]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/cpufreq_governor.c
75217b850d7bd4d4ff2686d7dd24d146d2a5675b
[karo-tx-linux.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
26
27 DEFINE_MUTEX(dbs_data_mutex);
28 EXPORT_SYMBOL_GPL(dbs_data_mutex);
29
30 /* Common sysfs tunables */
31 /**
32  * store_sampling_rate - update sampling rate effective immediately if needed.
33  *
34  * If new rate is smaller than the old, simply updating
35  * dbs.sampling_rate might not be appropriate. For example, if the
36  * original sampling_rate was 1 second and the requested new sampling rate is 10
37  * ms because the user needs immediate reaction from ondemand governor, but not
38  * sure if higher frequency will be required or not, then, the governor may
39  * change the sampling rate too late; up to 1 second later. Thus, if we are
40  * reducing the sampling rate, we need to make the new value effective
41  * immediately.
42  *
43  * This must be called with dbs_data->mutex held, otherwise traversing
44  * policy_dbs_list isn't safe.
45  */
46 ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
47                             size_t count)
48 {
49         struct policy_dbs_info *policy_dbs;
50         unsigned int rate;
51         int ret;
52         ret = sscanf(buf, "%u", &rate);
53         if (ret != 1)
54                 return -EINVAL;
55
56         dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
57
58         /*
59          * We are operating under dbs_data->mutex and so the list and its
60          * entries can't be freed concurrently.
61          */
62         list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
63                 mutex_lock(&policy_dbs->timer_mutex);
64                 /*
65                  * On 32-bit architectures this may race with the
66                  * sample_delay_ns read in dbs_update_util_handler(), but that
67                  * really doesn't matter.  If the read returns a value that's
68                  * too big, the sample will be skipped, but the next invocation
69                  * of dbs_update_util_handler() (when the update has been
70                  * completed) will take a sample.
71                  *
72                  * If this runs in parallel with dbs_work_handler(), we may end
73                  * up overwriting the sample_delay_ns value that it has just
74                  * written, but it will be corrected next time a sample is
75                  * taken, so it shouldn't be significant.
76                  */
77                 gov_update_sample_delay(policy_dbs, 0);
78                 mutex_unlock(&policy_dbs->timer_mutex);
79         }
80
81         return count;
82 }
83 EXPORT_SYMBOL_GPL(store_sampling_rate);
84
85 /**
86  * gov_update_cpu_data - Update CPU load data.
87  * @dbs_data: Top-level governor data pointer.
88  *
89  * Update CPU load data for all CPUs in the domain governed by @dbs_data
90  * (that may be a single policy or a bunch of them if governor tunables are
91  * system-wide).
92  *
93  * Call under the @dbs_data mutex.
94  */
95 void gov_update_cpu_data(struct dbs_data *dbs_data)
96 {
97         struct policy_dbs_info *policy_dbs;
98
99         list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
100                 unsigned int j;
101
102                 for_each_cpu(j, policy_dbs->policy->cpus) {
103                         struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
104
105                         j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall,
106                                                                   dbs_data->io_is_busy);
107                         if (dbs_data->ignore_nice_load)
108                                 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
109                 }
110         }
111 }
112 EXPORT_SYMBOL_GPL(gov_update_cpu_data);
113
114 static inline struct dbs_data *to_dbs_data(struct kobject *kobj)
115 {
116         return container_of(kobj, struct dbs_data, kobj);
117 }
118
119 static inline struct governor_attr *to_gov_attr(struct attribute *attr)
120 {
121         return container_of(attr, struct governor_attr, attr);
122 }
123
124 static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
125                              char *buf)
126 {
127         struct dbs_data *dbs_data = to_dbs_data(kobj);
128         struct governor_attr *gattr = to_gov_attr(attr);
129         int ret = -EIO;
130
131         if (gattr->show)
132                 ret = gattr->show(dbs_data, buf);
133
134         return ret;
135 }
136
137 static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
138                               const char *buf, size_t count)
139 {
140         struct dbs_data *dbs_data = to_dbs_data(kobj);
141         struct governor_attr *gattr = to_gov_attr(attr);
142         int ret = -EIO;
143
144         mutex_lock(&dbs_data->mutex);
145
146         if (dbs_data->usage_count && gattr->store)
147                 ret = gattr->store(dbs_data, buf, count);
148
149         mutex_unlock(&dbs_data->mutex);
150
151         return ret;
152 }
153
154 /*
155  * Sysfs Ops for accessing governor attributes.
