]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/arm_big_little.c
9986f79123289ba8ae2f60abd42c680d44abc93c
[karo-tx-linux.git] / drivers / cpufreq / arm_big_little.c
1 /*
2  * ARM big.LITTLE Platforms CPUFreq support
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  * Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
6  *
7  * Copyright (C) 2013 Linaro.
8  * Viresh Kumar <viresh.kumar@linaro.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15  * kind, whether express or implied; without even the implied warranty
16  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/clk.h>
23 #include <linux/cpu.h>
24 #include <linux/cpufreq.h>
25 #include <linux/cpumask.h>
26 #include <linux/export.h>
27 #include <linux/mutex.h>
28 #include <linux/of_platform.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/topology.h>
32 #include <linux/types.h>
33 #include <asm/bL_switcher.h>
34
35 #include "arm_big_little.h"
36
37 /* Currently we support only two clusters */
38 #define A15_CLUSTER     0
39 #define A7_CLUSTER      1
40 #define MAX_CLUSTERS    2
41
42 #ifdef CONFIG_BL_SWITCHER
43 #define is_bL_switching_enabled()       true
44 #else
45 #define is_bL_switching_enabled()       false
46 #endif
47
48 #define ACTUAL_FREQ(cluster, freq)  ((cluster == A7_CLUSTER) ? freq << 1 : freq)
49 #define VIRT_FREQ(cluster, freq)    ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
50
51 static struct cpufreq_arm_bL_ops *arm_bL_ops;
52 static struct clk *clk[MAX_CLUSTERS];
53 static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
54 static atomic_t cluster_usage[MAX_CLUSTERS + 1];
55
56 static unsigned int clk_big_min;        /* (Big) clock frequencies */
57 static unsigned int clk_little_max;     /* Maximum clock frequency (Little) */
58
59 static DEFINE_PER_CPU(unsigned int, physical_cluster);
60 static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
61
62 static struct mutex cluster_lock[MAX_CLUSTERS];
63
64 static inline int raw_cpu_to_cluster(int cpu)
65 {
66         return topology_physical_package_id(cpu);
67 }
68
69 static inline int cpu_to_cluster(int cpu)
70 {
71         return is_bL_switching_enabled() ?
72                 MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
73 }
74
75 static unsigned int find_cluster_maxfreq(int cluster)
76 {
77         int j;
78         u32 max_freq = 0, cpu_freq;
79
80         for_each_online_cpu(j) {
81                 cpu_freq = per_cpu(cpu_last_req_freq, j);
82
83                 if ((cluster == per_cpu(physical_cluster, j)) &&
84                                 (max_freq < cpu_freq))
85                         max_freq = cpu_freq;
86         }
87
88         pr_debug("%s: cluster: %d, max freq: %d\n", __func__, cluster,
89                         max_freq);
90
91         return max_freq;
92 }
93
94 static unsigned int clk_get_cpu_rate(unsigned int cpu)
95 {
96         u32 cur_cluster = per_cpu(physical_cluster, cpu);
97         u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
98
99         /* For switcher we use virtual A7 clock rates */
100         if (is_bL_switching_enabled())
101                 rate = VIRT_FREQ(cur_cluster, rate);
102
103         pr_debug("%s: cpu: %d, cluster: %d, freq: %u\n", __func__, cpu,
104                         cur_cluster, rate);
105
106         return rate;
107 }
108
109 static unsigned int bL_cpufreq_get_rate(unsigned int cpu)
110 {
111         if (is_bL_switching_enabled()) {
112                 pr_debug("%s: freq: %d\n", __func__, per_cpu(cpu_last_req_freq,
113                                         cpu));
114
115                 return per_cpu(cpu_last_req_freq, cpu);
116         } else {
117                 return clk_get_cpu_rate(cpu);
118         }
119 }
120
121 static unsigned int
122 bL_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
123 {
124         u32 new_rate, prev_rate;
125         int ret;
126         bool bLs = is_bL_switching_enabled();
127
128         mutex_lock(&cluster_lock[new_cluster]);
129
130         if (bLs) {
131                 prev_rate = per_cpu(cpu_last_req_freq, cpu);
132                 per_cpu(cpu_last_req_freq, cpu) = rate;
133                 per_cpu(physical_cluster, cpu) = new_cluster;
134
135                 new_rate = find_cluster_maxfreq(new_cluster);
136                 new_rate = ACTUAL_FREQ(new_cluster, new_rate);
137         } else {
138                 new_rate = rate;
139         }
140
141         pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d, freq: %d\n",
142                         __func__, cpu, old_cluster, new_cluster, new_rate);
143
144         ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
145         if (WARN_ON(ret)) {
146                 pr_err("clk_set_rate failed: %d, new cluster: %d\n", ret,
147                                 new_cluster);
148                 if (bLs) {
149                         per_cpu(cpu_last_req_freq, cpu) = prev_rate;
150                         per_cpu(physical_cluster, cpu) = old_cluster;
