]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/cpufreq_governor.c
cpufreq: conservative: Update sample_delay_ns immediately
[karo-tx-linux.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 DEFINE_MUTEX(dbs_data_mutex);
26 EXPORT_SYMBOL_GPL(dbs_data_mutex);
27
28 /* Common sysfs tunables */
29 /**
30  * store_sampling_rate - update sampling rate effective immediately if needed.
31  *
32  * If new rate is smaller than the old, simply updating
33  * dbs.sampling_rate might not be appropriate. For example, if the
34  * original sampling_rate was 1 second and the requested new sampling rate is 10
35  * ms because the user needs immediate reaction from ondemand governor, but not
36  * sure if higher frequency will be required or not, then, the governor may
37  * change the sampling rate too late; up to 1 second later. Thus, if we are
38  * reducing the sampling rate, we need to make the new value effective
39  * immediately.
40  *
41  * On the other hand, if new rate is larger than the old, then we may evaluate
42  * the load too soon, and it might we worth updating sample_delay_ns then as
43  * well.
44  *
45  * This must be called with dbs_data->mutex held, otherwise traversing
46  * policy_dbs_list isn't safe.
47  */
48 ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
49                             size_t count)
50 {
51         struct policy_dbs_info *policy_dbs;
52         unsigned int rate;
53         int ret;
54         ret = sscanf(buf, "%u", &rate);
55         if (ret != 1)
56                 return -EINVAL;
57
58         dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
59
60         /*
61          * We are operating under dbs_data->mutex and so the list and its
62          * entries can't be freed concurrently.
63          */
64         list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
65                 mutex_lock(&policy_dbs->timer_mutex);
66                 /*
67                  * On 32-bit architectures this may race with the
68                  * sample_delay_ns read in dbs_update_util_handler(), but that
69                  * really doesn't matter.  If the read returns a value that's
70                  * too big, the sample will be skipped, but the next invocation
71                  * of dbs_update_util_handler() (when the update has been
72                  * completed) will take a sample.  If the returned value is too
73                  * small, the sample will be taken immediately, but that isn't a
74                  * problem, as we want the new rate to take effect immediately
75                  * anyway.
76                  *
77                  * If this runs in parallel with dbs_work_handler(), we may end
78                  * up overwriting the sample_delay_ns value that it has just
79                  * written, but the difference should not be too big and it will
80                  * be corrected next time a sample is taken, so it shouldn't be
81                  * significant.
82                  */
83                 gov_update_sample_delay(policy_dbs, dbs_data->sampling_rate);
84                 mutex_unlock(&policy_dbs->timer_mutex);
85         }
86
87         return count;
88 }
89 EXPORT_SYMBOL_GPL(store_sampling_rate);
90
91 static inline struct dbs_data *to_dbs_data(struct kobject *kobj)
92 {
93         return container_of(kobj, struct dbs_data, kobj);
94 }
95
96 static inline struct governor_attr *to_gov_attr(struct attribute *attr)
97 {
98         return container_of(attr, struct governor_attr, attr);
99 }
100
101 static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
102                              char *buf)
103 {
104         struct dbs_data *dbs_data = to_dbs_data(kobj);
105         struct governor_attr *gattr = to_gov_attr(attr);
106         int ret = -EIO;
107
108         if (gattr->show)
109                 ret = gattr->show(dbs_data, buf);
110
111         return ret;
112 }
113
114 static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
115                               const char *buf, size_t count)
116 {
117         struct dbs_data *dbs_data = to_dbs_data(kobj);
118         struct governor_attr *gattr = to_gov_attr(attr);
119         int ret = -EIO;
120
121         mutex_lock(&dbs_data->mutex);
122
123         if (gattr->store)
124                 ret = gattr->store(dbs_data, buf, count);
125
126         mutex_unlock(&dbs_data->mutex);
127
128         return ret;
129 }
130
131 /*
132  * Sysfs Ops for accessing governor attributes.
133  *
134  * All show/store invocations for governor specific sysfs attributes, will first
135  * call the below show/store callbacks and the attribute specific callback will
136  * be called from within it.
