]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/cpufreq_governor.c
9004450863be61f0c496b942222ab13ec7794bcc
[karo-tx-linux.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26 {
27         if (have_governor_per_policy())
28                 return dbs_data->cdata->attr_group_gov_pol;
29         else
30                 return dbs_data->cdata->attr_group_gov_sys;
31 }
32
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34 {
35         struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38         struct cpufreq_policy *policy;
39         unsigned int sampling_rate;
40         unsigned int max_load = 0;
41         unsigned int ignore_nice;
42         unsigned int j;
43
44         if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45                 struct od_cpu_dbs_info_s *od_dbs_info =
46                                 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47
48                 /*
49                  * Sometimes, the ondemand governor uses an additional
50                  * multiplier to give long delays. So apply this multiplier to
51                  * the 'sampling_rate', so as to keep the wake-up-from-idle
52                  * detection logic a bit conservative.
53                  */
54                 sampling_rate = od_tuners->sampling_rate;
55                 sampling_rate *= od_dbs_info->rate_mult;
56
57                 ignore_nice = od_tuners->ignore_nice_load;
58         } else {
59                 sampling_rate = cs_tuners->sampling_rate;
60                 ignore_nice = cs_tuners->ignore_nice_load;
61         }
62
63         policy = cdbs->cur_policy;
64
65         /* Get Absolute Load */
66         for_each_cpu(j, policy->cpus) {
67                 struct cpu_dbs_common_info *j_cdbs;
68                 u64 cur_wall_time, cur_idle_time;
69                 unsigned int idle_time, wall_time;
70                 unsigned int load;
71                 int io_busy = 0;
72
73                 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
74
75                 /*
76                  * For the purpose of ondemand, waiting for disk IO is
77                  * an indication that you're performance critical, and
78                  * not that the system is actually idle. So do not add
79                  * the iowait time to the cpu idle time.
80                  */
81                 if (dbs_data->cdata->governor == GOV_ONDEMAND)
82                         io_busy = od_tuners->io_is_busy;
83                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
84
85                 wall_time = (unsigned int)
86                         (cur_wall_time - j_cdbs->prev_cpu_wall);
87                 j_cdbs->prev_cpu_wall = cur_wall_time;
88
89                 idle_time = (unsigned int)
90                         (cur_idle_time - j_cdbs->prev_cpu_idle);
91                 j_cdbs->prev_cpu_idle = cur_idle_time;
92
93                 if (ignore_nice) {
94                         u64 cur_nice;
95                         unsigned long cur_nice_jiffies;
96
97                         cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
98                                          cdbs->prev_cpu_nice;
99                         /*
100                          * Assumption: nice time between sampling periods will
101                          * be less than 2^32 jiffies for 32 bit sys
102                          */
103                         cur_nice_jiffies = (unsigned long)
104                                         cputime64_to_jiffies64(cur_nice);
105
106                         cdbs->prev_cpu_nice =
107                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
108                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
109                 }
110
111                 if (unlikely(!wall_time || wall_time < idle_time))
112                         continue;
113
114                 /*
115                  * If the CPU had gone completely idle, and a task just woke up
116                  * on this CPU now, it would be unfair to calculate 'load' the
117                  * usual way for this elapsed time-window, because it will show
118                  * near-zero load, irrespective of how CPU intensive that task
119                  * actually is. This is undesirable for latency-sensitive bursty
120                  * workloads.
121                  *
122                  * To avoid this, we reuse the 'load' from the previous
123                  * time-window and give this task a chance to start with a
124                  * reasonably high CPU frequency. (However, we shouldn't over-do
125                  * this copy, lest we get stuck at a high load (high frequency)
126                  * for too long, even when the current system load has actually
127                  * dropped down. So we perform the copy only once, upon the
128                  * first wake-up from idle.)
129                  *
130                  * Detecting this situation is easy: the governor's deferrable
131                  * timer would not have fired during CPU-idle periods. Hence
132                  * an unusually large 'wall_time' (as compared to the sampling
133                  * rate) indicates this scenario.
134                  */
135                 if (unlikely(wall_time > (2 * sampling_rate)) &&
136                                                 j_cdbs->copy_prev_load) {
137                         load = j_cdbs->prev_load;
138                         j_cdbs->copy_prev_load = false;
139                 } else {
140                         load = 100 * (wall_time - idle_time) / wall_time;
141                         j_cdbs->prev_load = load;
142                         j_cdbs->copy_prev_load = true;
143                 }
144
145                 if (load > max_load)
146                         max_load = load;
147         }
148
149         dbs_data->cdata->gov_check_cpu(cpu, max_load);
150 }
151 EXPORT_SYMBOL_GPL(dbs_check_cpu);
152
153 static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
154                 unsigned int delay)
155 {
156         struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
157
158         mod_delayed_work_on(cpu, system_wq, &cdbs->work, delay);
159 }
160
161 void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
162                 unsigned int delay, bool all_cpus)
163 {
164         int i;
165
166         mutex_lock(&cpufreq_governor_lock);
167         if (!policy->governor_enabled)
168                 goto out_unlock;
169
170         if (!all_cpus) {
171                 /*
172                  * Use raw_smp_processor_id() to avoid preemptible warnings.
