]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/acpi-cpufreq.c
Merge branch 'acpi-hotplug'
[karo-tx-linux.git] / drivers / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42
43 #include <acpi/processor.h>
44
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48 #include "mperf.h"
49
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53
54 #define PFX "acpi-cpufreq: "
55
56 enum {
57         UNDEFINED_CAPABLE = 0,
58         SYSTEM_INTEL_MSR_CAPABLE,
59         SYSTEM_AMD_MSR_CAPABLE,
60         SYSTEM_IO_CAPABLE,
61 };
62
63 #define INTEL_MSR_RANGE         (0xffff)
64 #define AMD_MSR_RANGE           (0x7)
65
66 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
67
68 struct acpi_cpufreq_data {
69         struct acpi_processor_performance *acpi_data;
70         struct cpufreq_frequency_table *freq_table;
71         unsigned int resume;
72         unsigned int cpu_feature;
73 };
74
75 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
76
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
79
80 static struct cpufreq_driver acpi_cpufreq_driver;
81
82 static unsigned int acpi_pstate_strict;
83 static bool boost_enabled, boost_supported;
84 static struct msr __percpu *msrs;
85
86 static bool boost_state(unsigned int cpu)
87 {
88         u32 lo, hi;
89         u64 msr;
90
91         switch (boot_cpu_data.x86_vendor) {
92         case X86_VENDOR_INTEL:
93                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
94                 msr = lo | ((u64)hi << 32);
95                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
96         case X86_VENDOR_AMD:
97                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
98                 msr = lo | ((u64)hi << 32);
99                 return !(msr & MSR_K7_HWCR_CPB_DIS);
100         }
101         return false;
102 }
103
104 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
105 {
106         u32 cpu;
107         u32 msr_addr;
108         u64 msr_mask;
109
110         switch (boot_cpu_data.x86_vendor) {
111         case X86_VENDOR_INTEL:
112                 msr_addr = MSR_IA32_MISC_ENABLE;
113                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
114                 break;
115         case X86_VENDOR_AMD:
116                 msr_addr = MSR_K7_HWCR;
117                 msr_mask = MSR_K7_HWCR_CPB_DIS;
118                 break;
119         default:
120                 return;
121         }
122
123         rdmsr_on_cpus(cpumask, msr_addr, msrs);
124
125         for_each_cpu(cpu, cpumask) {
126                 struct msr *reg = per_cpu_ptr(msrs, cpu);
127                 if (enable)
128                         reg->q &= ~msr_mask;
129                 else
130                         reg->q |= msr_mask;
131         }
132
133         wrmsr_on_cpus(cpumask, msr_addr, msrs);
134 }
135
136 static ssize_t _store_boost(const char *buf, size_t count)
137 {
138         int ret;
139         unsigned long val = 0;
140
141         if (!boost_supported)
142                 return -EINVAL;
143
144         ret = kstrtoul(buf, 10, &val);
145         if (ret || (val > 1))
146                 return -EINVAL;
147
148         if ((val && boost_enabled) || (!val && !boost_enabled))
149                 return count;
150
151         get_online_cpus();
152
153         boost_set_msrs(val, cpu_online_mask);
154
155         put_online_cpus();
156
157         boost_enabled = val;
158         pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
159
160         return count;
161 }
162
163 static ssize_t store_global_boost(struct kobject *kobj, struct attribute *attr,
164                                   const char *buf, size_t count)
165 {
166         return _store_boost(buf, count);
167 }
168
169 static ssize_t show_global_boost(struct kobject *kobj,
170                                  struct attribute *attr, char *buf)
171 {
172         return sprintf(buf, "%u\n", boost_enabled);
173 }
174
175 static struct global_attr global_boost = __ATTR(boost, 0644,
176                                                 show_global_boost,
177                                                 store_global_boost);
178
179 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
180 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
181                          size_t count)
182 {
183         return _store_boost(buf, count);
184 }
185
186 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
187 {
188         return sprintf(buf, "%u\n", boost_enabled);
189 }
190
191 static struct freq_attr cpb = __ATTR(cpb, 0644, show_cpb, store_cpb);
192 #endif
193
194 static int check_est_cpu(unsigned int cpuid)
195 {
196         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
197
198         return cpu_has(cpu, X86_FEATURE_EST);
199 }
200
201 static int check_amd_hwpstate_cpu(unsigned int cpuid)
202 {
203         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
204
205         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
206 }
207
208 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
209 {
210         struct acpi_processor_performance *perf;
211         int i;
212
213         perf = data->acpi_data;
214
215         for (i = 0; i < perf->state_count; i++) {
216                 if (value == perf->states[i].status)
217                         return data->freq_table[i].frequency;
218         }
219         return 0;
220 }
221
222 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
223 {
224         int i;
225         struct acpi_processor_performance *perf;
