]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/clocksource/arm_arch_timer.c
Merge remote-tracking branch 'ubifs/linux-next'
[karo-tx-linux.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
26
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
29
30 #include <clocksource/arm_arch_timer.h>
31
32 #define CNTTIDR         0x08
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
34
35 #define CNTVCT_LO       0x08
36 #define CNTVCT_HI       0x0c
37 #define CNTFRQ          0x10
38 #define CNTP_TVAL       0x28
39 #define CNTP_CTL        0x2c
40 #define CNTV_TVAL       0x38
41 #define CNTV_CTL        0x3c
42
43 #define ARCH_CP15_TIMER BIT(0)
44 #define ARCH_MEM_TIMER  BIT(1)
45 static unsigned arch_timers_present __initdata;
46
47 static void __iomem *arch_counter_base;
48
49 struct arch_timer {
50         void __iomem *base;
51         struct clock_event_device evt;
52 };
53
54 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
55
56 static u32 arch_timer_rate;
57
58 enum ppi_nr {
59         PHYS_SECURE_PPI,
60         PHYS_NONSECURE_PPI,
61         VIRT_PPI,
62         HYP_PPI,
63         MAX_TIMER_PPI
64 };
65
66 static int arch_timer_ppi[MAX_TIMER_PPI];
67
68 static struct clock_event_device __percpu *arch_timer_evt;
69
70 static bool arch_timer_use_virtual = true;
71 static bool arch_timer_c3stop;
72 static bool arch_timer_mem_use_virtual;
73
74 /*
75  * Architected system timer support.
76  */
77
78 static __always_inline
79 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
80                           struct clock_event_device *clk)
81 {
82         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
83                 struct arch_timer *timer = to_arch_timer(clk);
84                 switch (reg) {
85                 case ARCH_TIMER_REG_CTRL:
86                         writel_relaxed(val, timer->base + CNTP_CTL);
87                         break;
88                 case ARCH_TIMER_REG_TVAL:
89                         writel_relaxed(val, timer->base + CNTP_TVAL);
90                         break;
91                 }
92         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
93                 struct arch_timer *timer = to_arch_timer(clk);
94                 switch (reg) {
95                 case ARCH_TIMER_REG_CTRL:
96                         writel_relaxed(val, timer->base + CNTV_CTL);
97                         break;
98                 case ARCH_TIMER_REG_TVAL:
99                         writel_relaxed(val, timer->base + CNTV_TVAL);
100                         break;
101                 }
102         } else {
103                 arch_timer_reg_write_cp15(access, reg, val);
104         }
105 }
106
107 static __always_inline
108 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
109                         struct clock_event_device *clk)
110 {
111         u32 val;
112
113         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
114                 struct arch_timer *timer = to_arch_timer(clk);
115                 switch (reg) {
116                 case ARCH_TIMER_REG_CTRL:
117                         val = readl_relaxed(timer->base + CNTP_CTL);
118                         break;
119                 case ARCH_TIMER_REG_TVAL:
120                         val = readl_relaxed(timer->base + CNTP_TVAL);
121                         break;
122                 }
123         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
124                 struct arch_timer *timer = to_arch_timer(clk);
125                 switch (reg) {
126                 case ARCH_TIMER_REG_CTRL:
127                         val = readl_relaxed(timer->base + CNTV_CTL);
128                         break;
129                 case ARCH_TIMER_REG_TVAL:
130                         val = readl_relaxed(timer->base + CNTV_TVAL);
131                         break;
132                 }
133         } else {
134                 val = arch_timer_reg_read_cp15(access, reg);
135         }
136
137         return val;
138 }
139
140 static __always_inline irqreturn_t timer_handler(const int access,
141                                         struct clock_event_device *evt)
142 {
143         unsigned long ctrl;
144
145         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
146         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
147                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
148                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
149                 evt->event_handler(evt);
150                 return IRQ_HANDLED;
151         }
152
153         return IRQ_NONE;
154 }
155
156 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
157 {
158         struct clock_event_device *evt = dev_id;
159
160         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
161 }
162
163 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
164 {
165         struct clock_event_device *evt = dev_id;
166
167         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
168 }
169
170 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
171 {
172         struct clock_event_device *evt = dev_id;
