]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/arm_big_little.c
cpufreq: arm_big_little: reconfigure switcher behavior at run time
[karo-tx-linux.git] / drivers / cpufreq / arm_big_little.c
1 /*
2  * ARM big.LITTLE Platforms CPUFreq support
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  * Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
6  *
7  * Copyright (C) 2013 Linaro.
8  * Viresh Kumar <viresh.kumar@linaro.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15  * kind, whether express or implied; without even the implied warranty
16  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/clk.h>
23 #include <linux/cpu.h>
24 #include <linux/cpufreq.h>
25 #include <linux/cpumask.h>
26 #include <linux/export.h>
27 #include <linux/mutex.h>
28 #include <linux/of_platform.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/topology.h>
32 #include <linux/types.h>
33 #include <asm/bL_switcher.h>
34
35 #include "arm_big_little.h"
36
37 /* Currently we support only two clusters */
38 #define A15_CLUSTER     0
39 #define A7_CLUSTER      1
40 #define MAX_CLUSTERS    2
41
42 #ifdef CONFIG_BL_SWITCHER
43 static bool bL_switching_enabled;
44 #define is_bL_switching_enabled()       bL_switching_enabled
45 #define set_switching_enabled(x)        (bL_switching_enabled = (x))
46 #else
47 #define is_bL_switching_enabled()       false
48 #define set_switching_enabled(x)        do { } while (0)
49 #endif
50
51 #define ACTUAL_FREQ(cluster, freq)  ((cluster == A7_CLUSTER) ? freq << 1 : freq)
52 #define VIRT_FREQ(cluster, freq)    ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
53
54 static struct cpufreq_arm_bL_ops *arm_bL_ops;
55 static struct clk *clk[MAX_CLUSTERS];
56 static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
57 static atomic_t cluster_usage[MAX_CLUSTERS + 1];
58
59 static unsigned int clk_big_min;        /* (Big) clock frequencies */
60 static unsigned int clk_little_max;     /* Maximum clock frequency (Little) */
61
62 static DEFINE_PER_CPU(unsigned int, physical_cluster);
63 static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
64
65 static struct mutex cluster_lock[MAX_CLUSTERS];
66
67 static inline int raw_cpu_to_cluster(int cpu)
68 {
69         return topology_physical_package_id(cpu);
70 }
71
72 static inline int cpu_to_cluster(int cpu)
73 {
74         return is_bL_switching_enabled() ?
75                 MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
76 }
77
78 static unsigned int find_cluster_maxfreq(int cluster)
79 {
80         int j;
81         u32 max_freq = 0, cpu_freq;
82
83         for_each_online_cpu(j) {
84                 cpu_freq = per_cpu(cpu_last_req_freq, j);
85
86                 if ((cluster == per_cpu(physical_cluster, j)) &&
87                                 (max_freq < cpu_freq))
88                         max_freq = cpu_freq;
89         }
90
91         pr_debug("%s: cluster: %d, max freq: %d\n", __func__, cluster,
92                         max_freq);
93
94         return max_freq;
95 }
96
97 static unsigned int clk_get_cpu_rate(unsigned int cpu)
98 {
99         u32 cur_cluster = per_cpu(physical_cluster, cpu);
100         u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
101
102         /* For switcher we use virtual A7 clock rates */
103         if (is_bL_switching_enabled())
104                 rate = VIRT_FREQ(cur_cluster, rate);
105
106         pr_debug("%s: cpu: %d, cluster: %d, freq: %u\n", __func__, cpu,
107                         cur_cluster, rate);
108
109         return rate;
110 }
111
112 static unsigned int bL_cpufreq_get_rate(unsigned int cpu)
113 {
114         if (is_bL_switching_enabled()) {
115                 pr_debug("%s: freq: %d\n", __func__, per_cpu(cpu_last_req_freq,
116                                         cpu));
117
118                 return per_cpu(cpu_last_req_freq, cpu);
119         } else {
120                 return clk_get_cpu_rate(cpu);
121         }
122 }
123
124 static unsigned int
125 bL_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
126 {
127         u32 new_rate, prev_rate;
128         int ret;
129         bool bLs = is_bL_switching_enabled();
130
131         mutex_lock(&cluster_lock[new_cluster]);
132
133         if (bLs) {
134                 prev_rate = per_cpu(cpu_last_req_freq, cpu);
135                 per_cpu(cpu_last_req_freq, cpu) = rate;
