplier.
243  */
244 struct clk_apb_mul {
245         struct clk_hw hw;
246         u8 bit_idx;
247 };
248
249 #define to_clk_apb_mul(_hw) container_of(_hw, struct clk_apb_mul, hw)
250
251 static unsigned long clk_apb_mul_recalc_rate(struct clk_hw *hw,
252                                              unsigned long parent_rate)
253 {
254         struct clk_apb_mul *am = to_clk_apb_mul(hw);
255
256         if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
257                 return parent_rate * 2;
258
259         return parent_rate;
260 }
261
262 static long clk_apb_mul_round_rate(struct clk_hw *hw, unsigned long rate,
263                                    unsigned long *prate)
264 {
265         struct clk_apb_mul *am = to_clk_apb_mul(hw);
266         unsigned long mult = 1;
267
268         if (readl(base + STM32F4_RCC_CFGR) & BIT(am->bit_idx))
269                 mult = 2;
270
271         if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
272                 unsigned long best_parent = rate / mult;
273
274                 *prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);
275         }
276
277         return *prate * mult;
278 }
279
280 static int clk_apb_mul_set_rate(struct clk_hw *hw, unsigned long rate,
281                                 unsigned long parent_rate)
282 {
283         /*
284          * We must report success but we can do so unconditionally because
285          * clk_apb_mul_round_rate returns values that ensure this call is a
286          * nop.
287          */
288
289         return 0;
290 }
291
292 static const struct clk_ops clk_apb_mul_factor_ops = {
293         .round_rate = clk_apb_mul_round_rate,
294         .set_rate = clk_apb_mul_set_rate,
295         .recalc_rate = clk_apb_mul_recalc_rate,
296 };
297
298 static struct clk *clk_register_apb_mul(struct device *dev, const char *name,
299                                         const char *parent_name,
300                                         unsigned long flags, u8 bit_idx)
301 {
302         struct clk_apb_mul *am;
303         struct clk_init_data init;
304         struct clk *clk;
305
306         am = kzalloc(sizeof(*am), GFP_KERNEL);
307         if (!am)
308                 return ERR_PTR(-ENOMEM);
309
310         am->bit_idx = bit_idx;
311         am->hw.init = &init;
312
313         init.name = name;
314         init.ops = &clk_apb_mul_factor_ops;
315         init.flags = flags;
316         init.parent_names = &parent_name;
317         init.num_parents = 1;
318
319         clk = clk_register(dev, &am->hw);
320
321         if (IS_ERR(clk))
322                 kfree(am);
323
324         return clk;
325 }
326
327 /*
328  * Decode current PLL state and (statically) model the state we inherit from
329  * the bootloader.
330  */
331 static void stm32f4_rcc_register_pll(const char *hse_clk, const char *hsi_clk)
332 {
333         unsigned long pllcfgr = readl(base + STM32F4_RCC_PLLCFGR);
334
335         unsigned long pllm   = pllcfgr & 0x3f;
336         unsigned long plln   = (pllcfgr >> 6) & 0x1ff;
337         unsigned long pllp   = BIT(((pllcfgr >> 16) & 3) + 1);
338         const char   *pllsrc = pllcfgr & BIT(22) ? hse_clk : hsi_clk;
339         unsigned long pllq   = (pllcfgr >> 24) & 0xf;
340
341         clk_register_fixed_factor(NULL, "vco", pllsrc, 0, plln, pllm);
342         clk_register_fixed_factor(NULL, "pll", "vco", 0, 1, pllp);
343         clk_register_fixed_factor(NULL, "pll48", "vco", 0, 1, pllq);
344 }
345
346 /*
347  * Converts the primary and secondary indices (as they appear in DT) to an
348  * offset into our struct clock array.