226
227         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
228                 msr &= AMD_MSR_RANGE;
229         else
230                 msr &= INTEL_MSR_RANGE;
231
232         perf = data->acpi_data;
233
234         for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
235                 if (msr == perf->states[data->freq_table[i].driver_data].status)
236                         return data->freq_table[i].frequency;
237         }
238         return data->freq_table[0].frequency;
239 }
240
241 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
242 {
243         switch (data->cpu_feature) {
244         case SYSTEM_INTEL_MSR_CAPABLE:
245         case SYSTEM_AMD_MSR_CAPABLE:
246                 return extract_msr(val, data);
247         case SYSTEM_IO_CAPABLE:
248                 return extract_io(val, data);
249         default:
250                 return 0;
251         }
252 }
253
254 struct msr_addr {
255         u32 reg;
256 };
257
258 struct io_addr {
259         u16 port;
260         u8 bit_width;
261 };
262
263 struct drv_cmd {
264         unsigned int type;
265         const struct cpumask *mask;
266         union {
267                 struct msr_addr msr;
268                 struct io_addr io;
269         } addr;
270         u32 val;
271 };
272
273 /* Called via smp_call_function_single(), on the target CPU */
274 static void do_drv_read(void *_cmd)
275 {
276         struct drv_cmd *cmd = _cmd;
277         u32 h;
278
279         switch (cmd->type) {
280         case SYSTEM_INTEL_MSR_CAPABLE:
281         case SYSTEM_AMD_MSR_CAPABLE:
282                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
283                 break;
284         case SYSTEM_IO_CAPABLE:
285                 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
286                                 &cmd->val,
287                                 (u32)cmd->addr.io.bit_width);
288                 break;
289         default:
290                 break;
291         }
292 }
293
294 /* Called via smp_call_function_many(), on the target CPUs */
295 static void do_drv_write(void *_cmd)
296 {
297         struct drv_cmd *cmd = _cmd;
298         u32 lo, hi;
299
300         switch (cmd->type) {
301         case SYSTEM_INTEL_MSR_CAPABLE:
302                 rdmsr(cmd->addr.msr.reg, lo, hi);
303                 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
304                 wrmsr(cmd->addr.msr.reg, lo, hi);
305                 break;
306         case SYSTEM_AMD_MSR_CAPABLE:
307                 wrmsr(cmd->addr.msr.reg, cmd->val, 0);
308                 break;
309         case SYSTEM_IO_CAPABLE:
310                 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
311                                 cmd->val,
312                                 (u32)cmd->addr.io.bit_width);
313                 break;
314         default:
315                 break;
316         }
317 }
318
319 static void drv_read(struct drv_cmd *cmd)
320 {
321         int err;
322         cmd->val = 0;
323
324         err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
325         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
326 }
327
328 static void drv_write(struct drv_cmd *cmd)
329 {
330         int this_cpu;
331
332         this_cpu = get_cpu();
333         if (cpumask_test_cpu(this_cpu, cmd->mask))
334                 do_drv_write(cmd);
335         smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
336         put_cpu();
337 }
338
339 static u32 get_cur_val(const struct cpumask *mask)
340 {
341         struct acpi_processor_performance *perf;
342         struct drv_cmd cmd;
343
344         if (unlikely(cpumask_empty(mask)))
345                 return 0;
346
347         switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
348         case SYSTEM_INTEL_MSR_CAPABLE:
349                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
350                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
351                 break;
352         case SYSTEM_AMD_MSR_CAPABLE:
353                 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
354                 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
355                 break;
356         case SYSTEM_IO_CAPABLE:
357                 cmd.type = SYSTEM_IO_CAPABLE;
358                 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
359                 cmd.addr.io.port = perf->control_register.address;
360                 cmd.addr.io.bit_width = perf->control_register.bit_width;
361                 break;
362         default:
363                 return 0;
364         }
365
366         cmd.mask = mask;
367         drv_read(&cmd);
368
369         pr_debug("get_cur_val = %u\n", cmd.val);
370
371         return cmd.val;
372 }
373
374 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
375 {
376         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
377         unsigned int freq;
378         unsigned int cached_freq;
379
380         pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
381
382         if (unlikely(data == NULL ||
383                      data->acpi_data == NULL || data->freq_table == NULL)) {
384                 return 0;
385         }
386
387         cached_freq = data->freq_table[data->acpi_data->state].frequency;
388         freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
389         if (freq != cached_freq) {
390                 /*
391                  * The dreaded BIOS frequency change behind our back.