137  */
138 static const struct sysfs_ops governor_sysfs_ops = {
139         .show   = governor_show,
140         .store  = governor_store,
141 };
142
143 void dbs_check_cpu(struct cpufreq_policy *policy)
144 {
145         int cpu = policy->cpu;
146         struct dbs_governor *gov = dbs_governor_of(policy);
147         struct policy_dbs_info *policy_dbs = policy->governor_data;
148         struct dbs_data *dbs_data = policy_dbs->dbs_data;
149         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
150         unsigned int sampling_rate = dbs_data->sampling_rate;
151         unsigned int ignore_nice = dbs_data->ignore_nice_load;
152         unsigned int max_load = 0;
153         unsigned int j;
154
155         if (gov->governor == GOV_ONDEMAND) {
156                 struct od_cpu_dbs_info_s *od_dbs_info =
157                                 gov->get_cpu_dbs_info_s(cpu);
158
159                 /*
160                  * Sometimes, the ondemand governor uses an additional
161                  * multiplier to give long delays. So apply this multiplier to
162                  * the 'sampling_rate', so as to keep the wake-up-from-idle
163                  * detection logic a bit conservative.
164                  */
165                 sampling_rate *= od_dbs_info->rate_mult;
166
167         }
168
169         /* Get Absolute Load */
170         for_each_cpu(j, policy->cpus) {
171                 struct cpu_dbs_info *j_cdbs;
172                 u64 cur_wall_time, cur_idle_time;
173                 unsigned int idle_time, wall_time;
174                 unsigned int load;
175                 int io_busy = 0;
176
177                 j_cdbs = gov->get_cpu_cdbs(j);
178
179                 /*
180                  * For the purpose of ondemand, waiting for disk IO is
181                  * an indication that you're performance critical, and
182                  * not that the system is actually idle. So do not add
183                  * the iowait time to the cpu idle time.
184                  */
185                 if (gov->governor == GOV_ONDEMAND)
186                         io_busy = od_tuners->io_is_busy;
187                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
188
189                 wall_time = (unsigned int)
190                         (cur_wall_time - j_cdbs->prev_cpu_wall);
191                 j_cdbs->prev_cpu_wall = cur_wall_time;
192
193                 if (cur_idle_time < j_cdbs->prev_cpu_idle)
194                         cur_idle_time = j_cdbs->prev_cpu_idle;
195
196                 idle_time = (unsigned int)
197                         (cur_idle_time - j_cdbs->prev_cpu_idle);
198                 j_cdbs->prev_cpu_idle = cur_idle_time;
199
200                 if (ignore_nice) {
201                         struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
202                         u64 cur_nice;
203                         unsigned long cur_nice_jiffies;
204
205                         cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
206                                          cdbs->prev_cpu_nice;
207                         /*
208                          * Assumption: nice time between sampling periods will
209                          * be less than 2^32 jiffies for 32 bit sys
210                          */
211                         cur_nice_jiffies = (unsigned long)
212                                         cputime64_to_jiffies64(cur_nice);
213
214                         cdbs->prev_cpu_nice =
215                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
216                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
217                 }
218
219                 if (unlikely(!wall_time || wall_time < idle_time))
220                         continue;
221
222                 /*
223                  * If the CPU had gone completely idle, and a task just woke up
224                  * on this CPU now, it would be unfair to calculate 'load' the
225                  * usual way for this elapsed time-window, because it will show
226                  * near-zero load, irrespective of how CPU intensive that task
227                  * actually is. This is undesirable for latency-sensitive bursty
228                  * workloads.
229                  *
230                  * To avoid this, we reuse the 'load' from the previous
231                  * time-window and give this task a chance to start with a
232                  * reasonably high CPU frequency. (However, we shouldn't over-do
233                  * this copy, lest we get stuck at a high load (high frequency)
234                  * for too long, even when the current system load has actually
235                  * dropped down. So we perform the copy only once, upon the
236                  * first wake-up from idle.)
237                  *
238                  * Detecting this situation is easy: the governor's utilization
239                  * update handler would not have run during CPU-idle periods.
240                  * Hence, an unusually large 'wall_time' (as compared to the
241                  * sampling rate) indicates this scenario.
242                  *
243                  * prev_load can be zero in two cases and we must recalculate it
244                  * for both cases:
245                  * - during long idle intervals
246                  * - explicitly set to zero
247                  */
248                 if (unlikely(wall_time > (2 * sampling_rate) &&
249                              j_cdbs->prev_load)) {
250                         load = j_cdbs->prev_load;
251
252                         /*
253                          * Perform a destructive copy, to ensure that we copy
254                          * the previous load only once, upon the first wake-up
255                          * from idle.