349  */
350 static int stm32f4_rcc_lookup_clk_idx(u8 primary, u8 secondary)
351 {
352         u64 table[MAX_GATE_MAP];
353
354         if (primary == 1) {
355                 if (WARN_ON(secondary >= END_PRIMARY_CLK))
356                         return -EINVAL;
357                 return secondary;
358         }
359
360         memcpy(table, stm32f4_gate_map, sizeof(table));
361
362         /* only bits set in table can be used as indices */
363         if (WARN_ON(secondary >= BITS_PER_BYTE * sizeof(table) ||
364                     0 == (table[BIT_ULL_WORD(secondary)] &
365                           BIT_ULL_MASK(secondary))))
366                 return -EINVAL;
367
368         /* mask out bits above our current index */
369         table[BIT_ULL_WORD(secondary)] &=
370             GENMASK_ULL(secondary % BITS_PER_LONG_LONG, 0);
371
372         return END_PRIMARY_CLK - 1 + hweight64(table[0]) +
373                (BIT_ULL_WORD(secondary) >= 1 ? hweight64(table[1]) : 0) +
374                (BIT_ULL_WORD(secondary) >= 2 ? hweight64(table[2]) : 0);
375 }
376
377 static struct clk_hw *
378 stm32f4_rcc_lookup_clk(struct of_phandle_args *clkspec, void *data)
379 {
380         int i = stm32f4_rcc_lookup_clk_idx(clkspec->args[0], clkspec->args[1]);
381
382         if (i < 0)
383                 return ERR_PTR(-EINVAL);
384
385         return clks[i];
386 }
387
388 #define to_rgclk(_rgate) container_of(_rgate, struct stm32_rgate, gate)
389
390 static inline void disable_power_domain_write_protection(void)
391 {
392         if (pdrm)
393                 regmap_update_bits(pdrm, 0x00, (1 << 8), (1 << 8));
394 }
395
396 static inline void enable_power_domain_write_protection(void)
397 {
398         if (pdrm)
399                 regmap_update_bits(pdrm, 0x00, (1 << 8), (0 << 8));
400 }
401
402 static inline void sofware_reset_backup_domain(void)
403 {
404         unsigned long val;
405
406         val = readl(base + STM32F4_RCC_BDCR);
407         writel(val | BIT(16), base + STM32F4_RCC_BDCR);
408         writel(val & ~BIT(16), base + STM32F4_RCC_BDCR);
409 }
410
411 struct stm32_rgate {
412         struct  clk_gate gate;
413         u8      bit_rdy_idx;
414 };
415
416 #define RTC_TIMEOUT 1000000
417
418 static int rgclk_enable(struct clk_hw *hw)
419 {
420         struct clk_gate *gate = to_clk_gate(hw);
421         struct stm32_rgate *rgate = to_rgclk(gate);
422         u32 reg;
423         int ret;
424
425         disable_power_domain_write_protection();
426
427         clk_gate_ops.enable(hw);
428
429         ret = readl_relaxed_poll_timeout_atomic(gate->reg, reg,
430                         reg & rgate->bit_rdy_idx, 1000, RTC_TIMEOUT);
431
432         enable_power_domain_write_protection();
433         return ret;
434 }
435
436 static void rgclk_disable(struct clk_hw *hw)
437 {
438         clk_gate_ops.disable(hw);
439 }
440
441 static int rgclk_is_enabled(struct clk_hw *hw)
442 {
443         return clk_gate_ops.is_enabled(hw);
444 }
445
446 static const struct clk_ops rgclk_ops = {
447         .enable = rgclk_enable,
448         .disable = rgclk_disable,
449         .is_enabled = rgclk_is_enabled,
450 };
451
452 static struct clk_hw *clk_register_rgate(struct device *dev, const char *name,
453                 const char *parent_name, unsigned long flags,
454                 void __iomem *reg, u8 bit_idx, u8 bit_rdy_idx,
455                 u8 clk_gate_flags, spinlock_t *lock)
456 {
457         struct stm32_rgate *rgate;
458         struct clk_init_data init = { NULL };
459         struct clk_hw *hw;