392                  * Force set the frequency on next target call.
393                  */
394                 data->resume = 1;
395         }
396
397         pr_debug("cur freq = %u\n", freq);
398
399         return freq;
400 }
401
402 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
403                                 struct acpi_cpufreq_data *data)
404 {
405         unsigned int cur_freq;
406         unsigned int i;
407
408         for (i = 0; i < 100; i++) {
409                 cur_freq = extract_freq(get_cur_val(mask), data);
410                 if (cur_freq == freq)
411                         return 1;
412                 udelay(10);
413         }
414         return 0;
415 }
416
417 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
418                                unsigned int target_freq, unsigned int relation)
419 {
420         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
421         struct acpi_processor_performance *perf;
422         struct cpufreq_freqs freqs;
423         struct drv_cmd cmd;
424         unsigned int next_state = 0; /* Index into freq_table */
425         unsigned int next_perf_state = 0; /* Index into perf table */
426         int result = 0;
427
428         pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
429
430         if (unlikely(data == NULL ||
431              data->acpi_data == NULL || data->freq_table == NULL)) {
432                 return -ENODEV;
433         }
434
435         perf = data->acpi_data;
436         result = cpufreq_frequency_table_target(policy,
437                                                 data->freq_table,
438                                                 target_freq,
439                                                 relation, &next_state);
440         if (unlikely(result)) {
441                 result = -ENODEV;
442                 goto out;
443         }
444
445         next_perf_state = data->freq_table[next_state].driver_data;
446         if (perf->state == next_perf_state) {
447                 if (unlikely(data->resume)) {
448                         pr_debug("Called after resume, resetting to P%d\n",
449                                 next_perf_state);
450                         data->resume = 0;
451                 } else {
452                         pr_debug("Already at target state (P%d)\n",
453                                 next_perf_state);
454                         goto out;
455                 }
456         }
457
458         switch (data->cpu_feature) {
459         case SYSTEM_INTEL_MSR_CAPABLE:
460                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
461                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
462                 cmd.val = (u32) perf->states[next_perf_state].control;
463                 break;
464         case SYSTEM_AMD_MSR_CAPABLE:
465                 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
466                 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
467                 cmd.val = (u32) perf->states[next_perf_state].control;
468                 break;
469         case SYSTEM_IO_CAPABLE:
470                 cmd.type = SYSTEM_IO_CAPABLE;
471                 cmd.addr.io.port = perf->control_register.address;
472                 cmd.addr.io.bit_width = perf->control_register.bit_width;
473                 cmd.val = (u32) perf->states[next_perf_state].control;
474                 break;
475         default:
476                 result = -ENODEV;
477                 goto out;
478         }
479
480         /* cpufreq holds the hotplug lock, so we are safe from here on */
481         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
482                 cmd.mask = policy->cpus;
483         else
484                 cmd.mask = cpumask_of(policy->cpu);
485
486         freqs.old = perf->states[perf->state].core_frequency * 1000;
487         freqs.new = data->freq_table[next_state].frequency;
488         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
489
490         drv_write(&cmd);
491
492         if (acpi_pstate_strict) {
493                 if (!check_freqs(cmd.mask, freqs.new, data)) {
494                         pr_debug("acpi_cpufreq_target failed (%d)\n",
495                                 policy->cpu);
496                         result = -EAGAIN;
497                         freqs.new = freqs.old;
498                 }
499         }
500
501         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
502
503         if (!result)
504                 perf->state = next_perf_state;