173
174         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
175 }
176
177 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
178 {
179         struct clock_event_device *evt = dev_id;
180
181         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
182 }
183
184 static __always_inline void timer_set_mode(const int access, int mode,
185                                   struct clock_event_device *clk)
186 {
187         unsigned long ctrl;
188         switch (mode) {
189         case CLOCK_EVT_MODE_UNUSED:
190         case CLOCK_EVT_MODE_SHUTDOWN:
191                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
192                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
193                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
194                 break;
195         default:
196                 break;
197         }
198 }
199
200 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
201                                      struct clock_event_device *clk)
202 {
203         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
204 }
205
206 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
207                                      struct clock_event_device *clk)
208 {
209         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
210 }
211
212 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
213                                          struct clock_event_device *clk)
214 {
215         timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
216 }
217
218 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
219                                          struct clock_event_device *clk)
220 {
221         timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
222 }
223
224 static __always_inline void set_next_event(const int access, unsigned long evt,
225                                            struct clock_event_device *clk)
226 {
227         unsigned long ctrl;
228         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
229         ctrl |= ARCH_TIMER_CTRL_ENABLE;
230         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
231         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
232         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
233 }
234
235 static int arch_timer_set_next_event_virt(unsigned long evt,
236                                           struct clock_event_device *clk)
237 {
238         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
239         return 0;
240 }
241
242 static int arch_timer_set_next_event_phys(unsigned long evt,
243                                           struct clock_event_device *clk)
244 {
245         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
246         return 0;
247 }
248
249 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
250                                               struct clock_event_device *clk)
251 {
252         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
253         return 0;
254 }
255
256 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
257                                               struct clock_event_device *clk)
258 {
259         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
260         return 0;
261 }
262
263 static void __arch_timer_setup(unsigned type,
264                                struct clock_event_device *clk)
265 {
266         clk->features = CLOCK_EVT_FEAT_ONESHOT;
267
268         if (type == ARCH_CP15_TIMER) {
269                 if (arch_timer_c3stop)
270                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
271                 clk->name = "arch_sys_timer";
272                 clk->rating = 450;
273                 clk->cpumask = cpumask_of(smp_processor_id());
274                 if (arch_timer_use_virtual) {
275                         clk->irq = arch_timer_ppi[VIRT_PPI];
276                         clk->set_mode = arch_timer_set_mode_virt;
277                         clk->set_next_event = arch_timer_set_next_event_virt;
278                 } else {
279                         clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
280                         clk->set_mode = arch_timer_set_mode_phys;
281                         clk->set_next_event = arch_timer_set_next_event_phys;
282                 }
283         } else {
284                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
285                 clk->name = "arch_mem_timer";
286                 clk->rating = 400;
287                 clk->cpumask = cpu_all_mask;
288                 if (arch_timer_mem_use_virtual) {
289                         clk->set_mode = arch_timer_set_mode_virt_mem;
290                         clk->set_next_event =
291                                 arch_timer_set_next_event_virt_mem;
292                 } else {
293                         clk->set_mode = arch_timer_set_mode_phys_mem;
294                         clk->set_next_event =
295                                 arch_timer_set_next_event_phys_mem;
296                 }
297         }
298