136                 per_cpu(physical_cluster, cpu) = new_cluster;
137
138                 new_rate = find_cluster_maxfreq(new_cluster);
139                 new_rate = ACTUAL_FREQ(new_cluster, new_rate);
140         } else {
141                 new_rate = rate;
142         }
143
144         pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d, freq: %d\n",
145                         __func__, cpu, old_cluster, new_cluster, new_rate);
146
147         ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
148         if (WARN_ON(ret)) {
149                 pr_err("clk_set_rate failed: %d, new cluster: %d\n", ret,
150                                 new_cluster);
151                 if (bLs) {
152                         per_cpu(cpu_last_req_freq, cpu) = prev_rate;
153                         per_cpu(physical_cluster, cpu) = old_cluster;
154                 }
155
156                 mutex_unlock(&cluster_lock[new_cluster]);
157
158                 return ret;
159         }
160
161         mutex_unlock(&cluster_lock[new_cluster]);
162
163         /* Recalc freq for old cluster when switching clusters */
164         if (old_cluster != new_cluster) {
165                 pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d\n",
166                                 __func__, cpu, old_cluster, new_cluster);
167
168                 /* Switch cluster */
169                 bL_switch_request(cpu, new_cluster);
170
171                 mutex_lock(&cluster_lock[old_cluster]);
172
173                 /* Set freq of old cluster if there are cpus left on it */
174                 new_rate = find_cluster_maxfreq(old_cluster);
175                 new_rate = ACTUAL_FREQ(old_cluster, new_rate);
176
177                 if (new_rate) {
178                         pr_debug("%s: Updating rate of old cluster: %d, to freq: %d\n",
179                                         __func__, old_cluster, new_rate);
180
181                         if (clk_set_rate(clk[old_cluster], new_rate * 1000))
182                                 pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
183                                                 __func__, ret, old_cluster);
184                 }
185                 mutex_unlock(&cluster_lock[old_cluster]);
186         }
187
188         return 0;
189 }
190
191 /* Set clock frequency */
192 static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
193                 unsigned int index)
194 {
195         struct cpufreq_freqs freqs;
196         u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
197         int ret = 0;
198
199         cur_cluster = cpu_to_cluster(cpu);
200         new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
201
202         freqs.old = bL_cpufreq_get_rate(cpu);
203         freqs.new = freq_table[cur_cluster][index].frequency;
204
205         pr_debug("%s: cpu: %d, cluster: %d, oldfreq: %d, target freq: %d, new freq: %d\n",
206                         __func__, cpu, cur_cluster, freqs.old, freqs.new,
207                         freqs.new);
208
209         if (is_bL_switching_enabled()) {
210                 if ((actual_cluster == A15_CLUSTER) &&
211                                 (freqs.new < clk_big_min)) {
212                         new_cluster = A7_CLUSTER;
213                 } else if ((actual_cluster == A7_CLUSTER) &&
214                                 (freqs.new > clk_little_max)) {
215                         new_cluster = A15_CLUSTER;
216                 }
217         }
218
219         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
220
221         ret = bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs.new);
222         if (ret)
223                 freqs.new = freqs.old;
224
225         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
226
227         return ret;
228 }
229
230 static inline u32 get_table_count(struct cpufreq_frequency_table *table)
231 {
232         int count;
233
234         for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
235                 ;
236
237         return count;
238 }
239
240 /* get the minimum frequency in the cpufreq_frequency_table */
241 static inline u32 get_table_min(struct cpufreq_frequency_table *table)
242 {
243         int i;
244         uint32_t min_freq = ~0;
245         for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
