]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/cpufreq_conservative.c
ARM: dts: imx6qdl: rename pinctrl_pwm0 for consistency
[karo-tx-linux.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/slab.h>
15 #include "cpufreq_governor.h"
16
17 /* Conservative governor macros */
18 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
19 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
20 #define DEF_FREQUENCY_STEP                      (5)
21 #define DEF_SAMPLING_DOWN_FACTOR                (1)
22 #define MAX_SAMPLING_DOWN_FACTOR                (10)
23
24 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
25
26 static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
27                                            struct cpufreq_policy *policy)
28 {
29         unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
30
31         /* max freq cannot be less than 100. But who knows... */
32         if (unlikely(freq_target == 0))
33                 freq_target = DEF_FREQUENCY_STEP;
34
35         return freq_target;
36 }
37
38 /*
39  * Every sampling_rate, we check, if current idle time is less than 20%
40  * (default), then we try to increase frequency. Every sampling_rate *
41  * sampling_down_factor, we check, if current idle time is more than 80%
42  * (default), then we try to decrease frequency
43  *
44  * Any frequency increase takes it to the maximum frequency. Frequency reduction
45  * happens at minimum steps of 5% (default) of maximum frequency
46  */
47 static void cs_check_cpu(int cpu, unsigned int load)
48 {
49         struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
50         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
51         struct dbs_data *dbs_data = policy->governor_data;
52         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
53
54         /*
55          * break out if we 'cannot' reduce the speed as the user might
56          * want freq_step to be zero
57          */
58         if (cs_tuners->freq_step == 0)
59                 return;
60
61         /* Check for frequency increase */
62         if (load > cs_tuners->up_threshold) {
63                 dbs_info->down_skip = 0;
64
65                 /* if we are already at full speed then break out early */
66                 if (dbs_info->requested_freq == policy->max)
67                         return;
68
69                 dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
70
71                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
72                         CPUFREQ_RELATION_H);
73                 return;
74         }
75
76         /* if sampling_down_factor is active break out early */
77         if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
78                 return;
79         dbs_info->down_skip = 0;
80
81         /* Check for frequency decrease */
82         if (load < cs_tuners->down_threshold) {
83                 /*
84                  * if we cannot reduce the frequency anymore, break out early
85                  */
86                 if (policy->cur == policy->min)
87                         return;
88
89                 dbs_info->requested_freq -= get_freq_target(cs_tuners, policy);
90
91                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
92                                 CPUFREQ_RELATION_L);
93                 return;
94         }
95 }
96
97 static void cs_dbs_timer(struct work_struct *work)
98 {
99         struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
100                         struct cs_cpu_dbs_info_s, cdbs.work.work);
101         unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
102         struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
103                         cpu);
104         struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
105         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
106         int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
107         bool modify_all = true;
108
109         mutex_lock(&core_dbs_info->cdbs.timer_mutex);
110         if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
111                 modify_all = false;
112         else
113                 dbs_check_cpu(dbs_data, cpu);
114
115         gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
116         mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
117 }
118
119 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
120                 void *data)
121 {
122         struct cpufreq_freqs *freq = data;
123         struct cs_cpu_dbs_info_s *dbs_info =
124                                         &per_cpu(cs_cpu_dbs_info, freq->cpu);
125         struct cpufreq_policy *policy;
126
127         if (!dbs_info->enable)
128                 return 0;
129
130         policy = dbs_info->cdbs.cur_policy;
131
132         /*
133          * we only care if our internally tracked freq moves outside the 'valid'
134          * ranges of frequency available to us otherwise we do not change it
135         */
136         if (dbs_info->requested_freq > policy->max
137                         || dbs_info->requested_freq < policy->min)
138                 dbs_info->requested_freq = freq->new;
139
140         return 0;
141 }
142
143 /************************** sysfs interface ************************/
144 static struct common_dbs_data cs_dbs_cdata;
145
146 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
147                 const char *buf, size_t count)
148 {
149         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
150         unsigned int input;
151         int ret;
152         ret = sscanf(buf, "%u", &input);
153
154         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
155                 return -EINVAL;
156
157         cs_tuners->sampling_down_factor = input;
158         return count;
159 }
160
161 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
162                 size_t count)
163 {
164         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
165         unsigned int input;
166         int ret;
167         ret = sscanf(buf, "%u", &input);
168
169         if (ret != 1)
170                 return -EINVAL;
171
172         cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
173         return count;
174 }
175
176 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
177                 size_t count)
178 {
179         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
180         unsigned int input;
181         int ret;
182         ret = sscanf(buf, "%u", &input);
183
184         if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
185                 return -EINVAL;
186
187         cs_tuners->up_threshold = input;
188         return count;
189 }
190
191 static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
192                 size_t count)
193 {
194         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
195         unsigned int input;
196         int ret;
197         ret = sscanf(buf, "%u", &input);