299         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
300
301         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
302 }
303
304 static void arch_timer_evtstrm_enable(int divider)
305 {
306         u32 cntkctl = arch_timer_get_cntkctl();
307
308         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
309         /* Set the divider and enable virtual event stream */
310         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
311                         | ARCH_TIMER_VIRT_EVT_EN;
312         arch_timer_set_cntkctl(cntkctl);
313         elf_hwcap |= HWCAP_EVTSTRM;
314 #ifdef CONFIG_COMPAT
315         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
316 #endif
317 }
318
319 static void arch_timer_configure_evtstream(void)
320 {
321         int evt_stream_div, pos;
322
323         /* Find the closest power of two to the divisor */
324         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
325         pos = fls(evt_stream_div);
326         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
327                 pos--;
328         /* enable event stream */
329         arch_timer_evtstrm_enable(min(pos, 15));
330 }
331
332 static void arch_counter_set_user_access(void)
333 {
334         u32 cntkctl = arch_timer_get_cntkctl();
335
336         /* Disable user access to the timers and the physical counter */
337         /* Also disable virtual event stream */
338         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
339                         | ARCH_TIMER_USR_VT_ACCESS_EN
340                         | ARCH_TIMER_VIRT_EVT_EN
341                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
342
343         /* Enable user access to the virtual counter */
344         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
345
346         arch_timer_set_cntkctl(cntkctl);
347 }
348
349 static int arch_timer_setup(struct clock_event_device *clk)
350 {
351         __arch_timer_setup(ARCH_CP15_TIMER, clk);
352
353         if (arch_timer_use_virtual)
354                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
355         else {
356                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
357                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
358                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
359         }
360
361         arch_counter_set_user_access();
362         if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
363                 arch_timer_configure_evtstream();
364
365         return 0;
366 }
367
368 static void
369 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
370 {
371         /* Who has more than one independent system counter? */
372         if (arch_timer_rate)
373                 return;
374
375         /*
376          * Try to determine the frequency from the device tree or CNTFRQ,
377          * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
378          */
379         if (!acpi_disabled ||
380             of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
381                 if (cntbase)
382                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
383                 else
384                         arch_timer_rate = arch_timer_get_cntfrq();
385         }
386
387         /* Check the timer frequency. */
388         if (arch_timer_rate == 0)
389                 pr_warn("Architected timer frequency not available\n");
390 }
391
392 static void arch_timer_banner(unsigned type)
393 {
394         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
395                      type & ARCH_CP15_TIMER ? "cp15" : "",
396                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
397                      type & ARCH_MEM_TIMER ? "mmio" : "",
398                      (unsigned long)arch_timer_rate / 1000000,
399                      (unsigned long)(arch_timer_rate / 10000) % 100,
400                      type & ARCH_CP15_TIMER ?
401                         arch_timer_use_virtual ? "virt" : "phys" :
402                         "",
403                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
404                      type & ARCH_MEM_TIMER ?
405                         arch_timer_mem_use_virtual ? "virt" : "phys" :
406                         "");
407 }
408
409 u32 arch_timer_get_rate(void)
410 {
411         return arch_timer_rate;
412 }
413
414 static u64 arch_counter_get_cntvct_mem(void)
415 {
416         u32 vct_lo, vct_hi, tmp_hi;
417
418         do {
419                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
420                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
421                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
422         } while (vct_hi != tmp_hi);
423
424         return ((u64) vct_hi << 32) | vct_lo;
425 }
426
427 /*
428  * Default to cp15 based access because arm64 uses this function for
429  * sched_clock() before DT is probed and the cp15 method is guaranteed
430  * to exist on arm64. arm doesn't use this before DT is probed so even
431  * if we don't have the cp15 accessors we won't have a problem.