246                 if (table[i].frequency < min_freq)
247                         min_freq = table[i].frequency;
248         return min_freq;
249 }
250
251 /* get the maximum frequency in the cpufreq_frequency_table */
252 static inline u32 get_table_max(struct cpufreq_frequency_table *table)
253 {
254         int i;
255         uint32_t max_freq = 0;
256         for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
257                 if (table[i].frequency > max_freq)
258                         max_freq = table[i].frequency;
259         return max_freq;
260 }
261
262 static int merge_cluster_tables(void)
263 {
264         int i, j, k = 0, count = 1;
265         struct cpufreq_frequency_table *table;
266
267         for (i = 0; i < MAX_CLUSTERS; i++)
268                 count += get_table_count(freq_table[i]);
269
270         table = kzalloc(sizeof(*table) * count, GFP_KERNEL);
271         if (!table)
272                 return -ENOMEM;
273
274         freq_table[MAX_CLUSTERS] = table;
275
276         /* Add in reverse order to get freqs in increasing order */
277         for (i = MAX_CLUSTERS - 1; i >= 0; i--) {
278                 for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
279                                 j++) {
280                         table[k].frequency = VIRT_FREQ(i,
281                                         freq_table[i][j].frequency);
282                         pr_debug("%s: index: %d, freq: %d\n", __func__, k,
283                                         table[k].frequency);
284                         k++;
285                 }
286         }
287
288         table[k].driver_data = k;
289         table[k].frequency = CPUFREQ_TABLE_END;
290
291         pr_debug("%s: End, table: %p, count: %d\n", __func__, table, k);
292
293         return 0;
294 }
295
296 static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
297 {
298         u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
299
300         if (!freq_table[cluster])
301                 return;
302
303         clk_put(clk[cluster]);
304         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
305         dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster);
306 }
307
308 static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
309 {
310         u32 cluster = cpu_to_cluster(cpu_dev->id);
311         int i;
312
313         if (atomic_dec_return(&cluster_usage[cluster]))
314                 return;
315
316         if (cluster < MAX_CLUSTERS)
317                 return _put_cluster_clk_and_freq_table(cpu_dev);
318
319         for_each_present_cpu(i) {
320                 struct device *cdev = get_cpu_device(i);
321                 if (!cdev) {
322                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
323                         return;
324                 }
325
326                 _put_cluster_clk_and_freq_table(cdev);
327         }
328
329         /* free virtual table */
330         kfree(freq_table[cluster]);
331 }
332
333 static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
334 {
335         u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
336         char name[14] = "cpu-cluster.";
337         int ret;
338
339         if (freq_table[cluster])
340                 return 0;
341
342         ret = arm_bL_ops->init_opp_table(cpu_dev);
343         if (ret) {
344                 dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n",
345                                 __func__, cpu_dev->id, ret);
346                 goto out;
347         }
348
349         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
350         if (ret) {
351                 dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n",
352                                 __func__, cpu_dev->id, ret);
353                 goto out;
354         }
355
356         name[12] = cluster + '0';
357         clk[cluster] = clk_get(cpu_dev, name);
358         if (!IS_ERR(clk[cluster])) {
359                 dev_dbg(cpu_dev, "%s: clk: %p & freq table: %p, cluster: %d\n",
360                                 __func__, clk[cluster], freq_table[cluster],
361                                 cluster);
362                 return 0;
363         }
364
365         dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
366                         __func__, cpu_dev->id, cluster);
367         ret = PTR_ERR(clk[cluster]);
