]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/acpi-cpufreq.c
staging: gdm7240: fix error handling of probe()
[karo-tx-linux.git] / drivers / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42
43 #include <acpi/processor.h>
44
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48 #include "mperf.h"
49
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53
54 #define PFX "acpi-cpufreq: "
55
56 enum {
57         UNDEFINED_CAPABLE = 0,
58         SYSTEM_INTEL_MSR_CAPABLE,
59         SYSTEM_AMD_MSR_CAPABLE,
60         SYSTEM_IO_CAPABLE,
61 };
62
63 #define INTEL_MSR_RANGE         (0xffff)
64 #define AMD_MSR_RANGE           (0x7)
65
66 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
67
68 struct acpi_cpufreq_data {
69         struct acpi_processor_performance *acpi_data;
70         struct cpufreq_frequency_table *freq_table;
71         unsigned int resume;
72         unsigned int cpu_feature;
73         cpumask_var_t freqdomain_cpus;
74 };
75
76 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
77
78 /* acpi_perf_data is a pointer to percpu data. */
79 static struct acpi_processor_performance __percpu *acpi_perf_data;
80
81 static struct cpufreq_driver acpi_cpufreq_driver;
82
83 static unsigned int acpi_pstate_strict;
84 static bool boost_enabled, boost_supported;
85 static struct msr __percpu *msrs;
86
87 static bool boost_state(unsigned int cpu)
88 {
89         u32 lo, hi;
90         u64 msr;
91
92         switch (boot_cpu_data.x86_vendor) {
93         case X86_VENDOR_INTEL:
94                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
95                 msr = lo | ((u64)hi << 32);
96                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
97         case X86_VENDOR_AMD:
98                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
99                 msr = lo | ((u64)hi << 32);
100                 return !(msr & MSR_K7_HWCR_CPB_DIS);
101         }
102         return false;
103 }
104
105 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
106 {
107         u32 cpu;
108         u32 msr_addr;
109         u64 msr_mask;
110
111         switch (boot_cpu_data.x86_vendor) {
112         case X86_VENDOR_INTEL:
113                 msr_addr = MSR_IA32_MISC_ENABLE;
114                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
115                 break;
116         case X86_VENDOR_AMD:
117                 msr_addr = MSR_K7_HWCR;
118                 msr_mask = MSR_K7_HWCR_CPB_DIS;
119                 break;
120         default:
121                 return;
122         }
123
124         rdmsr_on_cpus(cpumask, msr_addr, msrs);
125
126         for_each_cpu(cpu, cpumask) {
127                 struct msr *reg = per_cpu_ptr(msrs, cpu);
128                 if (enable)
129                         reg->q &= ~msr_mask;
130                 else
131                         reg->q |= msr_mask;
132         }
133
134         wrmsr_on_cpus(cpumask, msr_addr, msrs);
135 }
136
137 static ssize_t _store_boost(const char *buf, size_t count)
138 {
139         int ret;
140         unsigned long val = 0;
141
142         if (!boost_supported)
143                 return -EINVAL;
144
145         ret = kstrtoul(buf, 10, &val);
146         if (ret || (val > 1))
147                 return -EINVAL;
148
149         if ((val && boost_enabled) || (!val && !boost_enabled))
150                 return count;
151
152         get_online_cpus();
153
154         boost_set_msrs(val, cpu_online_mask);
155
156         put_online_cpus();
157
158         boost_enabled = val;
159         pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
160
161         return count;
162 }
163
164 static ssize_t store_global_boost(struct kobject *kobj, struct attribute *attr,
165                                   const char *buf, size_t count)
166 {
167         return _store_boost(buf, count);
168 }
169
170 static ssize_t show_global_boost(struct kobject *kobj,
171                                  struct attribute *attr, char *buf)
172 {
173         return sprintf(buf, "%u\n", boost_enabled);
174 }
175
176 static struct global_attr global_boost = __ATTR(boost, 0644,
177                                                 show_global_boost,
178                                                 store_global_boost);
179
180 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
181 {
182         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
183
184         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
185 }
186
187 cpufreq_freq_attr_ro(freqdomain_cpus);
188
189 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
190 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
191                          size_t count)
192 {
193         return _store_boost(buf, count);
194 }
195
196 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
197 {
198         return sprintf(buf, "%u\n", boost_enabled);
199 }
200
201 static struct freq_attr cpb = __ATTR(cpb, 0644, show_cpb, store_cpb);
202 #endif
203
204 static int check_est_cpu(unsigned int cpuid)
205 {
206         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
207