432  */
433 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
434
435 static cycle_t arch_counter_read(struct clocksource *cs)
436 {
437         return arch_timer_read_counter();
438 }
439
440 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
441 {
442         return arch_timer_read_counter();
443 }
444
445 static struct clocksource clocksource_counter = {
446         .name   = "arch_sys_counter",
447         .rating = 400,
448         .read   = arch_counter_read,
449         .mask   = CLOCKSOURCE_MASK(56),
450         .flags  = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
451 };
452
453 static struct cyclecounter cyclecounter = {
454         .read   = arch_counter_read_cc,
455         .mask   = CLOCKSOURCE_MASK(56),
456 };
457
458 static struct timecounter timecounter;
459
460 struct timecounter *arch_timer_get_timecounter(void)
461 {
462         return &timecounter;
463 }
464
465 static void __init arch_counter_register(unsigned type)
466 {
467         u64 start_count;
468
469         /* Register the CP15 based counter if we have one */
470         if (type & ARCH_CP15_TIMER) {
471                 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
472                         arch_timer_read_counter = arch_counter_get_cntvct;
473                 else
474                         arch_timer_read_counter = arch_counter_get_cntpct;
475         } else {
476                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
477
478                 /* If the clocksource name is "arch_sys_counter" the
479                  * VDSO will attempt to read the CP15-based counter.
480                  * Ensure this does not happen when CP15-based
481                  * counter is not available.
482                  */
483                 clocksource_counter.name = "arch_mem_counter";
484         }
485
486         start_count = arch_timer_read_counter();
487         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
488         cyclecounter.mult = clocksource_counter.mult;
489         cyclecounter.shift = clocksource_counter.shift;
490         timecounter_init(&timecounter, &cyclecounter, start_count);
491
492         /* 56 bits minimum, so we assume worst case rollover */
493         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
494 }
495
496 static void arch_timer_stop(struct clock_event_device *clk)
497 {
498         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
499                  clk->irq, smp_processor_id());
500
501         if (arch_timer_use_virtual)
502                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
503         else {
504                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
505                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
506                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
507         }
508
509         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
510 }
511
512 static int arch_timer_cpu_notify(struct notifier_block *self,
513                                            unsigned long action, void *hcpu)
514 {
515         /*
516          * Grab cpu pointer in each case to avoid spurious
517          * preemptible warnings
518          */
519         switch (action & ~CPU_TASKS_FROZEN) {
520         case CPU_STARTING:
521                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
522                 break;
523         case CPU_DYING:
524                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
525                 break;
526         }
527
528         return NOTIFY_OK;
529 }
530
531 static struct notifier_block arch_timer_cpu_nb = {
532         .notifier_call = arch_timer_cpu_notify,
533 };
534
535 #ifdef CONFIG_CPU_PM
536 static unsigned int saved_cntkctl;
537 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
538                                     unsigned long action, void *hcpu)
539 {
540         if (action == CPU_PM_ENTER)
541                 saved_cntkctl = arch_timer_get_cntkctl();
542         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
543                 arch_timer_set_cntkctl(saved_cntkctl);
544         return NOTIFY_OK;
545 }
546
547 static struct notifier_block arch_timer_cpu_pm_notifier = {
548         .notifier_call = arch_timer_cpu_pm_notify,
549 };
550
551 static int __init arch_timer_cpu_pm_init(void)
552 {
553         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
554 }
555 #else
556 static int __init arch_timer_cpu_pm_init(void)
557 {
558         return 0;
559 }
560 #endif
561
562 static int __init arch_timer_register(void)
563 {
564         int err;
565         int ppi;
566
567         arch_timer_evt = alloc_percpu(struct clock_event_device);
568         if (!arch_timer_evt) {
569                 err = -ENOMEM;
570                 goto out;
571         }
572
573         if (arch_timer_use_virtual) {
574                 ppi = arch_timer_ppi[VIRT_PPI];
575                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
576                                          "arch_timer", arch_timer_evt);
577         } else {
578                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
579                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
580                                          "arch_timer", arch_timer_evt);
581                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
582                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
583                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