151                 }
152
153                 mutex_unlock(&cluster_lock[new_cluster]);
154
155                 return ret;
156         }
157
158         mutex_unlock(&cluster_lock[new_cluster]);
159
160         /* Recalc freq for old cluster when switching clusters */
161         if (old_cluster != new_cluster) {
162                 pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d\n",
163                                 __func__, cpu, old_cluster, new_cluster);
164
165                 /* Switch cluster */
166                 bL_switch_request(cpu, new_cluster);
167
168                 mutex_lock(&cluster_lock[old_cluster]);
169
170                 /* Set freq of old cluster if there are cpus left on it */
171                 new_rate = find_cluster_maxfreq(old_cluster);
172                 new_rate = ACTUAL_FREQ(old_cluster, new_rate);
173
174                 if (new_rate) {
175                         pr_debug("%s: Updating rate of old cluster: %d, to freq: %d\n",
176                                         __func__, old_cluster, new_rate);
177
178                         if (clk_set_rate(clk[old_cluster], new_rate * 1000))
179                                 pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
180                                                 __func__, ret, old_cluster);
181                 }
182                 mutex_unlock(&cluster_lock[old_cluster]);
183         }
184
185         return 0;
186 }
187
188 /* Set clock frequency */
189 static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
190                 unsigned int index)
191 {
192         struct cpufreq_freqs freqs;
193         u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
194         int ret = 0;
195
196         cur_cluster = cpu_to_cluster(cpu);
197         new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
198
199         freqs.old = bL_cpufreq_get_rate(cpu);
200         freqs.new = freq_table[cur_cluster][index].frequency;
201
202         pr_debug("%s: cpu: %d, cluster: %d, oldfreq: %d, target freq: %d, new freq: %d\n",
203                         __func__, cpu, cur_cluster, freqs.old, freqs.new,
204                         freqs.new);
205
206         if (is_bL_switching_enabled()) {
207                 if ((actual_cluster == A15_CLUSTER) &&
208                                 (freqs.new < clk_big_min)) {
209                         new_cluster = A7_CLUSTER;
210                 } else if ((actual_cluster == A7_CLUSTER) &&
211                                 (freqs.new > clk_little_max)) {
212                         new_cluster = A15_CLUSTER;
213                 }
214         }
215
216         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
217
218         ret = bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs.new);
219         if (ret)
220                 freqs.new = freqs.old;
221
222         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
223
224         return ret;
225 }
226
227 static inline u32 get_table_count(struct cpufreq_frequency_table *table)
228 {
229         int count;
230
231         for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
232                 ;
233
234         return count;
235 }
236
237 /* get the minimum frequency in the cpufreq_frequency_table */
238 static inline u32 get_table_min(struct cpufreq_frequency_table *table)
239 {
240         int i;
241         uint32_t min_freq = ~0;
242         for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
243                 if (table[i].frequency < min_freq)
244                         min_freq = table[i].frequency;
245         return min_freq;
246 }
247
248 /* get the maximum frequency in the cpufreq_frequency_table */
249 static inline u32 get_table_max(struct cpufreq_frequency_table *table)
250 {
251         int i;
252         uint32_t max_freq = 0;
253         for (i = 0; (table[i].frequency != CPUFREQ_TABLE_END); i++)
254                 if (table[i].frequency > max_freq)
255                         max_freq = table[i].frequency;
256         return max_freq;
257 }
258
259 static int merge_cluster_tables(void)
260 {
261         int i, j, k = 0, count = 1;
262         struct cpufreq_frequency_table *table;
263
264         for (i = 0; i < MAX_CLUSTERS; i++)
265                 count += get_table_count(freq_table[i]);
266
267         table = kzalloc(sizeof(*table) * count, GFP_KERNEL);
268         if (!table)
269                 return -ENOMEM;
270
271         freq_table[MAX_CLUSTERS] = table;
272
273         /* Add in reverse order to get freqs in increasing order */
274         for (i = MAX_CLUSTERS - 1; i >= 0; i--) {
275                 for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
276                                 j++) {
277                         table[k].frequency = VIRT_FREQ(i,
278                                         freq_table[i][j].frequency);
279                         pr_debug("%s: index: %d, freq: %d\n", __func__, k,