208         return cpu_has(cpu, X86_FEATURE_EST);
209 }
210
211 static int check_amd_hwpstate_cpu(unsigned int cpuid)
212 {
213         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
214
215         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
216 }
217
218 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
219 {
220         struct acpi_processor_performance *perf;
221         int i;
222
223         perf = data->acpi_data;
224
225         for (i = 0; i < perf->state_count; i++) {
226                 if (value == perf->states[i].status)
227                         return data->freq_table[i].frequency;
228         }
229         return 0;
230 }
231
232 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
233 {
234         int i;
235         struct acpi_processor_performance *perf;
236
237         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
238                 msr &= AMD_MSR_RANGE;
239         else
240                 msr &= INTEL_MSR_RANGE;
241
242         perf = data->acpi_data;
243
244         for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
245                 if (msr == perf->states[data->freq_table[i].driver_data].status)
246                         return data->freq_table[i].frequency;
247         }
248         return data->freq_table[0].frequency;
249 }
250
251 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
252 {
253         switch (data->cpu_feature) {
254         case SYSTEM_INTEL_MSR_CAPABLE:
255         case SYSTEM_AMD_MSR_CAPABLE:
256                 return extract_msr(val, data);
257         case SYSTEM_IO_CAPABLE:
258                 return extract_io(val, data);
259         default:
260                 return 0;
261         }
262 }
263
264 struct msr_addr {
265         u32 reg;
266 };
267
268 struct io_addr {
269         u16 port;
270         u8 bit_width;
271 };
272
273 struct drv_cmd {
274         unsigned int type;
275         const struct cpumask *mask;
276         union {
277                 struct msr_addr msr;
278                 struct io_addr io;
279         } addr;
280         u32 val;
281 };
282
283 /* Called via smp_call_function_single(), on the target CPU */
284 static void do_drv_read(void *_cmd)
285 {
286         struct drv_cmd *cmd = _cmd;
287         u32 h;
288
289         switch (cmd->type) {
290         case SYSTEM_INTEL_MSR_CAPABLE:
291         case SYSTEM_AMD_MSR_CAPABLE:
292                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
293                 break;
294         case SYSTEM_IO_CAPABLE:
295                 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
296                                 &cmd->val,
297                                 (u32)cmd->addr.io.bit_width);
298                 break;
299         default:
300                 break;
301         }
302 }
303
304 /* Called via smp_call_function_many(), on the target CPUs */
305 static void do_drv_write(void *_cmd)
306 {
307         struct drv_cmd *cmd = _cmd;
308         u32 lo, hi;
309
310         switch (cmd->type) {
311         case SYSTEM_INTEL_MSR_CAPABLE:
312                 rdmsr(cmd->addr.msr.reg, lo, hi);
313                 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
314                 wrmsr(cmd->addr.msr.reg, lo, hi);
315                 break;
316         case SYSTEM_AMD_MSR_CAPABLE:
317                 wrmsr(cmd->addr.msr.reg, cmd->val, 0);
318                 break;
319         case SYSTEM_IO_CAPABLE:
320                 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
321                                 cmd->val,
322                                 (u32)cmd->addr.io.bit_width);
323                 break;
324         default:
325                 break;
326         }
327 }
328
329 static void drv_read(struct drv_cmd *cmd)
330 {
331         int err;
332         cmd->val = 0;
333
334         err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
335         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
336 }
337
338 static void drv_write(struct drv_cmd *cmd)
339 {
340         int this_cpu;
341
342         this_cpu = get_cpu();
343         if (cpumask_test_cpu(this_cpu, cmd->mask))
344                 do_drv_write(cmd);
345         smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
346         put_cpu();
347 }
348
349 static u32 get_cur_val(const struct cpumask *mask)
350 {
351         struct acpi_processor_performance *perf;
352         struct drv_cmd cmd;
353
354         if (unlikely(cpumask_empty(mask)))
355                 return 0;
356
357         switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
358         case SYSTEM_INTEL_MSR_CAPABLE:
359                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
360                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
361                 break;
362         case SYSTEM_AMD_MSR_CAPABLE:
363                 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
364                 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
365                 break;
366         case SYSTEM_IO_CAPABLE:
367                 cmd.type = SYSTEM_IO_CAPABLE;