505
506 out:
507         return result;
508 }
509
510 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
511 {
512         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
513
514         pr_debug("acpi_cpufreq_verify\n");
515
516         return cpufreq_frequency_table_verify(policy, data->freq_table);
517 }
518
519 static unsigned long
520 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
521 {
522         struct acpi_processor_performance *perf = data->acpi_data;
523
524         if (cpu_khz) {
525                 /* search the closest match to cpu_khz */
526                 unsigned int i;
527                 unsigned long freq;
528                 unsigned long freqn = perf->states[0].core_frequency * 1000;
529
530                 for (i = 0; i < (perf->state_count-1); i++) {
531                         freq = freqn;
532                         freqn = perf->states[i+1].core_frequency * 1000;
533                         if ((2 * cpu_khz) > (freqn + freq)) {
534                                 perf->state = i;
535                                 return freq;
536                         }
537                 }
538                 perf->state = perf->state_count-1;
539                 return freqn;
540         } else {
541                 /* assume CPU is at P0... */
542                 perf->state = 0;
543                 return perf->states[0].core_frequency * 1000;
544         }
545 }
546
547 static void free_acpi_perf_data(void)
548 {
549         unsigned int i;
550
551         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
552         for_each_possible_cpu(i)
553                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
554                                  ->shared_cpu_map);
555         free_percpu(acpi_perf_data);
556 }
557
558 static int boost_notify(struct notifier_block *nb, unsigned long action,
559                       void *hcpu)
560 {
561         unsigned cpu = (long)hcpu;
562         const struct cpumask *cpumask;
563
564         cpumask = get_cpu_mask(cpu);
565
566         /*
567          * Clear the boost-disable bit on the CPU_DOWN path so that
568          * this cpu cannot block the remaining ones from boosting. On
569          * the CPU_UP path we simply keep the boost-disable flag in
570          * sync with the current global state.
571          */
572
573         switch (action) {
574         case CPU_UP_PREPARE:
575         case CPU_UP_PREPARE_FROZEN:
576                 boost_set_msrs(boost_enabled, cpumask);
577                 break;
578
579         case CPU_DOWN_PREPARE:
580         case CPU_DOWN_PREPARE_FROZEN:
581                 boost_set_msrs(1, cpumask);
582                 break;
583
584         default:
585                 break;
586         }
587
588         return NOTIFY_OK;
589 }
590
591
592 static struct notifier_block boost_nb = {
593         .notifier_call          = boost_notify,
594 };
595
596 /*
597  * acpi_cpufreq_early_init - initialize ACPI P-States library
598  *
599  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
600  * in order to determine correct frequency and voltage pairings. We can
601  * do _PDC and _PSD and find out the processor dependency for the
602  * actual init that will happen later...
603  */
604 static int __init acpi_cpufreq_early_init(void)
605 {
606         unsigned int i;
607         pr_debug("acpi_cpufreq_early_init\n");
608
609         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
610         if (!acpi_perf_data) {
611                 pr_debug("Memory allocation error for acpi_perf_data.\n");
612                 return -ENOMEM;
613         }
614         for_each_possible_cpu(i) {
615                 if (!zalloc_cpumask_var_node(
616                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
617                         GFP_KERNEL, cpu_to_node(i))) {
618
619                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
620                         free_acpi_perf_data();
621                         return -ENOMEM;
622                 }
623         }
624
625         /* Do initialization in ACPI core */
626         acpi_processor_preregister_performance(acpi_perf_data);
627         return 0;
628 }
629
630 #ifdef CONFIG_SMP
631 /*
632  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
633  * or do it in BIOS firmware and won't inform about it to OS. If not
634  * detected, this has a side effect of making CPU run at a different speed
635  * than OS intended it to run at. Detect it and handle it cleanly.