256                          */
257                         j_cdbs->prev_load = 0;
258                 } else {
259                         load = 100 * (wall_time - idle_time) / wall_time;
260                         j_cdbs->prev_load = load;
261                 }
262
263                 if (load > max_load)
264                         max_load = load;
265         }
266
267         gov->gov_check_cpu(cpu, max_load);
268 }
269 EXPORT_SYMBOL_GPL(dbs_check_cpu);
270
271 void gov_set_update_util(struct policy_dbs_info *policy_dbs,
272                          unsigned int delay_us)
273 {
274         struct cpufreq_policy *policy = policy_dbs->policy;
275         struct dbs_governor *gov = dbs_governor_of(policy);
276         int cpu;
277
278         gov_update_sample_delay(policy_dbs, delay_us);
279         policy_dbs->last_sample_time = 0;
280
281         for_each_cpu(cpu, policy->cpus) {
282                 struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
283
284                 cpufreq_set_update_util_data(cpu, &cdbs->update_util);
285         }
286 }
287 EXPORT_SYMBOL_GPL(gov_set_update_util);
288
289 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
290 {
291         int i;
292
293         for_each_cpu(i, policy->cpus)
294                 cpufreq_set_update_util_data(i, NULL);
295
296         synchronize_rcu();
297 }
298
299 static void gov_cancel_work(struct cpufreq_policy *policy)
300 {
301         struct policy_dbs_info *policy_dbs = policy->governor_data;
302
303         /* Tell dbs_update_util_handler() to skip queuing up work items. */
304         atomic_inc(&policy_dbs->work_count);
305         /*
306          * If dbs_update_util_handler() is already running, it may not notice
307          * the incremented work_count, so wait for it to complete to prevent its
308          * work item from being queued up after the cancel_work_sync() below.
309          */
310         gov_clear_update_util(policy_dbs->policy);
311         irq_work_sync(&policy_dbs->irq_work);
312         cancel_work_sync(&policy_dbs->work);
313         atomic_set(&policy_dbs->work_count, 0);
314 }
315
316 static void dbs_work_handler(struct work_struct *work)
317 {
318         struct policy_dbs_info *policy_dbs;
319         struct cpufreq_policy *policy;
320         struct dbs_governor *gov;
321         unsigned int delay;
322
323         policy_dbs = container_of(work, struct policy_dbs_info, work);
324         policy = policy_dbs->policy;
325         gov = dbs_governor_of(policy);
326
327         /*
328          * Make sure cpufreq_governor_limits() isn't evaluating load or the
329          * ondemand governor isn't updating the sampling rate in parallel.
330          */
331         mutex_lock(&policy_dbs->timer_mutex);
332         delay = gov->gov_dbs_timer(policy);
333         policy_dbs->sample_delay_ns = jiffies_to_nsecs(delay);
334         mutex_unlock(&policy_dbs->timer_mutex);
335
336         /*
337          * If the atomic operation below is reordered with respect to the
338          * sample delay modification, the utilization update handler may end
339          * up using a stale sample delay value.
340          */
341         smp_mb__before_atomic();
342         atomic_dec(&policy_dbs->work_count);
343 }
344
345 static void dbs_irq_work(struct irq_work *irq_work)
346 {
347         struct policy_dbs_info *policy_dbs;
348
349         policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
350         schedule_work(&policy_dbs->work);
351 }
352
353 static inline void gov_queue_irq_work(struct policy_dbs_info *policy_dbs)
354 {
355 #ifdef CONFIG_SMP
356         irq_work_queue_on(&policy_dbs->irq_work, smp_processor_id());
357 #else
358         irq_work_queue(&policy_dbs->irq_work);
359 #endif
360 }
361
362 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
363                                     unsigned long util, unsigned long max)
364 {
365         struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
366         struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
367
368         /*
369          * The work may not be allowed to be queued up right now.
370          * Possible reasons:
371          * - Work has already been queued up or is in progress.
372          * - The governor is being stopped.
373          * - It is too early (too little time from the previous sample).