368                 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
369                 cmd.addr.io.port = perf->control_register.address;
370                 cmd.addr.io.bit_width = perf->control_register.bit_width;
371                 break;
372         default:
373                 return 0;
374         }
375
376         cmd.mask = mask;
377         drv_read(&cmd);
378
379         pr_debug("get_cur_val = %u\n", cmd.val);
380
381         return cmd.val;
382 }
383
384 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
385 {
386         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
387         unsigned int freq;
388         unsigned int cached_freq;
389
390         pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
391
392         if (unlikely(data == NULL ||
393                      data->acpi_data == NULL || data->freq_table == NULL)) {
394                 return 0;
395         }
396
397         cached_freq = data->freq_table[data->acpi_data->state].frequency;
398         freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
399         if (freq != cached_freq) {
400                 /*
401                  * The dreaded BIOS frequency change behind our back.
402                  * Force set the frequency on next target call.
403                  */
404                 data->resume = 1;
405         }
406
407         pr_debug("cur freq = %u\n", freq);
408
409         return freq;
410 }
411
412 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
413                                 struct acpi_cpufreq_data *data)
414 {
415         unsigned int cur_freq;
416         unsigned int i;
417
418         for (i = 0; i < 100; i++) {
419                 cur_freq = extract_freq(get_cur_val(mask), data);
420                 if (cur_freq == freq)
421                         return 1;
422                 udelay(10);
423         }
424         return 0;
425 }
426
427 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
428                                unsigned int target_freq, unsigned int relation)
429 {
430         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
431         struct acpi_processor_performance *perf;
432         struct cpufreq_freqs freqs;
433         struct drv_cmd cmd;
434         unsigned int next_state = 0; /* Index into freq_table */
435         unsigned int next_perf_state = 0; /* Index into perf table */
436         int result = 0;
437
438         pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
439
440         if (unlikely(data == NULL ||
441              data->acpi_data == NULL || data->freq_table == NULL)) {
442                 return -ENODEV;
443         }
444
445         perf = data->acpi_data;
446         result = cpufreq_frequency_table_target(policy,
447                                                 data->freq_table,
448                                                 target_freq,
449                                                 relation, &next_state);
450         if (unlikely(result)) {
451                 result = -ENODEV;
452                 goto out;
453         }
454
455         next_perf_state = data->freq_table[next_state].driver_data;
456         if (perf->state == next_perf_state) {
457                 if (unlikely(data->resume)) {
458                         pr_debug("Called after resume, resetting to P%d\n",
459                                 next_perf_state);
460                         data->resume = 0;
461                 } else {
462                         pr_debug("Already at target state (P%d)\n",
463                                 next_perf_state);
464                         goto out;
465                 }
466         }
467
468         switch (data->cpu_feature) {
469         case SYSTEM_INTEL_MSR_CAPABLE:
470                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
471                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
472                 cmd.val = (u32) perf->states[next_perf_state].control;
473                 break;
474         case SYSTEM_AMD_MSR_CAPABLE:
475                 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
476                 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
477                 cmd.val = (u32) perf->states[next_perf_state].control;
478                 break;
479         case SYSTEM_IO_CAPABLE:
480                 cmd.type = SYSTEM_IO_CAPABLE;
481                 cmd.addr.io.port = perf->control_register.address;
482                 cmd.addr.io.bit_width = perf->control_register.bit_width;
483                 cmd.val = (u32) perf->states[next_perf_state].control;
484                 break;
485         default:
486                 result = -ENODEV;
487                 goto out;
488         }
489
490         /* cpufreq holds the hotplug lock, so we are safe from here on */
491         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
492                 cmd.mask = policy->cpus;
493         else
494                 cmd.mask = cpumask_of(policy->cpu);
495
496         freqs.old = perf->states[perf->state].core_frequency * 1000;
497         freqs.new = data->freq_table[next_state].frequency;