173                  * We know that this is only called with all_cpus == false from
174                  * works that have been queued with *_work_on() functions and
175                  * those works are canceled during CPU_DOWN_PREPARE so they
176                  * can't possibly run on any other CPU.
177                  */
178                 __gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
179         } else {
180                 for_each_cpu(i, policy->cpus)
181                         __gov_queue_work(i, dbs_data, delay);
182         }
183
184 out_unlock:
185         mutex_unlock(&cpufreq_governor_lock);
186 }
187 EXPORT_SYMBOL_GPL(gov_queue_work);
188
189 static inline void gov_cancel_work(struct dbs_data *dbs_data,
190                 struct cpufreq_policy *policy)
191 {
192         struct cpu_dbs_common_info *cdbs;
193         int i;
194
195         for_each_cpu(i, policy->cpus) {
196                 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
197                 cancel_delayed_work_sync(&cdbs->work);
198         }
199 }
200
201 /* Will return if we need to evaluate cpu load again or not */
202 bool need_load_eval(struct cpu_dbs_common_info *cdbs,
203                 unsigned int sampling_rate)
204 {
205         if (policy_is_shared(cdbs->cur_policy)) {
206                 ktime_t time_now = ktime_get();
207                 s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);
208
209                 /* Do nothing if we recently have sampled */
210                 if (delta_us < (s64)(sampling_rate / 2))
211                         return false;
212                 else
213                         cdbs->time_stamp = time_now;
214         }
215
216         return true;
217 }
218 EXPORT_SYMBOL_GPL(need_load_eval);
219
220 static void set_sampling_rate(struct dbs_data *dbs_data,
221                 unsigned int sampling_rate)
222 {
223         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
224                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
225                 cs_tuners->sampling_rate = sampling_rate;
226         } else {
227                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
228                 od_tuners->sampling_rate = sampling_rate;
229         }
230 }
231
232 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
233                 struct common_dbs_data *cdata, unsigned int event)
234 {
235         struct dbs_data *dbs_data;
236         struct od_cpu_dbs_info_s *od_dbs_info = NULL;
237         struct cs_cpu_dbs_info_s *cs_dbs_info = NULL;
238         struct od_ops *od_ops = NULL;
239         struct od_dbs_tuners *od_tuners = NULL;
240         struct cs_dbs_tuners *cs_tuners = NULL;
241         struct cpu_dbs_common_info *cpu_cdbs;
242         unsigned int sampling_rate, latency, ignore_nice, j, cpu = policy->cpu;
243         int io_busy = 0;
244         int rc;
245
246         if (have_governor_per_policy())
247                 dbs_data = policy->governor_data;
248         else
249                 dbs_data = cdata->gdbs_data;
250
251         WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT));
252
253         switch (event) {
254         case CPUFREQ_GOV_POLICY_INIT:
255                 if (have_governor_per_policy()) {
256                         WARN_ON(dbs_data);
257                 } else if (dbs_data) {
258                         dbs_data->usage_count++;
259                         policy->governor_data = dbs_data;
260                         return 0;
261                 }
262
263                 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
264                 if (!dbs_data) {
265                         pr_err("%s: POLICY_INIT: kzalloc failed\n", __func__);
266                         return -ENOMEM;
267                 }
268
269                 dbs_data->cdata = cdata;
270                 dbs_data->usage_count = 1;
271                 rc = cdata->init(dbs_data);
272                 if (rc) {
273                         pr_err("%s: POLICY_INIT: init() failed\n", __func__);
274                         kfree(dbs_data);
275                         return rc;
276                 }
277
278                 if (!have_governor_per_policy())
279                         WARN_ON(cpufreq_get_global_kobject());
280
281                 rc = sysfs_create_group(get_governor_parent_kobj(policy),
282                                 get_sysfs_attr(dbs_data));
283                 if (rc) {
284                         cdata->exit(dbs_data);
285                         kfree(dbs_data);
286                         return rc;
287                 }
288
289                 policy->governor_data = dbs_data;
290
291                 /* policy latency is in ns. Convert it to us first */
292                 latency = policy->cpuinfo.transition_latency / 1000;
293                 if (latency == 0)
294                         latency = 1;
295
296                 /* Bring kernel and HW constraints together */
297                 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
298                                 MIN_LATENCY_MULTIPLIER * latency);
299                 set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
300                                         latency * LATENCY_MULTIPLIER));
301
302                 if ((cdata->governor == GOV_CONSERVATIVE) &&
303                                 (!policy->governor->initialized)) {
304                         struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
305
306                         cpufreq_register_notifier(cs_ops->notifier_block,
307                                         CPUFREQ_TRANSITION_NOTIFIER);
308                 }
309
310                 if (!have_governor_per_policy())
311                         cdata->gdbs_data = dbs_data;
312