460         int ret;
461
462         rgate = kzalloc(sizeof(*rgate), GFP_KERNEL);
463         if (!rgate)
464                 return ERR_PTR(-ENOMEM);
465
466         init.name = name;
467         init.ops = &rgclk_ops;
468         init.flags = flags;
469         init.parent_names = &parent_name;
470         init.num_parents = 1;
471
472         rgate->bit_rdy_idx = bit_rdy_idx;
473
474         rgate->gate.lock = lock;
475         rgate->gate.reg = reg;
476         rgate->gate.bit_idx = bit_idx;
477         rgate->gate.hw.init = &init;
478
479         hw = &rgate->gate.hw;
480         ret = clk_hw_register(dev, hw);
481         if (ret) {
482                 kfree(rgate);
483                 hw = ERR_PTR(ret);
484         }
485
486         return hw;
487 }
488
489 static int cclk_gate_enable(struct clk_hw *hw)
490 {
491         int ret;
492
493         disable_power_domain_write_protection();
494
495         ret = clk_gate_ops.enable(hw);
496
497         enable_power_domain_write_protection();
498
499         return ret;
500 }
501
502 static void cclk_gate_disable(struct clk_hw *hw)
503 {
504         disable_power_domain_write_protection();
505
506         clk_gate_ops.disable(hw);
507
508         enable_power_domain_write_protection();
509 }
510
511 static int cclk_gate_is_enabled(struct clk_hw *hw)
512 {
513         return clk_gate_ops.is_enabled(hw);
514 }
515
516 static const struct clk_ops cclk_gate_ops = {
517         .enable         = cclk_gate_enable,
518         .disable        = cclk_gate_disable,
519         .is_enabled     = cclk_gate_is_enabled,
520 };
521
522 static u8 cclk_mux_get_parent(struct clk_hw *hw)
523 {
524         return clk_mux_ops.get_parent(hw);
525 }
526
527 static int cclk_mux_set_parent(struct clk_hw *hw, u8 index)
528 {
529         int ret;
530
531         disable_power_domain_write_protection();
532
533         sofware_reset_backup_domain();
534
535         ret = clk_mux_ops.set_parent(hw, index);
536
537         enable_power_domain_write_protection();
538
539         return ret;
540 }
541
542 static const struct clk_ops cclk_mux_ops = {
543         .get_parent = cclk_mux_get_parent,
544         .set_parent = cclk_mux_set_parent,
545 };
546
547 static struct clk_hw *stm32_register_cclk(struct device *dev, const char *name,
548                 const char * const *parent_names, int num_parents,
549                 void __iomem *reg, u8 bit_idx, u8 shift, unsigned long flags,
550                 spinlock_t *lock)
551 {
552         struct clk_hw *hw;
553         struct clk_gate *gate;
554         struct clk_mux *mux;
555
556         gate = kzalloc(sizeof(*gate), GFP_KERNEL);
557         if (!gate) {
558                 hw = ERR_PTR(-EINVAL);
559                 goto fail;
560         }
561
562         mux = kzalloc(sizeof(*mux), GFP_KERNEL);
563         if (!mux) {
564                 kfree(gate);
565                 hw = ERR_PTR(-EINVAL);
566                 goto fail;
567         }
568
569         gate->reg = reg;
570         gate->bit_idx = bit_idx;
571         gate->flags = 0;
572         gate->lock = lock;
573
574         mux->reg = reg;
575         mux->shift = shift;
576         mux->mask = 3;
577         mux->flags = 0;
578
579         hw = clk_hw_register_composite(dev, name, parent_names, num_parents,
580                         &mux->hw, &cclk_mux_ops,
581                         NULL, NULL,
582                         &gate->hw, &cclk_gate_ops,
583                         flags);
584
585         if (IS_ERR(hw)) {
586                 kfree(gate);