498         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
499
500         drv_write(&cmd);
501
502         if (acpi_pstate_strict) {
503                 if (!check_freqs(cmd.mask, freqs.new, data)) {
504                         pr_debug("acpi_cpufreq_target failed (%d)\n",
505                                 policy->cpu);
506                         result = -EAGAIN;
507                         freqs.new = freqs.old;
508                 }
509         }
510
511         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
512
513         if (!result)
514                 perf->state = next_perf_state;
515
516 out:
517         return result;
518 }
519
520 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
521 {
522         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
523
524         pr_debug("acpi_cpufreq_verify\n");
525
526         return cpufreq_frequency_table_verify(policy, data->freq_table);
527 }
528
529 static unsigned long
530 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
531 {
532         struct acpi_processor_performance *perf = data->acpi_data;
533
534         if (cpu_khz) {
535                 /* search the closest match to cpu_khz */
536                 unsigned int i;
537                 unsigned long freq;
538                 unsigned long freqn = perf->states[0].core_frequency * 1000;
539
540                 for (i = 0; i < (perf->state_count-1); i++) {
541                         freq = freqn;
542                         freqn = perf->states[i+1].core_frequency * 1000;
543                         if ((2 * cpu_khz) > (freqn + freq)) {
544                                 perf->state = i;
545                                 return freq;
546                         }
547                 }
548                 perf->state = perf->state_count-1;
549                 return freqn;
550         } else {
551                 /* assume CPU is at P0... */
552                 perf->state = 0;
553                 return perf->states[0].core_frequency * 1000;
554         }
555 }
556
557 static void free_acpi_perf_data(void)
558 {
559         unsigned int i;
560
561         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
562         for_each_possible_cpu(i)
563                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
564                                  ->shared_cpu_map);
565         free_percpu(acpi_perf_data);
566 }
567
568 static int boost_notify(struct notifier_block *nb, unsigned long action,
569                       void *hcpu)
570 {
571         unsigned cpu = (long)hcpu;
572         const struct cpumask *cpumask;
573
574         cpumask = get_cpu_mask(cpu);
575
576         /*
577          * Clear the boost-disable bit on the CPU_DOWN path so that
578          * this cpu cannot block the remaining ones from boosting. On
579          * the CPU_UP path we simply keep the boost-disable flag in
580          * sync with the current global state.
581          */
582
583         switch (action) {
584         case CPU_UP_PREPARE:
585         case CPU_UP_PREPARE_FROZEN:
586                 boost_set_msrs(boost_enabled, cpumask);
587                 break;
588
589         case CPU_DOWN_PREPARE:
590         case CPU_DOWN_PREPARE_FROZEN:
591                 boost_set_msrs(1, cpumask);
592                 break;
593
594         default:
595                 break;
596         }
597
598         return NOTIFY_OK;
599 }
600
601
602 static struct notifier_block boost_nb = {
603         .notifier_call          = boost_notify,
604 };
605
606 /*
607  * acpi_cpufreq_early_init - initialize ACPI P-States library
608  *
609  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
610  * in order to determine correct frequency and voltage pairings. We can
611  * do _PDC and _PSD and find out the processor dependency for the
612  * actual init that will happen later...
613  */
614 static int __init acpi_cpufreq_early_init(void)
615 {
616         unsigned int i;
617         pr_debug("acpi_cpufreq_early_init\n");
618
619         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
620         if (!acpi_perf_data) {
621                 pr_debug("Memory allocation error for acpi_perf_data.\n");
622                 return -ENOMEM;
623         }
624         for_each_possible_cpu(i) {
625                 if (!zalloc_cpumask_var_node(
626                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
627                         GFP_KERNEL, cpu_to_node(i))) {
628
629                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
630                         free_acpi_perf_data();
631                         return -ENOMEM;
632                 }
633         }
634
635         /* Do initialization in ACPI core */
636         acpi_processor_preregister_performance(acpi_perf_data);
637         return 0;
638 }
639
640 #ifdef CONFIG_SMP
641 /*
642  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
643  * or do it in BIOS firmware and won't inform about it to OS. If not
644  * detected, this has a side effect of making CPU run at a different speed
645  * than OS intended it to run at. Detect it and handle it cleanly.