156  *
157  * All show/store invocations for governor specific sysfs attributes, will first
158  * call the below show/store callbacks and the attribute specific callback will
159  * be called from within it.
160  */
161 static const struct sysfs_ops governor_sysfs_ops = {
162         .show   = governor_show,
163         .store  = governor_store,
164 };
165
166 unsigned int dbs_update(struct cpufreq_policy *policy)
167 {
168         struct policy_dbs_info *policy_dbs = policy->governor_data;
169         struct dbs_data *dbs_data = policy_dbs->dbs_data;
170         unsigned int ignore_nice = dbs_data->ignore_nice_load;
171         unsigned int max_load = 0;
172         unsigned int sampling_rate, io_busy, j;
173
174         /*
175          * Sometimes governors may use an additional multiplier to increase
176          * sample delays temporarily.  Apply that multiplier to sampling_rate
177          * so as to keep the wake-up-from-idle detection logic a bit
178          * conservative.
179          */
180         sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
181         /*
182          * For the purpose of ondemand, waiting for disk IO is an indication
183          * that you're performance critical, and not that the system is actually
184          * idle, so do not add the iowait time to the CPU idle time then.
185          */
186         io_busy = dbs_data->io_is_busy;
187
188         /* Get Absolute Load */
189         for_each_cpu(j, policy->cpus) {
190                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
191                 u64 cur_wall_time, cur_idle_time;
192                 unsigned int idle_time, wall_time;
193                 unsigned int load;
194
195                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
196
197                 wall_time = cur_wall_time - j_cdbs->prev_cpu_wall;
198                 j_cdbs->prev_cpu_wall = cur_wall_time;
199
200                 if (cur_idle_time <= j_cdbs->prev_cpu_idle) {
201                         idle_time = 0;
202                 } else {
203                         idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
204                         j_cdbs->prev_cpu_idle = cur_idle_time;
205                 }
206
207                 if (ignore_nice) {
208                         u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
209
210                         idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
211                         j_cdbs->prev_cpu_nice = cur_nice;
212                 }
213
214                 if (unlikely(!wall_time || wall_time < idle_time))
215                         continue;
216
217                 /*
218                  * If the CPU had gone completely idle, and a task just woke up
219                  * on this CPU now, it would be unfair to calculate 'load' the
220                  * usual way for this elapsed time-window, because it will show
221                  * near-zero load, irrespective of how CPU intensive that task
222                  * actually is. This is undesirable for latency-sensitive bursty
223                  * workloads.
224                  *
225                  * To avoid this, we reuse the 'load' from the previous
226                  * time-window and give this task a chance to start with a
227                  * reasonably high CPU frequency. (However, we shouldn't over-do
228                  * this copy, lest we get stuck at a high load (high frequency)
229                  * for too long, even when the current system load has actually
230                  * dropped down. So we perform the copy only once, upon the
231                  * first wake-up from idle.)
232                  *
233                  * Detecting this situation is easy: the governor's utilization
234                  * update handler would not have run during CPU-idle periods.
235                  * Hence, an unusually large 'wall_time' (as compared to the
236                  * sampling rate) indicates this scenario.
237                  *
238                  * prev_load can be zero in two cases and we must recalculate it
239                  * for both cases:
240                  * - during long idle intervals
241                  * - explicitly set to zero
242                  */
243                 if (unlikely(wall_time > (2 * sampling_rate) &&
244                              j_cdbs->prev_load)) {
245                         load = j_cdbs->prev_load;
246
247                         /*
248                          * Perform a destructive copy, to ensure that we copy
249                          * the previous load only once, upon the first wake-up
250                          * from idle.