587                 kfree(mux);
588         }
589
590 fail:
591         return hw;
592 }
593
594 static const char *sys_parents[] __initdata =   { "hsi", NULL, "pll" };
595
596 static const struct clk_div_table ahb_div_table[] = {
597         { 0x0,   1 }, { 0x1,   1 }, { 0x2,   1 }, { 0x3,   1 },
598         { 0x4,   1 }, { 0x5,   1 }, { 0x6,   1 }, { 0x7,   1 },
599         { 0x8,   2 }, { 0x9,   4 }, { 0xa,   8 }, { 0xb,  16 },
600         { 0xc,  64 }, { 0xd, 128 }, { 0xe, 256 }, { 0xf, 512 },
601         { 0 },
602 };
603
604 static const struct clk_div_table apb_div_table[] = {
605         { 0,  1 }, { 0,  1 }, { 0,  1 }, { 0,  1 },
606         { 4,  2 }, { 5,  4 }, { 6,  8 }, { 7, 16 },
607         { 0 },
608 };
609
610 static const char *rtc_parents[4] = {
611         "no-clock", "lse", "lsi", "hse-rtc"
612 };
613
614 struct stm32f4_clk_data {
615         const struct stm32f4_gate_data *gates_data;
616         const u64 *gates_map;
617         int gates_num;
618 };
619
620 static const struct stm32f4_clk_data stm32f429_clk_data = {
621         .gates_data     = stm32f429_gates,
622         .gates_map      = stm32f42xx_gate_map,
623         .gates_num      = ARRAY_SIZE(stm32f429_gates),
624 };
625
626 static const struct stm32f4_clk_data stm32f469_clk_data = {
627         .gates_data     = stm32f469_gates,
628         .gates_map      = stm32f46xx_gate_map,
629         .gates_num      = ARRAY_SIZE(stm32f469_gates),
630 };
631
632 static const struct of_device_id stm32f4_of_match[] = {
633         {
634                 .compatible = "st,stm32f42xx-rcc",
635                 .data = &stm32f429_clk_data
636         },
637         {
638                 .compatible = "st,stm32f469-rcc",
639                 .data = &stm32f469_clk_data
640         },
641         {}
642 };
643
644 static void __init stm32f4_rcc_init(struct device_node *np)
645 {
646         const char *hse_clk;
647         int n;
648         const struct of_device_id *match;
649         const struct stm32f4_clk_data *data;
650
651         base = of_iomap(np, 0);
652         if (!base) {
653                 pr_err("%s: unable to map resource", np->name);
654                 return;
655         }
656
657         pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
658         if (IS_ERR(pdrm)) {
659                 pdrm = NULL;
660                 pr_warn("%s: Unable to get syscfg\n", __func__);
661         }
662
663         match = of_match_node(stm32f4_of_match, np);
664         if (WARN_ON(!match))
665                 return;
666
667         data = match->data;
668
669         clks = kmalloc_array(data->gates_num + END_PRIMARY_CLK,
670                         sizeof(*clks), GFP_KERNEL);
671         if (!clks)
672                 goto fail;
673
674         stm32f4_gate_map = data->gates_map;
675
676         hse_clk = of_clk_get_parent_name(np, 0);
677
678         clk_register_fixed_rate_with_accuracy(NULL, "hsi", NULL, 0,
679                         16000000, 160000);
680         stm32f4_rcc_register_pll(hse_clk, "hsi");
681
682         sys_parents[1] = hse_clk;
683         clk_register_mux_table(
684             NULL, "sys", sys_parents, ARRAY_SIZE(sys_parents), 0,
685             base + STM32F4_RCC_CFGR, 0, 3, 0, NULL, &stm32f4_clk_lock);
686
687         clk_register_divider_table(NULL, "ahb_div", "sys",
688                                    CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
689                                    4, 4, 0, ahb_div_table, &stm32f4_clk_lock);
690
691         clk_register_divider_table(NULL, "apb1_div", "ahb_div",