646  */
647 static int bios_with_sw_any_bug;
648
649 static int sw_any_bug_found(const struct dmi_system_id *d)
650 {
651         bios_with_sw_any_bug = 1;
652         return 0;
653 }
654
655 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
656         {
657                 .callback = sw_any_bug_found,
658                 .ident = "Supermicro Server X6DLP",
659                 .matches = {
660                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
661                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
662                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
663                 },
664         },
665         { }
666 };
667
668 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
669 {
670         /* Intel Xeon Processor 7100 Series Specification Update
671          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
672          * AL30: A Machine Check Exception (MCE) Occurring during an
673          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
674          * Both Processor Cores to Lock Up. */
675         if (c->x86_vendor == X86_VENDOR_INTEL) {
676                 if ((c->x86 == 15) &&
677                     (c->x86_model == 6) &&
678                     (c->x86_mask == 8)) {
679                         printk(KERN_INFO "acpi-cpufreq: Intel(R) "
680                             "Xeon(R) 7100 Errata AL30, processors may "
681                             "lock up on frequency changes: disabling "
682                             "acpi-cpufreq.\n");
683                         return -ENODEV;
684                     }
685                 }
686         return 0;
687 }
688 #endif
689
690 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
691 {
692         unsigned int i;
693         unsigned int valid_states = 0;
694         unsigned int cpu = policy->cpu;
695         struct acpi_cpufreq_data *data;
696         unsigned int result = 0;
697         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
698         struct acpi_processor_performance *perf;
699 #ifdef CONFIG_SMP
700         static int blacklisted;
701 #endif
702
703         pr_debug("acpi_cpufreq_cpu_init\n");
704
705 #ifdef CONFIG_SMP
706         if (blacklisted)
707                 return blacklisted;
708         blacklisted = acpi_cpufreq_blacklist(c);
709         if (blacklisted)
710                 return blacklisted;
711 #endif
712
713         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
714         if (!data)
715                 return -ENOMEM;
716
717         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
718                 result = -ENOMEM;
719                 goto err_free;
720         }
721
722         data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
723         per_cpu(acfreq_data, cpu) = data;
724
725         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
726                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
727
728         result = acpi_processor_register_performance(data->acpi_data, cpu);
729         if (result)
730                 goto err_free_mask;
731
732         perf = data->acpi_data;
733         policy->shared_type = perf->shared_type;
734
735         /*
736          * Will let policy->cpus know about dependency only when software
737          * coordination is required.
738          */
739         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
740             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
741                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
742         }
743         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
744
745 #ifdef CONFIG_SMP
746         dmi_check_system(sw_any_bug_dmi_table);
747         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
748                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
749                 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
750         }
751
752         if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
753                 cpumask_clear(policy->cpus);
754                 cpumask_set_cpu(cpu, policy->cpus);
755                 cpumask_copy(data->freqdomain_cpus, cpu_sibling_mask(cpu));
756                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
757                 pr_info_once(PFX "overriding BIOS provided _PSD data\n");
758         }
759 #endif
760
761         /* capability check */
762         if (perf->state_count <= 1) {
763                 pr_debug("No P-States\n");
764                 result = -ENODEV;
765                 goto err_unreg;
766         }
767
768         if (perf->control_register.space_id != perf->status_register.space_id) {
769                 result = -ENODEV;
770                 goto err_unreg;
771         }
772
773         switch (perf->control_register.space_id) {
774         case ACPI_ADR_SPACE_SYSTEM_IO:
775                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
776                     boot_cpu_data.x86 == 0xf) {
777                         pr_debug("AMD K8 systems must use native drivers.\n");
778                         result = -ENODEV;
779                         goto err_unreg;
780                 }
781                 pr_debug("SYSTEM IO addr space\n");