368         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
369
370 out:
371         dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
372                         cluster);
373         return ret;
374 }
375
376 static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
377 {
378         u32 cluster = cpu_to_cluster(cpu_dev->id);
379         int i, ret;
380
381         if (atomic_inc_return(&cluster_usage[cluster]) != 1)
382                 return 0;
383
384         if (cluster < MAX_CLUSTERS) {
385                 ret = _get_cluster_clk_and_freq_table(cpu_dev);
386                 if (ret)
387                         atomic_dec(&cluster_usage[cluster]);
388                 return ret;
389         }
390
391         /*
392          * Get data for all clusters and fill virtual cluster with a merge of
393          * both
394          */
395         for_each_present_cpu(i) {
396                 struct device *cdev = get_cpu_device(i);
397                 if (!cdev) {
398                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
399                         return -ENODEV;
400                 }
401
402                 ret = _get_cluster_clk_and_freq_table(cdev);
403                 if (ret)
404                         goto put_clusters;
405         }
406
407         ret = merge_cluster_tables();
408         if (ret)
409                 goto put_clusters;
410
411         /* Assuming 2 cluster, set clk_big_min and clk_little_max */
412         clk_big_min = get_table_min(freq_table[0]);
413         clk_little_max = VIRT_FREQ(1, get_table_max(freq_table[1]));
414
415         pr_debug("%s: cluster: %d, clk_big_min: %d, clk_little_max: %d\n",
416                         __func__, cluster, clk_big_min, clk_little_max);
417
418         return 0;
419
420 put_clusters:
421         for_each_present_cpu(i) {
422                 struct device *cdev = get_cpu_device(i);
423                 if (!cdev) {
424                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
425                         return -ENODEV;
426                 }
427
428                 _put_cluster_clk_and_freq_table(cdev);
429         }
430
431         atomic_dec(&cluster_usage[cluster]);
432
433         return ret;
434 }
435
436 /* Per-CPU initialization */
437 static int bL_cpufreq_init(struct cpufreq_policy *policy)
438 {
439         u32 cur_cluster = cpu_to_cluster(policy->cpu);
440         struct device *cpu_dev;
441         int ret;
442
443         cpu_dev = get_cpu_device(policy->cpu);
444         if (!cpu_dev) {
445                 pr_err("%s: failed to get cpu%d device\n", __func__,
446                                 policy->cpu);
447                 return -ENODEV;
448         }
449
450         ret = get_cluster_clk_and_freq_table(cpu_dev);
451         if (ret)
452                 return ret;
453
454         ret = cpufreq_table_validate_and_show(policy, freq_table[cur_cluster]);
455         if (ret) {
456                 dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n",
457                                 policy->cpu, cur_cluster);
458                 put_cluster_clk_and_freq_table(cpu_dev);
459                 return ret;
460         }
461
462         if (cur_cluster < MAX_CLUSTERS) {
463                 cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu));
464
465                 per_cpu(physical_cluster, policy->cpu) = cur_cluster;
466         } else {
467                 /* Assumption: during init, we are always running on A15 */
468                 per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
469         }
470
471         if (arm_bL_ops->get_transition_latency)
472                 policy->cpuinfo.transition_latency =
473                         arm_bL_ops->get_transition_latency(cpu_dev);
474         else
475                 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
476
477         if (is_bL_switching_enabled())
478                 per_cpu(cpu_last_req_freq, policy->cpu) = clk_get_cpu_rate(policy->cpu);
479
480         dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
481         return 0;
482 }
483
484 static int bL_cpufreq_exit(struct cpufreq_policy *policy)
485 {
486         struct device *cpu_dev;
487
488         cpu_dev = get_cpu_device(policy->cpu);
489         if (!cpu_dev) {
490                 pr_err("%s: failed to get cpu%d device\n", __func__,