251                          */
252                         j_cdbs->prev_load = 0;
253                 } else {
254                         load = 100 * (wall_time - idle_time) / wall_time;
255                         j_cdbs->prev_load = load;
256                 }
257
258                 if (load > max_load)
259                         max_load = load;
260         }
261         return max_load;
262 }
263 EXPORT_SYMBOL_GPL(dbs_update);
264
265 void gov_set_update_util(struct policy_dbs_info *policy_dbs,
266                          unsigned int delay_us)
267 {
268         struct cpufreq_policy *policy = policy_dbs->policy;
269         int cpu;
270
271         gov_update_sample_delay(policy_dbs, delay_us);
272         policy_dbs->last_sample_time = 0;
273
274         for_each_cpu(cpu, policy->cpus) {
275                 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
276
277                 cpufreq_set_update_util_data(cpu, &cdbs->update_util);
278         }
279 }
280 EXPORT_SYMBOL_GPL(gov_set_update_util);
281
282 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
283 {
284         int i;
285
286         for_each_cpu(i, policy->cpus)
287                 cpufreq_set_update_util_data(i, NULL);
288
289         synchronize_rcu();
290 }
291
292 static void gov_cancel_work(struct cpufreq_policy *policy)
293 {
294         struct policy_dbs_info *policy_dbs = policy->governor_data;
295
296         gov_clear_update_util(policy_dbs->policy);
297         irq_work_sync(&policy_dbs->irq_work);
298         cancel_work_sync(&policy_dbs->work);
299         atomic_set(&policy_dbs->work_count, 0);
300         policy_dbs->work_in_progress = false;
301 }
302
303 static void dbs_work_handler(struct work_struct *work)
304 {
305         struct policy_dbs_info *policy_dbs;
306         struct cpufreq_policy *policy;
307         struct dbs_governor *gov;
308
309         policy_dbs = container_of(work, struct policy_dbs_info, work);
310         policy = policy_dbs->policy;
311         gov = dbs_governor_of(policy);
312
313         /*
314          * Make sure cpufreq_governor_limits() isn't evaluating load or the
315          * ondemand governor isn't updating the sampling rate in parallel.
316          */
317         mutex_lock(&policy_dbs->timer_mutex);
318         gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy));
319         mutex_unlock(&policy_dbs->timer_mutex);
320
321         /* Allow the utilization update handler to queue up more work. */
322         atomic_set(&policy_dbs->work_count, 0);
323         /*
324          * If the update below is reordered with respect to the sample delay
325          * modification, the utilization update handler may end up using a stale
326          * sample delay value.
327          */
328         smp_wmb();
329         policy_dbs->work_in_progress = false;
330 }
331
332 static void dbs_irq_work(struct irq_work *irq_work)
333 {
334         struct policy_dbs_info *policy_dbs;
335
336         policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
337         schedule_work(&policy_dbs->work);
338 }
339
340 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
341                                     unsigned long util, unsigned long max)
342 {
343         struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
344         struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
345         u64 delta_ns;
346
347         /*
348          * The work may not be allowed to be queued up right now.
349          * Possible reasons:
350          * - Work has already been queued up or is in progress.
351          * - It is too early (too little time from the previous sample).
352          */
353         if (policy_dbs->work_in_progress)
354                 return;
355
356         /*
357          * If the reads below are reordered before the check above, the value
358          * of sample_delay_ns used in the computation may be stale.
359          */
360         smp_rmb();
361         delta_ns = time - policy_dbs->last_sample_time;
362         if ((s64)delta_ns < policy_dbs->sample_delay_ns)
363                 return;
364
365         /*
366          * If the policy is not shared, the irq_work may be queued up right away
367          * at this point.  Otherwise, we need to ensure that only one of the
368          * CPUs sharing the policy will do that.