782                 data->cpu_feature = SYSTEM_IO_CAPABLE;
783                 break;
784         case ACPI_ADR_SPACE_FIXED_HARDWARE:
785                 pr_debug("HARDWARE addr space\n");
786                 if (check_est_cpu(cpu)) {
787                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
788                         break;
789                 }
790                 if (check_amd_hwpstate_cpu(cpu)) {
791                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
792                         break;
793                 }
794                 result = -ENODEV;
795                 goto err_unreg;
796         default:
797                 pr_debug("Unknown addr space %d\n",
798                         (u32) (perf->control_register.space_id));
799                 result = -ENODEV;
800                 goto err_unreg;
801         }
802
803         data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
804                     (perf->state_count+1), GFP_KERNEL);
805         if (!data->freq_table) {
806                 result = -ENOMEM;
807                 goto err_unreg;
808         }
809
810         /* detect transition latency */
811         policy->cpuinfo.transition_latency = 0;
812         for (i = 0; i < perf->state_count; i++) {
813                 if ((perf->states[i].transition_latency * 1000) >
814                     policy->cpuinfo.transition_latency)
815                         policy->cpuinfo.transition_latency =
816                             perf->states[i].transition_latency * 1000;
817         }
818
819         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
820         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
821             policy->cpuinfo.transition_latency > 20 * 1000) {
822                 policy->cpuinfo.transition_latency = 20 * 1000;
823                 printk_once(KERN_INFO
824                             "P-state transition latency capped at 20 uS\n");
825         }
826
827         /* table init */
828         for (i = 0; i < perf->state_count; i++) {
829                 if (i > 0 && perf->states[i].core_frequency >=
830                     data->freq_table[valid_states-1].frequency / 1000)
831                         continue;
832
833                 data->freq_table[valid_states].driver_data = i;
834                 data->freq_table[valid_states].frequency =
835                     perf->states[i].core_frequency * 1000;
836                 valid_states++;
837         }
838         data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
839         perf->state = 0;
840
841         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
842         if (result)
843                 goto err_freqfree;
844
845         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
846                 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
847
848         switch (perf->control_register.space_id) {
849         case ACPI_ADR_SPACE_SYSTEM_IO:
850                 /* Current speed is unknown and not detectable by IO port */
851                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
852                 break;
853         case ACPI_ADR_SPACE_FIXED_HARDWARE:
854                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
855                 policy->cur = get_cur_freq_on_cpu(cpu);
856                 break;
857         default:
858                 break;
859         }
860
861         /* notify BIOS that we exist */
862         acpi_processor_notify_smm(THIS_MODULE);
863
864         /* Check for APERF/MPERF support in hardware */
865         if (boot_cpu_has(X86_FEATURE_APERFMPERF))
866                 acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
867
868         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
869         for (i = 0; i < perf->state_count; i++)
870                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
871                         (i == perf->state ? '*' : ' '), i,
872                         (u32) perf->states[i].core_frequency,
873                         (u32) perf->states[i].power,
874                         (u32) perf->states[i].transition_latency);
875
876         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
877
878         /*
879          * the first call to ->target() should result in us actually
880          * writing something to the appropriate registers.
881          */
882         data->resume = 1;
883
884         return result;
885
886 err_freqfree:
887         kfree(data->freq_table);
888 err_unreg:
889         acpi_processor_unregister_performance(perf, cpu);
890 err_free_mask:
891         free_cpumask_var(data->freqdomain_cpus);
892 err_free:
893         kfree(data);
894         per_cpu(acfreq_data, cpu) = NULL;
895
896         return result;
897 }
898
899 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
900 {
901         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
902
903         pr_debug("acpi_cpufreq_cpu_exit\n");
904
905         if (data) {
906                 cpufreq_frequency_table_put_attr(policy->cpu);
907                 per_cpu(acfreq_data, policy->cpu) = NULL;
908                 acpi_processor_unregister_performance(data->acpi_data,