636  */
637 static int bios_with_sw_any_bug;
638
639 static int sw_any_bug_found(const struct dmi_system_id *d)
640 {
641         bios_with_sw_any_bug = 1;
642         return 0;
643 }
644
645 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
646         {
647                 .callback = sw_any_bug_found,
648                 .ident = "Supermicro Server X6DLP",
649                 .matches = {
650                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
651                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
652                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
653                 },
654         },
655         { }
656 };
657
658 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
659 {
660         /* Intel Xeon Processor 7100 Series Specification Update
661          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
662          * AL30: A Machine Check Exception (MCE) Occurring during an
663          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
664          * Both Processor Cores to Lock Up. */
665         if (c->x86_vendor == X86_VENDOR_INTEL) {
666                 if ((c->x86 == 15) &&
667                     (c->x86_model == 6) &&
668                     (c->x86_mask == 8)) {
669                         printk(KERN_INFO "acpi-cpufreq: Intel(R) "
670                             "Xeon(R) 7100 Errata AL30, processors may "
671                             "lock up on frequency changes: disabling "
672                             "acpi-cpufreq.\n");
673                         return -ENODEV;
674                     }
675                 }
676         return 0;
677 }
678 #endif
679
680 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
681 {
682         unsigned int i;
683         unsigned int valid_states = 0;
684         unsigned int cpu = policy->cpu;
685         struct acpi_cpufreq_data *data;
686         unsigned int result = 0;
687         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
688         struct acpi_processor_performance *perf;
689 #ifdef CONFIG_SMP
690         static int blacklisted;
691 #endif
692
693         pr_debug("acpi_cpufreq_cpu_init\n");
694
695 #ifdef CONFIG_SMP
696         if (blacklisted)
697                 return blacklisted;
698         blacklisted = acpi_cpufreq_blacklist(c);
699         if (blacklisted)
700                 return blacklisted;
701 #endif
702
703         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
704         if (!data)
705                 return -ENOMEM;
706
707         data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
708         per_cpu(acfreq_data, cpu) = data;
709
710         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
711                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
712
713         result = acpi_processor_register_performance(data->acpi_data, cpu);
714         if (result)
715                 goto err_free;
716
717         perf = data->acpi_data;
718         policy->shared_type = perf->shared_type;
719
720         /*
721          * Will let policy->cpus know about dependency only when software
722          * coordination is required.
723          */
724         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
725             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
726                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
727         }
728
729 #ifdef CONFIG_SMP
730         dmi_check_system(sw_any_bug_dmi_table);
731         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
732                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
733                 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
734         }
735
736         if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
737                 cpumask_clear(policy->cpus);
738                 cpumask_set_cpu(cpu, policy->cpus);
739                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
740                 pr_info_once(PFX "overriding BIOS provided _PSD data\n");
741         }
742 #endif
743
744         /* capability check */
745         if (perf->state_count <= 1) {
746                 pr_debug("No P-States\n");
747                 result = -ENODEV;
748                 goto err_unreg;
749         }
750
751         if (perf->control_register.space_id != perf->status_register.space_id) {
752                 result = -ENODEV;
753                 goto err_unreg;
754         }
755
756         switch (perf->control_register.space_id) {
757         case ACPI_ADR_SPACE_SYSTEM_IO:
758                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