198
199         /* cannot be lower than 11 otherwise freq will not fall */
200         if (ret != 1 || input < 11 || input > 100 ||
201                         input >= cs_tuners->up_threshold)
202                 return -EINVAL;
203
204         cs_tuners->down_threshold = input;
205         return count;
206 }
207
208 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
209                 const char *buf, size_t count)
210 {
211         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
212         unsigned int input, j;
213         int ret;
214
215         ret = sscanf(buf, "%u", &input);
216         if (ret != 1)
217                 return -EINVAL;
218
219         if (input > 1)
220                 input = 1;
221
222         if (input == cs_tuners->ignore_nice_load) /* nothing to do */
223                 return count;
224
225         cs_tuners->ignore_nice_load = input;
226
227         /* we need to re-evaluate prev_cpu_idle */
228         for_each_online_cpu(j) {
229                 struct cs_cpu_dbs_info_s *dbs_info;
230                 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
231                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
232                                         &dbs_info->cdbs.prev_cpu_wall, 0);
233                 if (cs_tuners->ignore_nice_load)
234                         dbs_info->cdbs.prev_cpu_nice =
235                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
236         }
237         return count;
238 }
239
240 static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
241                 size_t count)
242 {
243         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
244         unsigned int input;
245         int ret;
246         ret = sscanf(buf, "%u", &input);
247
248         if (ret != 1)
249                 return -EINVAL;
250
251         if (input > 100)
252                 input = 100;
253
254         /*
255          * no need to test here if freq_step is zero as the user might actually
256          * want this, they would be crazy though :)
257          */
258         cs_tuners->freq_step = input;
259         return count;
260 }
261
262 show_store_one(cs, sampling_rate);
263 show_store_one(cs, sampling_down_factor);
264 show_store_one(cs, up_threshold);
265 show_store_one(cs, down_threshold);
266 show_store_one(cs, ignore_nice_load);
267 show_store_one(cs, freq_step);
268 declare_show_sampling_rate_min(cs);
269
270 gov_sys_pol_attr_rw(sampling_rate);
271 gov_sys_pol_attr_rw(sampling_down_factor);
272 gov_sys_pol_attr_rw(up_threshold);
273 gov_sys_pol_attr_rw(down_threshold);
274 gov_sys_pol_attr_rw(ignore_nice_load);
275 gov_sys_pol_attr_rw(freq_step);
276 gov_sys_pol_attr_ro(sampling_rate_min);
277
278 static struct attribute *dbs_attributes_gov_sys[] = {
279         &sampling_rate_min_gov_sys.attr,
280         &sampling_rate_gov_sys.attr,
281         &sampling_down_factor_gov_sys.attr,
282         &up_threshold_gov_sys.attr,
283         &down_threshold_gov_sys.attr,
284         &ignore_nice_load_gov_sys.attr,
285         &freq_step_gov_sys.attr,
286         NULL
287 };
288
289 static struct attribute_group cs_attr_group_gov_sys = {
290         .attrs = dbs_attributes_gov_sys,
291         .name = "conservative",
292 };
293
294 static struct attribute *dbs_attributes_gov_pol[] = {
295         &sampling_rate_min_gov_pol.attr,
296         &sampling_rate_gov_pol.attr,
297         &sampling_down_factor_gov_pol.attr,
298         &up_threshold_gov_pol.attr,
299         &down_threshold_gov_pol.attr,
300         &ignore_nice_load_gov_pol.attr,
301         &freq_step_gov_pol.attr,
302         NULL
303 };
304
305 static struct attribute_group cs_attr_group_gov_pol = {
306         .attrs = dbs_attributes_gov_pol,
307         .name = "conservative",
308 };
309
310 /************************** sysfs end ************************/
311
312 static int cs_init(struct dbs_data *dbs_data)
313 {
314         struct cs_dbs_tuners *tuners;
315
316         tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
317         if (!tuners) {
318                 pr_err("%s: kzalloc failed\n", __func__);
319                 return -ENOMEM;
320         }
321
322         tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
323         tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
324         tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
325         tuners->ignore_nice_load = 0;
326         tuners->freq_step = DEF_FREQUENCY_STEP;
327
328         dbs_data->tuners = tuners;
329         dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
330                 jiffies_to_usecs(10);
331         mutex_init(&dbs_data->mutex);
332         return 0;
333 }
334
335 static void cs_exit(struct dbs_data *dbs_data)
336 {
337         kfree(dbs_data->tuners);
338 }
339
340 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
341
342 static struct notifier_block cs_cpufreq_notifier_block = {
343         .notifier_call = dbs_cpufreq_notifier,
344 };
345
346 static struct cs_ops cs_ops = {
347         .notifier_block = &cs_cpufreq_notifier_block,
348 };
349
350 static struct common_dbs_data cs_dbs_cdata = {
351         .governor = GOV_CONSERVATIVE,
352         .attr_group_gov_sys = &cs_attr_group_gov_sys,
353         .attr_group_gov_pol = &cs_attr_group_gov_pol,
354         .get_cpu_cdbs = get_cpu_cdbs,
355         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
356         .gov_dbs_timer = cs_dbs_timer,
357         .gov_check_cpu = cs_check_cpu,
358         .gov_ops = &cs_ops,
359         .init = cs_init,
360         .exit = cs_exit,
361 };
362
363 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
364                                    unsigned int event)
365 {
366         return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
367 }
368
369 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
370 static
371 #endif
372 struct cpufreq_governor cpufreq_gov_conservative = {
373         .name                   = "conservative",
374         .governor               = cs_cpufreq_governor_dbs,
375         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
376         .owner                  = THIS_MODULE,
377 };
378
379 static int __init cpufreq_gov_dbs_init(void)
380 {
381         return cpufreq_register_governor(&cpufreq_gov_conservative);
382 }
383
384 static void __exit cpufreq_gov_dbs_exit(void)
385 {
386         cpufreq_unregister_governor(&cpufreq_gov_conservative);
387 }
388
389 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
390 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
391                 "Low Latency Frequency Transition capable processors "
392                 "optimised for use in a battery environment");
393 MODULE_LICENSE("GPL");
394
395 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
396 fs_initcall(cpufreq_gov_dbs_init);
397 #else
398 module_init(cpufreq_gov_dbs_init);
399 #endif
400 module_exit(cpufreq_gov_dbs_exit);