280                                         table[k].frequency);
281                         k++;
282                 }
283         }
284
285         table[k].driver_data = k;
286         table[k].frequency = CPUFREQ_TABLE_END;
287
288         pr_debug("%s: End, table: %p, count: %d\n", __func__, table, k);
289
290         return 0;
291 }
292
293 static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
294 {
295         u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
296
297         if (!freq_table[cluster])
298                 return;
299
300         clk_put(clk[cluster]);
301         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
302         dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster);
303 }
304
305 static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
306 {
307         u32 cluster = cpu_to_cluster(cpu_dev->id);
308         int i;
309
310         if (atomic_dec_return(&cluster_usage[cluster]))
311                 return;
312
313         if (cluster < MAX_CLUSTERS)
314                 return _put_cluster_clk_and_freq_table(cpu_dev);
315
316         for_each_present_cpu(i) {
317                 struct device *cdev = get_cpu_device(i);
318                 if (!cdev) {
319                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
320                         return;
321                 }
322
323                 _put_cluster_clk_and_freq_table(cdev);
324         }
325
326         /* free virtual table */
327         kfree(freq_table[cluster]);
328 }
329
330 static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
331 {
332         u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
333         char name[14] = "cpu-cluster.";
334         int ret;
335
336         if (freq_table[cluster])
337                 return 0;
338
339         ret = arm_bL_ops->init_opp_table(cpu_dev);
340         if (ret) {
341                 dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n",
342                                 __func__, cpu_dev->id, ret);
343                 goto out;
344         }
345
346         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
347         if (ret) {
348                 dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n",
349                                 __func__, cpu_dev->id, ret);
350                 goto out;
351         }
352
353         name[12] = cluster + '0';
354         clk[cluster] = clk_get(cpu_dev, name);
355         if (!IS_ERR(clk[cluster])) {
356                 dev_dbg(cpu_dev, "%s: clk: %p & freq table: %p, cluster: %d\n",
357                                 __func__, clk[cluster], freq_table[cluster],
358                                 cluster);
359                 return 0;
360         }
361
362         dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
363                         __func__, cpu_dev->id, cluster);
364         ret = PTR_ERR(clk[cluster]);
365         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
366
367 out:
368         dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
369                         cluster);
370         return ret;
371 }
372
373 static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
374 {
375         u32 cluster = cpu_to_cluster(cpu_dev->id);
376         int i, ret;
377
378         if (atomic_inc_return(&cluster_usage[cluster]) != 1)
379                 return 0;
380
381         if (cluster < MAX_CLUSTERS) {
382                 ret = _get_cluster_clk_and_freq_table(cpu_dev);
383                 if (ret)
384                         atomic_dec(&cluster_usage[cluster]);
385                 return ret;
386         }
387
388         /*
389          * Get data for all clusters and fill virtual cluster with a merge of
390          * both
391          */
392         for_each_present_cpu(i) {
393                 struct device *cdev = get_cpu_device(i);
394                 if (!cdev) {
395                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
396                         return -ENODEV;
397                 }
398
399                 ret = _get_cluster_clk_and_freq_table(cdev);
400                 if (ret)
401                         goto put_clusters;
402         }
403
404         ret = merge_cluster_tables();
405         if (ret)
406                 goto put_clusters;
407
408         /* Assuming 2 cluster, set clk_big_min and clk_little_max */
409         clk_big_min = get_table_min(freq_table[0]);
410         clk_little_max = VIRT_FREQ(1, get_table_max(freq_table[1]));
411
412         pr_debug("%s: cluster: %d, clk_big_min: %d, clk_little_max: %d\n",
413                         __func__, cluster, clk_big_min, clk_little_max);
414
415         return 0;
416
417 put_clusters:
418         for_each_present_cpu(i) {
419                 struct device *cdev = get_cpu_device(i);
420                 if (!cdev) {
421                         pr_err("%s: failed to get cpu%d device\n", __func__, i);
422                         return -ENODEV;
423                 }
424