374          */
375         if (atomic_inc_return(&policy_dbs->work_count) == 1) {
376                 u64 delta_ns;
377
378                 delta_ns = time - policy_dbs->last_sample_time;
379                 if ((s64)delta_ns >= policy_dbs->sample_delay_ns) {
380                         policy_dbs->last_sample_time = time;
381                         gov_queue_irq_work(policy_dbs);
382                         return;
383                 }
384         }
385         atomic_dec(&policy_dbs->work_count);
386 }
387
388 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
389                                                      struct dbs_governor *gov)
390 {
391         struct policy_dbs_info *policy_dbs;
392         int j;
393
394         /* Allocate memory for the common information for policy->cpus */
395         policy_dbs = kzalloc(sizeof(*policy_dbs), GFP_KERNEL);
396         if (!policy_dbs)
397                 return NULL;
398
399         policy_dbs->policy = policy;
400         mutex_init(&policy_dbs->timer_mutex);
401         atomic_set(&policy_dbs->work_count, 0);
402         init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
403         INIT_WORK(&policy_dbs->work, dbs_work_handler);
404
405         /* Set policy_dbs for all CPUs, online+offline */
406         for_each_cpu(j, policy->related_cpus) {
407                 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
408
409                 j_cdbs->policy_dbs = policy_dbs;
410                 j_cdbs->update_util.func = dbs_update_util_handler;
411         }
412         return policy_dbs;
413 }
414
415 static void free_policy_dbs_info(struct cpufreq_policy *policy,
416                                  struct dbs_governor *gov)
417 {
418         struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
419         struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
420         int j;
421
422         mutex_destroy(&policy_dbs->timer_mutex);
423
424         for_each_cpu(j, policy->related_cpus) {
425                 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
426
427                 j_cdbs->policy_dbs = NULL;
428                 j_cdbs->update_util.func = NULL;
429         }
430         kfree(policy_dbs);
431 }
432
433 static int cpufreq_governor_init(struct cpufreq_policy *policy)
434 {
435         struct dbs_governor *gov = dbs_governor_of(policy);
436         struct dbs_data *dbs_data = gov->gdbs_data;
437         struct policy_dbs_info *policy_dbs;
438         unsigned int latency;
439         int ret;
440
441         /* State should be equivalent to EXIT */
442         if (policy->governor_data)
443                 return -EBUSY;
444
445         policy_dbs = alloc_policy_dbs_info(policy, gov);
446         if (!policy_dbs)
447                 return -ENOMEM;
448
449         if (dbs_data) {
450                 if (WARN_ON(have_governor_per_policy())) {
451                         ret = -EINVAL;
452                         goto free_policy_dbs_info;
453                 }
454                 policy_dbs->dbs_data = dbs_data;
455                 policy->governor_data = policy_dbs;
456
457                 mutex_lock(&dbs_data->mutex);
458                 dbs_data->usage_count++;
459                 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
460                 mutex_unlock(&dbs_data->mutex);
461
462                 return 0;
463         }
464
465         dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
466         if (!dbs_data) {
467                 ret = -ENOMEM;
468                 goto free_policy_dbs_info;
469         }
470
471         INIT_LIST_HEAD(&dbs_data->policy_dbs_list);
472         mutex_init(&dbs_data->mutex);
473
474         ret = gov->init(dbs_data, !policy->governor->initialized);
475         if (ret)
476                 goto free_policy_dbs_info;
477
478         /* policy latency is in ns. Convert it to us first */
479         latency = policy->cpuinfo.transition_latency / 1000;
480         if (latency == 0)
481                 latency = 1;
482
483         /* Bring kernel and HW constraints together */
484         dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
485                                           MIN_LATENCY_MULTIPLIER * latency);
486         dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
487                                       LATENCY_MULTIPLIER * latency);
488
489         if (!have_governor_per_policy())
490                 gov->gdbs_data = dbs_data;
491
492         policy->governor_data = policy_dbs;
493
494         policy_dbs->dbs_data = dbs_data;
495         dbs_data->usage_count = 1;
496         list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
497
498         gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
499         ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type,
500                                    get_governor_parent_kobj(policy),
501                                    "%s", gov->gov.name);
502         if (!ret)
503                 return 0;
504
505         /* Failure, so roll back. */
506         pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret);
507
508         policy->governor_data = NULL;
509
510         if (!have_governor_per_policy())
511                 gov->gdbs_data = NULL;
512         gov->exit(dbs_data, !policy->governor->initialized);