369          */
370         if (policy_dbs->is_shared &&
371             !atomic_add_unless(&policy_dbs->work_count, 1, 1))
372                 return;
373
374         policy_dbs->last_sample_time = time;
375         policy_dbs->work_in_progress = true;
376         irq_work_queue(&policy_dbs->irq_work);
377 }
378
379 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
380                                                      struct dbs_governor *gov)
381 {
382         struct policy_dbs_info *policy_dbs;
383         int j;
384
385         /* Allocate memory for per-policy governor data. */
386         policy_dbs = gov->alloc();
387         if (!policy_dbs)
388                 return NULL;
389
390         policy_dbs->policy = policy;
391         mutex_init(&policy_dbs->timer_mutex);
392         atomic_set(&policy_dbs->work_count, 0);
393         init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
394         INIT_WORK(&policy_dbs->work, dbs_work_handler);
395
396         /* Set policy_dbs for all CPUs, online+offline */
397         for_each_cpu(j, policy->related_cpus) {
398                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
399
400                 j_cdbs->policy_dbs = policy_dbs;
401                 j_cdbs->update_util.func = dbs_update_util_handler;
402         }
403         return policy_dbs;
404 }
405
406 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
407                                  struct dbs_governor *gov)
408 {
409         int j;
410
411         mutex_destroy(&policy_dbs->timer_mutex);
412
413         for_each_cpu(j, policy_dbs->policy->related_cpus) {
414                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
415
416                 j_cdbs->policy_dbs = NULL;
417                 j_cdbs->update_util.func = NULL;
418         }
419         gov->free(policy_dbs);
420 }
421
422 static int cpufreq_governor_init(struct cpufreq_policy *policy)
423 {
424         struct dbs_governor *gov = dbs_governor_of(policy);
425         struct dbs_data *dbs_data = gov->gdbs_data;
426         struct policy_dbs_info *policy_dbs;
427         unsigned int latency;
428         int ret;
429
430         /* State should be equivalent to EXIT */
431         if (policy->governor_data)
432                 return -EBUSY;
433
434         policy_dbs = alloc_policy_dbs_info(policy, gov);
435         if (!policy_dbs)
436                 return -ENOMEM;
437
438         if (dbs_data) {
439                 if (WARN_ON(have_governor_per_policy())) {
440                         ret = -EINVAL;
441                         goto free_policy_dbs_info;
442                 }
443                 policy_dbs->dbs_data = dbs_data;
444                 policy->governor_data = policy_dbs;
445
446                 mutex_lock(&dbs_data->mutex);
447                 dbs_data->usage_count++;
448                 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
449                 mutex_unlock(&dbs_data->mutex);
450
451                 return 0;
452         }
453
454         dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
455         if (!dbs_data) {
456                 ret = -ENOMEM;
457                 goto free_policy_dbs_info;
458         }
459
460         INIT_LIST_HEAD(&dbs_data->policy_dbs_list);
461         mutex_init(&dbs_data->mutex);
462
463         ret = gov->init(dbs_data, !policy->governor->initialized);
464         if (ret)
465                 goto free_policy_dbs_info;
466
467         /* policy latency is in ns. Convert it to us first */
468         latency = policy->cpuinfo.transition_latency / 1000;
469         if (latency == 0)
470                 latency = 1;
471
472         /* Bring kernel and HW constraints together */
473         dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
474                                           MIN_LATENCY_MULTIPLIER * latency);
475         dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
476                                       LATENCY_MULTIPLIER * latency);
477
478         if (!have_governor_per_policy())
479                 gov->gdbs_data = dbs_data;
480
481         policy->governor_data = policy_dbs;
482
483         policy_dbs->dbs_data = dbs_data;
484         dbs_data->usage_count = 1;
485         list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
486
487         gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
488         ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type,
489                                    get_governor_parent_kobj(policy),
490                                    "%s", gov->gov.name);
491         if (!ret)
492                 return 0;
493
494         /* Failure, so roll back. */
495         pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret);