584                                                  "arch_timer", arch_timer_evt);
585                         if (err)
586                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
587                                                 arch_timer_evt);
588                 }
589         }
590
591         if (err) {
592                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
593                        ppi, err);
594                 goto out_free;
595         }
596
597         err = register_cpu_notifier(&arch_timer_cpu_nb);
598         if (err)
599                 goto out_free_irq;
600
601         err = arch_timer_cpu_pm_init();
602         if (err)
603                 goto out_unreg_notify;
604
605         /* Immediately configure the timer on the boot CPU */
606         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
607
608         return 0;
609
610 out_unreg_notify:
611         unregister_cpu_notifier(&arch_timer_cpu_nb);
612 out_free_irq:
613         if (arch_timer_use_virtual)
614                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
615         else {
616                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
617                                 arch_timer_evt);
618                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
619                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
620                                         arch_timer_evt);
621         }
622
623 out_free:
624         free_percpu(arch_timer_evt);
625 out:
626         return err;
627 }
628
629 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
630 {
631         int ret;
632         irq_handler_t func;
633         struct arch_timer *t;
634
635         t = kzalloc(sizeof(*t), GFP_KERNEL);
636         if (!t)
637                 return -ENOMEM;
638
639         t->base = base;
640         t->evt.irq = irq;
641         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
642
643         if (arch_timer_mem_use_virtual)
644                 func = arch_timer_handler_virt_mem;
645         else
646                 func = arch_timer_handler_phys_mem;
647
648         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
649         if (ret) {
650                 pr_err("arch_timer: Failed to request mem timer irq\n");
651                 kfree(t);
652         }
653
654         return ret;
655 }
656
657 static const struct of_device_id arch_timer_of_match[] __initconst = {
658         { .compatible   = "arm,armv7-timer",    },
659         { .compatible   = "arm,armv8-timer",    },
660         {},
661 };
662
663 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
664         { .compatible   = "arm,armv7-timer-mem", },
665         {},
666 };
667
668 static bool __init
669 arch_timer_probed(int type, const struct of_device_id *matches)
670 {
671         struct device_node *dn;
672         bool probed = true;
673
674         dn = of_find_matching_node(NULL, matches);
675         if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
676                 probed = false;
677         of_node_put(dn);
678
679         return probed;
680 }
681
682 static void __init arch_timer_common_init(void)
683 {
684         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
685
686         /* Wait until both nodes are probed if we have two timers */
687         if ((arch_timers_present & mask) != mask) {
688                 if (!arch_timer_probed(ARCH_MEM_TIMER, arch_timer_mem_of_match))
689                         return;
690                 if (!arch_timer_probed(ARCH_CP15_TIMER, arch_timer_of_match))
691                         return;
692         }
693
694         arch_timer_banner(arch_timers_present);
695         arch_counter_register(arch_timers_present);
696         arch_timer_arch_init();
697 }
698
699 static void __init arch_timer_init(void)
700 {
701         /*
702          * If HYP mode is available, we know that the physical timer
703          * has been configured to be accessible from PL1. Use it, so
704          * that a guest can use the virtual timer instead.
705          *
706          * If no interrupt provided for virtual timer, we'll have to
707          * stick to the physical timer. It'd better be accessible...
708          */
709         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
710                 arch_timer_use_virtual = false;
711
712                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
713                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
714                         pr_warn("arch_timer: No interrupt available, giving up\n");
715                         return;
716                 }
717         }
718
719         arch_timer_register();
720         arch_timer_common_init();
721 }
722
723 static void __init arch_timer_of_init(struct device_node *np)
724 {
725         int i;
726
727         if (arch_timers_present & ARCH_CP15_TIMER) {
728                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
729                 return;
730         }
731
732         arch_timers_present |= ARCH_CP15_TIMER;
733         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
734                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
735
736         arch_timer_detect_rate(NULL, np);
737
738         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
739
740         /*
741          * If we cannot rely on firmware initializing the timer registers then
742          * we should use the physical timers instead.