313                 return 0;
314         case CPUFREQ_GOV_POLICY_EXIT:
315                 if (!--dbs_data->usage_count) {
316                         sysfs_remove_group(get_governor_parent_kobj(policy),
317                                         get_sysfs_attr(dbs_data));
318
319                         if (!have_governor_per_policy())
320                                 cpufreq_put_global_kobject();
321
322                         if ((dbs_data->cdata->governor == GOV_CONSERVATIVE) &&
323                                 (policy->governor->initialized == 1)) {
324                                 struct cs_ops *cs_ops = dbs_data->cdata->gov_ops;
325
326                                 cpufreq_unregister_notifier(cs_ops->notifier_block,
327                                                 CPUFREQ_TRANSITION_NOTIFIER);
328                         }
329
330                         cdata->exit(dbs_data);
331                         kfree(dbs_data);
332                         cdata->gdbs_data = NULL;
333                 }
334
335                 policy->governor_data = NULL;
336                 return 0;
337         }
338
339         cpu_cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
340
341         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
342                 cs_tuners = dbs_data->tuners;
343                 cs_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
344                 sampling_rate = cs_tuners->sampling_rate;
345                 ignore_nice = cs_tuners->ignore_nice_load;
346         } else {
347                 od_tuners = dbs_data->tuners;
348                 od_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu);
349                 sampling_rate = od_tuners->sampling_rate;
350                 ignore_nice = od_tuners->ignore_nice_load;
351                 od_ops = dbs_data->cdata->gov_ops;
352                 io_busy = od_tuners->io_is_busy;
353         }
354
355         switch (event) {
356         case CPUFREQ_GOV_START:
357                 if (!policy->cur)
358                         return -EINVAL;
359
360                 mutex_lock(&dbs_data->mutex);
361
362                 for_each_cpu(j, policy->cpus) {
363                         struct cpu_dbs_common_info *j_cdbs =
364                                 dbs_data->cdata->get_cpu_cdbs(j);
365                         unsigned int prev_load;
366
367                         j_cdbs->cpu = j;
368                         j_cdbs->cur_policy = policy;
369                         j_cdbs->prev_cpu_idle = get_cpu_idle_time(j,
370                                                &j_cdbs->prev_cpu_wall, io_busy);
371
372                         prev_load = (unsigned int)
373                                 (j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle);
374                         j_cdbs->prev_load = 100 * prev_load /
375                                         (unsigned int) j_cdbs->prev_cpu_wall;
376                         j_cdbs->copy_prev_load = true;
377
378                         if (ignore_nice)
379                                 j_cdbs->prev_cpu_nice =
380                                         kcpustat_cpu(j).cpustat[CPUTIME_NICE];
381
382                         mutex_init(&j_cdbs->timer_mutex);
383                         INIT_DEFERRABLE_WORK(&j_cdbs->work,
384                                              dbs_data->cdata->gov_dbs_timer);
385                 }
386
387                 if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
388                         cs_dbs_info->down_skip = 0;
389                         cs_dbs_info->enable = 1;
390                         cs_dbs_info->requested_freq = policy->cur;
391                 } else {
392                         od_dbs_info->rate_mult = 1;
393                         od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
394                         od_ops->powersave_bias_init_cpu(cpu);
395                 }
396
397                 mutex_unlock(&dbs_data->mutex);
398
399                 /* Initiate timer time stamp */
400                 cpu_cdbs->time_stamp = ktime_get();
401
402                 gov_queue_work(dbs_data, policy,
403                                 delay_for_sampling_rate(sampling_rate), true);
404                 break;
405
406         case CPUFREQ_GOV_STOP:
407                 if (dbs_data->cdata->governor == GOV_CONSERVATIVE)
408                         cs_dbs_info->enable = 0;
409
410                 gov_cancel_work(dbs_data, policy);
411
412                 mutex_lock(&dbs_data->mutex);
413                 mutex_destroy(&cpu_cdbs->timer_mutex);
414                 cpu_cdbs->cur_policy = NULL;
415
416                 mutex_unlock(&dbs_data->mutex);
417
418                 break;
419
420         case CPUFREQ_GOV_LIMITS:
421                 mutex_lock(&dbs_data->mutex);
422                 if (!cpu_cdbs->cur_policy) {
423                         mutex_unlock(&dbs_data->mutex);
424                         break;
425                 }
426                 mutex_lock(&cpu_cdbs->timer_mutex);
427                 if (policy->max < cpu_cdbs->cur_policy->cur)
428                         __cpufreq_driver_target(cpu_cdbs->cur_policy,
429                                         policy->max, CPUFREQ_RELATION_H);
430                 else if (policy->min > cpu_cdbs->cur_policy->cur)
431                         __cpufreq_driver_target(cpu_cdbs->cur_policy,
432                                         policy->min, CPUFREQ_RELATION_L);
433                 dbs_check_cpu(dbs_data, cpu);
434                 mutex_unlock(&cpu_cdbs->timer_mutex);
435                 mutex_unlock(&dbs_data->mutex);
436                 break;
437         }
438         return 0;
439 }
440 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);