692                                    CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
693                                    10, 3, 0, apb_div_table, &stm32f4_clk_lock);
694         clk_register_apb_mul(NULL, "apb1_mul", "apb1_div",
695                              CLK_SET_RATE_PARENT, 12);
696
697         clk_register_divider_table(NULL, "apb2_div", "ahb_div",
698                                    CLK_SET_RATE_PARENT, base + STM32F4_RCC_CFGR,
699                                    13, 3, 0, apb_div_table, &stm32f4_clk_lock);
700         clk_register_apb_mul(NULL, "apb2_mul", "apb2_div",
701                              CLK_SET_RATE_PARENT, 15);
702
703         clks[SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick", "ahb_div",
704                                                   0, 1, 8);
705         clks[FCLK] = clk_hw_register_fixed_factor(NULL, "fclk", "ahb_div",
706                                                0, 1, 1);
707
708         for (n = 0; n < data->gates_num; n++) {
709                 const struct stm32f4_gate_data *gd;
710                 unsigned int secondary;
711                 int idx;
712
713                 gd = &data->gates_data[n];
714                 secondary = 8 * (gd->offset - STM32F4_RCC_AHB1ENR) +
715                         gd->bit_idx;
716                 idx = stm32f4_rcc_lookup_clk_idx(0, secondary);
717
718                 if (idx < 0)
719                         goto fail;
720
721                 clks[idx] = clk_hw_register_gate(
722                     NULL, gd->name, gd->parent_name, gd->flags,
723                     base + gd->offset, gd->bit_idx, 0, &stm32f4_clk_lock);
724
725                 if (IS_ERR(clks[idx])) {
726                         pr_err("%s: Unable to register leaf clock %s\n",
727                                np->full_name, gd->name);
728                         goto fail;
729                 }
730         }
731
732         clks[CLK_LSI] = clk_register_rgate(NULL, "lsi", "clk-lsi", 0,
733                         base + STM32F4_RCC_CSR, 0, 2, 0, &stm32f4_clk_lock);
734
735         if (IS_ERR(clks[CLK_LSI])) {
736                 pr_err("Unable to register lsi clock\n");
737                 goto fail;
738         }
739
740         clks[CLK_LSE] = clk_register_rgate(NULL, "lse", "clk-lse", 0,
741                         base + STM32F4_RCC_BDCR, 0, 2, 0, &stm32f4_clk_lock);
742
743         if (IS_ERR(clks[CLK_LSE])) {
744                 pr_err("Unable to register lse clock\n");
745                 goto fail;
746         }
747
748         clks[CLK_HSE_RTC] = clk_hw_register_divider(NULL, "hse-rtc", "clk-hse",
749                         0, base + STM32F4_RCC_CFGR, 16, 5, 0,
750                         &stm32f4_clk_lock);
751
752         if (IS_ERR(clks[CLK_HSE_RTC])) {
753                 pr_err("Unable to register hse-rtc clock\n");
754                 goto fail;
755         }
756
757         clks[CLK_RTC] = stm32_register_cclk(NULL, "rtc", rtc_parents, 4,
758                         base + STM32F4_RCC_BDCR, 15, 8, 0, &stm32f4_clk_lock);
759
760         if (IS_ERR(clks[CLK_RTC])) {
761                 pr_err("Unable to register rtc clock\n");
762                 goto fail;
763         }
764
765         of_clk_add_hw_provider(np, stm32f4_rcc_lookup_clk, NULL);
766         return;
767 fail:
768         kfree(clks);
769         iounmap(base);
770 }
771 CLK_OF_DECLARE_DRIVER(stm32f42xx_rcc, "st,stm32f42xx-rcc", stm32f4_rcc_init);
772 CLK_OF_DECLARE_DRIVER(stm32f46xx_rcc, "st,stm32f469-rcc", stm32f4_rcc_init);