743          */
744         if (IS_ENABLED(CONFIG_ARM) &&
745             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
746                         arch_timer_use_virtual = false;
747
748         arch_timer_init();
749 }
750 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
751 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
752
753 static void __init arch_timer_mem_init(struct device_node *np)
754 {
755         struct device_node *frame, *best_frame = NULL;
756         void __iomem *cntctlbase, *base;
757         unsigned int irq;
758         u32 cnttidr;
759
760         arch_timers_present |= ARCH_MEM_TIMER;
761         cntctlbase = of_iomap(np, 0);
762         if (!cntctlbase) {
763                 pr_err("arch_timer: Can't find CNTCTLBase\n");
764                 return;
765         }
766
767         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
768         iounmap(cntctlbase);
769
770         /*
771          * Try to find a virtual capable frame. Otherwise fall back to a
772          * physical capable frame.
773          */
774         for_each_available_child_of_node(np, frame) {
775                 int n;
776
777                 if (of_property_read_u32(frame, "frame-number", &n)) {
778                         pr_err("arch_timer: Missing frame-number\n");
779                         of_node_put(best_frame);
780                         of_node_put(frame);
781                         return;
782                 }
783
784                 if (cnttidr & CNTTIDR_VIRT(n)) {
785                         of_node_put(best_frame);
786                         best_frame = frame;
787                         arch_timer_mem_use_virtual = true;
788                         break;
789                 }
790                 of_node_put(best_frame);
791                 best_frame = of_node_get(frame);
792         }
793
794         base = arch_counter_base = of_iomap(best_frame, 0);
795         if (!base) {
796                 pr_err("arch_timer: Can't map frame's registers\n");
797                 of_node_put(best_frame);
798                 return;
799         }
800
801         if (arch_timer_mem_use_virtual)
802                 irq = irq_of_parse_and_map(best_frame, 1);
803         else
804                 irq = irq_of_parse_and_map(best_frame, 0);
805         of_node_put(best_frame);
806         if (!irq) {
807                 pr_err("arch_timer: Frame missing %s irq",
808                        arch_timer_mem_use_virtual ? "virt" : "phys");
809                 return;
810         }
811
812         arch_timer_detect_rate(base, np);
813         arch_timer_mem_register(base, irq);
814         arch_timer_common_init();
815 }
816 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
817                        arch_timer_mem_init);
818
819 #ifdef CONFIG_ACPI
820 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
821 {
822         int trigger, polarity;
823
824         if (!interrupt)
825                 return 0;
826
827         trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
828                         : ACPI_LEVEL_SENSITIVE;
829
830         polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
831                         : ACPI_ACTIVE_HIGH;
832
833         return acpi_register_gsi(NULL, interrupt, trigger, polarity);
834 }
835
836 /* Initialize per-processor generic timer */
837 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
838 {
839         struct acpi_table_gtdt *gtdt;
840
841         if (arch_timers_present & ARCH_CP15_TIMER) {
842                 pr_warn("arch_timer: already initialized, skipping\n");
843                 return -EINVAL;
844         }
845
846         gtdt = container_of(table, struct acpi_table_gtdt, header);
847
848         arch_timers_present |= ARCH_CP15_TIMER;
849
850         arch_timer_ppi[PHYS_SECURE_PPI] =
851                 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
852                 gtdt->secure_el1_flags);
853
854         arch_timer_ppi[PHYS_NONSECURE_PPI] =
855                 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
856                 gtdt->non_secure_el1_flags);
857
858         arch_timer_ppi[VIRT_PPI] =
859                 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
860                 gtdt->virtual_timer_flags);
861
862         arch_timer_ppi[HYP_PPI] =
863                 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
864                 gtdt->non_secure_el2_flags);
865
866         /* Get the frequency from CNTFRQ */
867         arch_timer_detect_rate(NULL, NULL);
868
869         /* Always-on capability */
870         arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
871
872         arch_timer_init();
873         return 0;
874 }
875
876 /* Initialize all the generic timers presented in GTDT */
877 void __init acpi_generic_timer_init(void)
878 {
879         if (acpi_disabled)
880                 return;
881
882         acpi_table_parse(ACPI_SIG_GTDT, arch_timer_acpi_init);
883 }
884 #endif