909                                                       policy->cpu);
910                 free_cpumask_var(data->freqdomain_cpus);
911                 kfree(data->freq_table);
912                 kfree(data);
913         }
914
915         return 0;
916 }
917
918 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
919 {
920         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
921
922         pr_debug("acpi_cpufreq_resume\n");
923
924         data->resume = 1;
925
926         return 0;
927 }
928
929 static struct freq_attr *acpi_cpufreq_attr[] = {
930         &cpufreq_freq_attr_scaling_available_freqs,
931         &freqdomain_cpus,
932         NULL,   /* this is a placeholder for cpb, do not remove */
933         NULL,
934 };
935
936 static struct cpufreq_driver acpi_cpufreq_driver = {
937         .verify         = acpi_cpufreq_verify,
938         .target         = acpi_cpufreq_target,
939         .bios_limit     = acpi_processor_get_bios_limit,
940         .init           = acpi_cpufreq_cpu_init,
941         .exit           = acpi_cpufreq_cpu_exit,
942         .resume         = acpi_cpufreq_resume,
943         .name           = "acpi-cpufreq",
944         .owner          = THIS_MODULE,
945         .attr           = acpi_cpufreq_attr,
946 };
947
948 static void __init acpi_cpufreq_boost_init(void)
949 {
950         if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
951                 msrs = msrs_alloc();
952
953                 if (!msrs)
954                         return;
955
956                 boost_supported = true;
957                 boost_enabled = boost_state(0);
958
959                 get_online_cpus();
960
961                 /* Force all MSRs to the same value */
962                 boost_set_msrs(boost_enabled, cpu_online_mask);
963
964                 register_cpu_notifier(&boost_nb);
965
966                 put_online_cpus();
967         } else
968                 global_boost.attr.mode = 0444;
969
970         /* We create the boost file in any case, though for systems without
971          * hardware support it will be read-only and hardwired to return 0.
972          */
973         if (cpufreq_sysfs_create_file(&(global_boost.attr)))
974                 pr_warn(PFX "could not register global boost sysfs file\n");
975         else
976                 pr_debug("registered global boost sysfs file\n");
977 }
978
979 static void __exit acpi_cpufreq_boost_exit(void)
980 {
981         cpufreq_sysfs_remove_file(&(global_boost.attr));
982
983         if (msrs) {
984                 unregister_cpu_notifier(&boost_nb);
985
986                 msrs_free(msrs);
987                 msrs = NULL;
988         }
989 }
990
991 static int __init acpi_cpufreq_init(void)
992 {
993         int ret;
994
995         if (acpi_disabled)
996                 return 0;
997
998         pr_debug("acpi_cpufreq_init\n");
999
1000         ret = acpi_cpufreq_early_init();
1001         if (ret)
1002                 return ret;
1003
1004 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1005         /* this is a sysfs file with a strange name and an even stranger
1006          * semantic - per CPU instantiation, but system global effect.
1007          * Lets enable it only on AMD CPUs for compatibility reasons and
1008          * only if configured. This is considered legacy code, which
1009          * will probably be removed at some point in the future.
1010          */
1011         if (check_amd_hwpstate_cpu(0)) {
1012                 struct freq_attr **iter;
1013
1014                 pr_debug("adding sysfs entry for cpb\n");
1015
1016                 for (iter = acpi_cpufreq_attr; *iter != NULL; iter++)
1017                         ;
1018
1019                 /* make sure there is a terminator behind it */
1020                 if (iter[1] == NULL)
1021                         *iter = &cpb;
1022         }
1023 #endif
1024
1025         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1026         if (ret)
1027                 free_acpi_perf_data();
1028         else
1029                 acpi_cpufreq_boost_init();
1030
1031         return ret;
1032 }
1033
1034 static void __exit acpi_cpufreq_exit(void)
1035 {
1036         pr_debug("acpi_cpufreq_exit\n");
1037
1038         acpi_cpufreq_boost_exit();
1039
1040         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1041
1042         free_acpi_perf_data();
1043 }
1044
1045 module_param(acpi_pstate_strict, uint, 0644);
1046 MODULE_PARM_DESC(acpi_pstate_strict,
1047         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1048         "performed during frequency changes.");
1049
1050 late_initcall(acpi_cpufreq_init);
1051 module_exit(acpi_cpufreq_exit);
1052
1053 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1054         X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1055         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1056         {}
1057 };
1058 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1059
1060 static const struct acpi_device_id processor_device_ids[] = {
1061         {ACPI_PROCESSOR_OBJECT_HID, },
1062         {ACPI_PROCESSOR_DEVICE_HID, },
1063         {},
1064 };
1065 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1066
1067 MODULE_ALIAS("acpi");