759                     boot_cpu_data.x86 == 0xf) {
760                         pr_debug("AMD K8 systems must use native drivers.\n");
761                         result = -ENODEV;
762                         goto err_unreg;
763                 }
764                 pr_debug("SYSTEM IO addr space\n");
765                 data->cpu_feature = SYSTEM_IO_CAPABLE;
766                 break;
767         case ACPI_ADR_SPACE_FIXED_HARDWARE:
768                 pr_debug("HARDWARE addr space\n");
769                 if (check_est_cpu(cpu)) {
770                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
771                         break;
772                 }
773                 if (check_amd_hwpstate_cpu(cpu)) {
774                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
775                         break;
776                 }
777                 result = -ENODEV;
778                 goto err_unreg;
779         default:
780                 pr_debug("Unknown addr space %d\n",
781                         (u32) (perf->control_register.space_id));
782                 result = -ENODEV;
783                 goto err_unreg;
784         }
785
786         data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
787                     (perf->state_count+1), GFP_KERNEL);
788         if (!data->freq_table) {
789                 result = -ENOMEM;
790                 goto err_unreg;
791         }
792
793         /* detect transition latency */
794         policy->cpuinfo.transition_latency = 0;
795         for (i = 0; i < perf->state_count; i++) {
796                 if ((perf->states[i].transition_latency * 1000) >
797                     policy->cpuinfo.transition_latency)
798                         policy->cpuinfo.transition_latency =
799                             perf->states[i].transition_latency * 1000;
800         }
801
802         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
803         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
804             policy->cpuinfo.transition_latency > 20 * 1000) {
805                 policy->cpuinfo.transition_latency = 20 * 1000;
806                 printk_once(KERN_INFO
807                             "P-state transition latency capped at 20 uS\n");
808         }
809
810         /* table init */
811         for (i = 0; i < perf->state_count; i++) {
812                 if (i > 0 && perf->states[i].core_frequency >=
813                     data->freq_table[valid_states-1].frequency / 1000)
814                         continue;
815
816                 data->freq_table[valid_states].driver_data = i;
817                 data->freq_table[valid_states].frequency =
818                     perf->states[i].core_frequency * 1000;
819                 valid_states++;
820         }
821         data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
822         perf->state = 0;
823
824         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
825         if (result)
826                 goto err_freqfree;
827
828         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
829                 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
830
831         switch (perf->control_register.space_id) {
832         case ACPI_ADR_SPACE_SYSTEM_IO:
833                 /* Current speed is unknown and not detectable by IO port */
834                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
835                 break;
836         case ACPI_ADR_SPACE_FIXED_HARDWARE:
837                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
838                 policy->cur = get_cur_freq_on_cpu(cpu);
839                 break;
840         default:
841                 break;
842         }
843
844         /* notify BIOS that we exist */
845         acpi_processor_notify_smm(THIS_MODULE);
846
847         /* Check for APERF/MPERF support in hardware */
848         if (boot_cpu_has(X86_FEATURE_APERFMPERF))
849                 acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
850
851         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
852         for (i = 0; i < perf->state_count; i++)
853                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
854                         (i == perf->state ? '*' : ' '), i,
855                         (u32) perf->states[i].core_frequency,
856                         (u32) perf->states[i].power,
857                         (u32) perf->states[i].transition_latency);
858
859         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
860
861         /*
862          * the first call to ->target() should result in us actually
863          * writing something to the appropriate registers.