513         kfree(dbs_data);
514
515 free_policy_dbs_info:
516         free_policy_dbs_info(policy, gov);
517         return ret;
518 }
519
520 static int cpufreq_governor_exit(struct cpufreq_policy *policy)
521 {
522         struct dbs_governor *gov = dbs_governor_of(policy);
523         struct policy_dbs_info *policy_dbs = policy->governor_data;
524         struct dbs_data *dbs_data = policy_dbs->dbs_data;
525         int count;
526
527         mutex_lock(&dbs_data->mutex);
528         list_del(&policy_dbs->list);
529         count = --dbs_data->usage_count;
530         mutex_unlock(&dbs_data->mutex);
531
532         if (!count) {
533                 kobject_put(&dbs_data->kobj);
534
535                 policy->governor_data = NULL;
536
537                 if (!have_governor_per_policy())
538                         gov->gdbs_data = NULL;
539
540                 gov->exit(dbs_data, policy->governor->initialized == 1);
541                 mutex_destroy(&dbs_data->mutex);
542                 kfree(dbs_data);
543         } else {
544                 policy->governor_data = NULL;
545         }
546
547         free_policy_dbs_info(policy, gov);
548         return 0;
549 }
550
551 static int cpufreq_governor_start(struct cpufreq_policy *policy)
552 {
553         struct dbs_governor *gov = dbs_governor_of(policy);
554         struct policy_dbs_info *policy_dbs = policy->governor_data;
555         struct dbs_data *dbs_data = policy_dbs->dbs_data;
556         unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
557         int io_busy = 0;
558
559         if (!policy->cur)
560                 return -EINVAL;
561
562         sampling_rate = dbs_data->sampling_rate;
563         ignore_nice = dbs_data->ignore_nice_load;
564
565         if (gov->governor == GOV_ONDEMAND) {
566                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
567
568                 io_busy = od_tuners->io_is_busy;
569         }
570
571         for_each_cpu(j, policy->cpus) {
572                 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
573                 unsigned int prev_load;
574
575                 j_cdbs->prev_cpu_idle =
576                         get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
577
578                 prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
579                                             j_cdbs->prev_cpu_idle);
580                 j_cdbs->prev_load = 100 * prev_load /
581                                     (unsigned int)j_cdbs->prev_cpu_wall;
582
583                 if (ignore_nice)
584                         j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
585         }
586
587         if (gov->governor == GOV_CONSERVATIVE) {
588                 struct cs_cpu_dbs_info_s *cs_dbs_info =
589                         gov->get_cpu_dbs_info_s(cpu);
590
591                 cs_dbs_info->down_skip = 0;
592                 cs_dbs_info->requested_freq = policy->cur;
593         } else {
594                 struct od_ops *od_ops = gov->gov_ops;
595                 struct od_cpu_dbs_info_s *od_dbs_info = gov->get_cpu_dbs_info_s(cpu);
596
597                 od_dbs_info->rate_mult = 1;
598                 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
599                 od_ops->powersave_bias_init_cpu(cpu);
600         }
601
602         gov_set_update_util(policy_dbs, sampling_rate);
603         return 0;
604 }
605
606 static int cpufreq_governor_stop(struct cpufreq_policy *policy)
607 {
608         gov_cancel_work(policy);
609
610         return 0;
611 }
612
613 static int cpufreq_governor_limits(struct cpufreq_policy *policy)
614 {
615         struct policy_dbs_info *policy_dbs = policy->governor_data;
616
617         mutex_lock(&policy_dbs->timer_mutex);
618         if (policy->max < policy->cur)
619                 __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
620         else if (policy->min > policy->cur)
621                 __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
622         dbs_check_cpu(policy);
623         mutex_unlock(&policy_dbs->timer_mutex);
624
625         return 0;
626 }
627
628 int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
629 {
630         int ret = -EINVAL;
631
632         /* Lock governor to block concurrent initialization of governor */
633         mutex_lock(&dbs_data_mutex);
634
635         if (event == CPUFREQ_GOV_POLICY_INIT) {
636                 ret = cpufreq_governor_init(policy);
637         } else if (policy->governor_data) {
638                 switch (event) {
639                 case CPUFREQ_GOV_POLICY_EXIT:
640                         ret = cpufreq_governor_exit(policy);
641                         break;
642                 case CPUFREQ_GOV_START:
643                         ret = cpufreq_governor_start(policy);
644                         break;
645                 case CPUFREQ_GOV_STOP:
646                         ret = cpufreq_governor_stop(policy);
647                         break;
648                 case CPUFREQ_GOV_LIMITS:
649                         ret = cpufreq_governor_limits(policy);
650                         break;
651                 }
652         }
653
654         mutex_unlock(&dbs_data_mutex);
655         return ret;
656 }
657 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);