425                 _put_cluster_clk_and_freq_table(cdev);
426         }
427
428         atomic_dec(&cluster_usage[cluster]);
429
430         return ret;
431 }
432
433 /* Per-CPU initialization */
434 static int bL_cpufreq_init(struct cpufreq_policy *policy)
435 {
436         u32 cur_cluster = cpu_to_cluster(policy->cpu);
437         struct device *cpu_dev;
438         int ret;
439
440         cpu_dev = get_cpu_device(policy->cpu);
441         if (!cpu_dev) {
442                 pr_err("%s: failed to get cpu%d device\n", __func__,
443                                 policy->cpu);
444                 return -ENODEV;
445         }
446
447         ret = get_cluster_clk_and_freq_table(cpu_dev);
448         if (ret)
449                 return ret;
450
451         ret = cpufreq_table_validate_and_show(policy, freq_table[cur_cluster]);
452         if (ret) {
453                 dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n",
454                                 policy->cpu, cur_cluster);
455                 put_cluster_clk_and_freq_table(cpu_dev);
456                 return ret;
457         }
458
459         if (cur_cluster < MAX_CLUSTERS) {
460                 cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu));
461
462                 per_cpu(physical_cluster, policy->cpu) = cur_cluster;
463         } else {
464                 /* Assumption: during init, we are always running on A15 */
465                 per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
466         }
467
468         if (arm_bL_ops->get_transition_latency)
469                 policy->cpuinfo.transition_latency =
470                         arm_bL_ops->get_transition_latency(cpu_dev);
471         else
472                 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
473
474         if (is_bL_switching_enabled())
475                 per_cpu(cpu_last_req_freq, policy->cpu) = clk_get_cpu_rate(policy->cpu);
476
477         dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
478         return 0;
479 }
480
481 static int bL_cpufreq_exit(struct cpufreq_policy *policy)
482 {
483         struct device *cpu_dev;
484
485         cpu_dev = get_cpu_device(policy->cpu);
486         if (!cpu_dev) {
487                 pr_err("%s: failed to get cpu%d device\n", __func__,
488                                 policy->cpu);
489                 return -ENODEV;
490         }
491
492         cpufreq_frequency_table_put_attr(policy->cpu);
493         put_cluster_clk_and_freq_table(cpu_dev);
494         dev_dbg(cpu_dev, "%s: Exited, cpu: %d\n", __func__, policy->cpu);
495
496         return 0;
497 }
498
499 static struct cpufreq_driver bL_cpufreq_driver = {
500         .name                   = "arm-big-little",
501         .flags                  = CPUFREQ_STICKY |
502                                         CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
503         .verify                 = cpufreq_generic_frequency_table_verify,
504         .target_index           = bL_cpufreq_set_target,
505         .get                    = bL_cpufreq_get_rate,
506         .init                   = bL_cpufreq_init,
507         .exit                   = bL_cpufreq_exit,
508         .attr                   = cpufreq_generic_attr,
509 };
510
511 int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops)
512 {
513         int ret, i;
514
515         if (arm_bL_ops) {
516                 pr_debug("%s: Already registered: %s, exiting\n", __func__,
517                                 arm_bL_ops->name);
518                 return -EBUSY;
519         }
520
521         if (!ops || !strlen(ops->name) || !ops->init_opp_table) {
522                 pr_err("%s: Invalid arm_bL_ops, exiting\n", __func__);
523                 return -ENODEV;
524         }
525
526         arm_bL_ops = ops;
527
528         for (i = 0; i < MAX_CLUSTERS; i++)
529                 mutex_init(&cluster_lock[i]);
530
531         ret = cpufreq_register_driver(&bL_cpufreq_driver);
532         if (ret) {
533                 pr_info("%s: Failed registering platform driver: %s, err: %d\n",
534                                 __func__, ops->name, ret);
535                 arm_bL_ops = NULL;
536         } else {
537                 pr_info("%s: Registered platform driver: %s\n", __func__,
538                                 ops->name);
539         }
540
541         return ret;
542 }
543 EXPORT_SYMBOL_GPL(bL_cpufreq_register);
544
545 void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops)
546 {
547         if (arm_bL_ops != ops) {
548                 pr_err("%s: Registered with: %s, can't unregister, exiting\n",
549                                 __func__, arm_bL_ops->name);
550                 return;
551         }
552
553         cpufreq_unregister_driver(&bL_cpufreq_driver);
554         pr_info("%s: Un-registered platform driver: %s\n", __func__,
555                         arm_bL_ops->name);
556         arm_bL_ops = NULL;
557 }
558 EXPORT_SYMBOL_GPL(bL_cpufreq_unregister);