864          */
865         data->resume = 1;
866
867         return result;
868
869 err_freqfree:
870         kfree(data->freq_table);
871 err_unreg:
872         acpi_processor_unregister_performance(perf, cpu);
873 err_free:
874         kfree(data);
875         per_cpu(acfreq_data, cpu) = NULL;
876
877         return result;
878 }
879
880 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
881 {
882         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
883
884         pr_debug("acpi_cpufreq_cpu_exit\n");
885
886         if (data) {
887                 cpufreq_frequency_table_put_attr(policy->cpu);
888                 per_cpu(acfreq_data, policy->cpu) = NULL;
889                 acpi_processor_unregister_performance(data->acpi_data,
890                                                       policy->cpu);
891                 kfree(data->freq_table);
892                 kfree(data);
893         }
894
895         return 0;
896 }
897
898 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
899 {
900         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
901
902         pr_debug("acpi_cpufreq_resume\n");
903
904         data->resume = 1;
905
906         return 0;
907 }
908
909 static struct freq_attr *acpi_cpufreq_attr[] = {
910         &cpufreq_freq_attr_scaling_available_freqs,
911         NULL,   /* this is a placeholder for cpb, do not remove */
912         NULL,
913 };
914
915 static struct cpufreq_driver acpi_cpufreq_driver = {
916         .verify         = acpi_cpufreq_verify,
917         .target         = acpi_cpufreq_target,
918         .bios_limit     = acpi_processor_get_bios_limit,
919         .init           = acpi_cpufreq_cpu_init,
920         .exit           = acpi_cpufreq_cpu_exit,
921         .resume         = acpi_cpufreq_resume,
922         .name           = "acpi-cpufreq",
923         .owner          = THIS_MODULE,
924         .attr           = acpi_cpufreq_attr,
925 };
926
927 static void __init acpi_cpufreq_boost_init(void)
928 {
929         if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
930                 msrs = msrs_alloc();
931
932                 if (!msrs)
933                         return;
934
935                 boost_supported = true;
936                 boost_enabled = boost_state(0);
937
938                 get_online_cpus();
939
940                 /* Force all MSRs to the same value */
941                 boost_set_msrs(boost_enabled, cpu_online_mask);
942
943                 register_cpu_notifier(&boost_nb);
944
945                 put_online_cpus();
946         } else
947                 global_boost.attr.mode = 0444;
948
949         /* We create the boost file in any case, though for systems without
950          * hardware support it will be read-only and hardwired to return 0.
951          */
952         if (cpufreq_sysfs_create_file(&(global_boost.attr)))
953                 pr_warn(PFX "could not register global boost sysfs file\n");
954         else
955                 pr_debug("registered global boost sysfs file\n");
956 }
957
958 static void __exit acpi_cpufreq_boost_exit(void)
959 {
960         cpufreq_sysfs_remove_file(&(global_boost.attr));
961
962         if (msrs) {
963                 unregister_cpu_notifier(&boost_nb);
964
965                 msrs_free(msrs);
966                 msrs = NULL;
967         }
968 }
969
970 static int __init acpi_cpufreq_init(void)
971 {
972         int ret;
973
974         if (acpi_disabled)
975                 return 0;
976
977         pr_debug("acpi_cpufreq_init\n");
978
979         ret = acpi_cpufreq_early_init();
980         if (ret)
981                 return ret;
982
983 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
984         /* this is a sysfs file with a strange name and an even stranger
985          * semantic - per CPU instantiation, but system global effect.
986          * Lets enable it only on AMD CPUs for compatibility reasons and
987          * only if configured. This is considered legacy code, which
988          * will probably be removed at some point in the future.
989          */
990         if (check_amd_hwpstate_cpu(0)) {
991                 struct freq_attr **iter;
992
993                 pr_debug("adding sysfs entry for cpb\n");
994
995                 for (iter = acpi_cpufreq_attr; *iter != NULL; iter++)
996                         ;
997
998                 /* make sure there is a terminator behind it */
999                 if (iter[1] == NULL)
1000                         *iter = &cpb;
1001         }
1002 #endif
1003
1004         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1005         if (ret)
1006                 free_acpi_perf_data();
1007         else
1008                 acpi_cpufreq_boost_init();
1009
1010         return ret;
1011 }
1012
1013 static void __exit acpi_cpufreq_exit(void)
1014 {
1015         pr_debug("acpi_cpufreq_exit\n");
1016
1017         acpi_cpufreq_boost_exit();
1018
1019         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1020
1021         free_acpi_perf_data();
1022 }
1023
1024 module_param(acpi_pstate_strict, uint, 0644);
1025 MODULE_PARM_DESC(acpi_pstate_strict,
1026         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1027         "performed during frequency changes.");
1028
1029 late_initcall(acpi_cpufreq_init);
1030 module_exit(acpi_cpufreq_exit);
1031
1032 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1033         X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1034         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1035         {}
1036 };
1037 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1038
1039 static const struct acpi_device_id processor_device_ids[] = {
1040         {ACPI_PROCESSOR_OBJECT_HID, },
1041         {ACPI_PROCESSOR_DEVICE_HID, },
1042         {},
1043 };
1044 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1045
1046 MODULE_ALIAS("acpi");