491                                 policy->cpu);
492                 return -ENODEV;
493         }
494
495         cpufreq_frequency_table_put_attr(policy->cpu);
496         put_cluster_clk_and_freq_table(cpu_dev);
497         dev_dbg(cpu_dev, "%s: Exited, cpu: %d\n", __func__, policy->cpu);
498
499         return 0;
500 }
501
502 static struct cpufreq_driver bL_cpufreq_driver = {
503         .name                   = "arm-big-little",
504         .flags                  = CPUFREQ_STICKY |
505                                         CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
506         .verify                 = cpufreq_generic_frequency_table_verify,
507         .target_index           = bL_cpufreq_set_target,
508         .get                    = bL_cpufreq_get_rate,
509         .init                   = bL_cpufreq_init,
510         .exit                   = bL_cpufreq_exit,
511         .attr                   = cpufreq_generic_attr,
512 };
513
514 static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
515                                         unsigned long action, void *_arg)
516 {
517         pr_debug("%s: action: %ld\n", __func__, action);
518
519         switch (action) {
520         case BL_NOTIFY_PRE_ENABLE:
521         case BL_NOTIFY_PRE_DISABLE:
522                 cpufreq_unregister_driver(&bL_cpufreq_driver);
523                 break;
524
525         case BL_NOTIFY_POST_ENABLE:
526                 set_switching_enabled(true);
527                 cpufreq_register_driver(&bL_cpufreq_driver);
528                 break;
529
530         case BL_NOTIFY_POST_DISABLE:
531                 set_switching_enabled(false);
532                 cpufreq_register_driver(&bL_cpufreq_driver);
533                 break;
534
535         default:
536                 return NOTIFY_DONE;
537         }
538
539         return NOTIFY_OK;
540 }
541
542 static struct notifier_block bL_switcher_notifier = {
543         .notifier_call = bL_cpufreq_switcher_notifier,
544 };
545
546 int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops)
547 {
548         int ret, i;
549
550         if (arm_bL_ops) {
551                 pr_debug("%s: Already registered: %s, exiting\n", __func__,
552                                 arm_bL_ops->name);
553                 return -EBUSY;
554         }
555
556         if (!ops || !strlen(ops->name) || !ops->init_opp_table) {
557                 pr_err("%s: Invalid arm_bL_ops, exiting\n", __func__);
558                 return -ENODEV;
559         }
560
561         arm_bL_ops = ops;
562
563         ret = bL_switcher_get_enabled();
564         set_switching_enabled(ret);
565
566         for (i = 0; i < MAX_CLUSTERS; i++)
567                 mutex_init(&cluster_lock[i]);
568
569         ret = cpufreq_register_driver(&bL_cpufreq_driver);
570         if (ret) {
571                 pr_info("%s: Failed registering platform driver: %s, err: %d\n",
572                                 __func__, ops->name, ret);
573                 arm_bL_ops = NULL;
574         } else {
575                 ret = bL_switcher_register_notifier(&bL_switcher_notifier);
576                 if (ret) {
577                         cpufreq_unregister_driver(&bL_cpufreq_driver);
578                         arm_bL_ops = NULL;
579                 } else {
580                         pr_info("%s: Registered platform driver: %s\n",
581                                         __func__, ops->name);
582                 }
583         }
584
585         bL_switcher_put_enabled();
586         return ret;
587 }
588 EXPORT_SYMBOL_GPL(bL_cpufreq_register);
589
590 void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops)
591 {
592         if (arm_bL_ops != ops) {
593                 pr_err("%s: Registered with: %s, can't unregister, exiting\n",
594                                 __func__, arm_bL_ops->name);
595                 return;
596         }
597
598         bL_switcher_get_enabled();
599         bL_switcher_unregister_notifier(&bL_switcher_notifier);
600         cpufreq_unregister_driver(&bL_cpufreq_driver);
601         bL_switcher_put_enabled();
602         pr_info("%s: Un-registered platform driver: %s\n", __func__,
603                         arm_bL_ops->name);
604         arm_bL_ops = NULL;
605 }
606 EXPORT_SYMBOL_GPL(bL_cpufreq_unregister);