496
497         policy->governor_data = NULL;
498
499         if (!have_governor_per_policy())
500                 gov->gdbs_data = NULL;
501         gov->exit(dbs_data, !policy->governor->initialized);
502         kfree(dbs_data);
503
504 free_policy_dbs_info:
505         free_policy_dbs_info(policy_dbs, gov);
506         return ret;
507 }
508
509 static int cpufreq_governor_exit(struct cpufreq_policy *policy)
510 {
511         struct dbs_governor *gov = dbs_governor_of(policy);
512         struct policy_dbs_info *policy_dbs = policy->governor_data;
513         struct dbs_data *dbs_data = policy_dbs->dbs_data;
514         int count;
515
516         mutex_lock(&dbs_data->mutex);
517         list_del(&policy_dbs->list);
518         count = --dbs_data->usage_count;
519         mutex_unlock(&dbs_data->mutex);
520
521         if (!count) {
522                 kobject_put(&dbs_data->kobj);
523
524                 policy->governor_data = NULL;
525
526                 if (!have_governor_per_policy())
527                         gov->gdbs_data = NULL;
528
529                 gov->exit(dbs_data, policy->governor->initialized == 1);
530                 mutex_destroy(&dbs_data->mutex);
531                 kfree(dbs_data);
532         } else {
533                 policy->governor_data = NULL;
534         }
535
536         free_policy_dbs_info(policy_dbs, gov);
537         return 0;
538 }
539
540 static int cpufreq_governor_start(struct cpufreq_policy *policy)
541 {
542         struct dbs_governor *gov = dbs_governor_of(policy);
543         struct policy_dbs_info *policy_dbs = policy->governor_data;
544         struct dbs_data *dbs_data = policy_dbs->dbs_data;
545         unsigned int sampling_rate, ignore_nice, j;
546         unsigned int io_busy;
547
548         if (!policy->cur)
549                 return -EINVAL;
550
551         policy_dbs->is_shared = policy_is_shared(policy);
552         policy_dbs->rate_mult = 1;
553
554         sampling_rate = dbs_data->sampling_rate;
555         ignore_nice = dbs_data->ignore_nice_load;
556         io_busy = dbs_data->io_is_busy;
557
558         for_each_cpu(j, policy->cpus) {
559                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
560                 unsigned int prev_load;
561
562                 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
563
564                 prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle;
565                 j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall;
566
567                 if (ignore_nice)
568                         j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
569         }
570
571         gov->start(policy);
572
573         gov_set_update_util(policy_dbs, sampling_rate);
574         return 0;
575 }
576
577 static int cpufreq_governor_stop(struct cpufreq_policy *policy)
578 {
579         gov_cancel_work(policy);
580         return 0;
581 }
582
583 static int cpufreq_governor_limits(struct cpufreq_policy *policy)
584 {
585         struct policy_dbs_info *policy_dbs = policy->governor_data;
586
587         mutex_lock(&policy_dbs->timer_mutex);
588
589         if (policy->max < policy->cur)
590                 __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
591         else if (policy->min > policy->cur)
592                 __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
593
594         gov_update_sample_delay(policy_dbs, 0);
595
596         mutex_unlock(&policy_dbs->timer_mutex);
597
598         return 0;
599 }
600
601 int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
602 {
603         int ret = -EINVAL;
604
605         /* Lock governor to block concurrent initialization of governor */
606         mutex_lock(&dbs_data_mutex);
607
608         if (event == CPUFREQ_GOV_POLICY_INIT) {
609                 ret = cpufreq_governor_init(policy);
610         } else if (policy->governor_data) {
611                 switch (event) {
612                 case CPUFREQ_GOV_POLICY_EXIT:
613                         ret = cpufreq_governor_exit(policy);
614                         break;
615                 case CPUFREQ_GOV_START:
616                         ret = cpufreq_governor_start(policy);
617                         break;
618                 case CPUFREQ_GOV_STOP:
619                         ret = cpufreq_governor_stop(policy);
620                         break;
621                 case CPUFREQ_GOV_LIMITS:
622                         ret = cpufreq_governor_limits(policy);
623                         break;
624                 }
625         }
626
627         mutex_unlock(&dbs_data_mutex);
628         return ret;
629 }
630 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);