]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/e_powersaver.c
Merge tag 'batman-adv-for-davem' of git://git.open-mesh.org/linux-merge
[karo-tx-linux.git] / drivers / cpufreq / e_powersaver.c
1 /*
2  *  Based on documentation provided by Dave Jones. Thanks!
3  *
4  *  Licensed under the terms of the GNU GPL License version 2.
5  *
6  *  BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/cpufreq.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/timex.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18
19 #include <asm/cpu_device_id.h>
20 #include <asm/msr.h>
21 #include <asm/tsc.h>
22
23 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
24 #include <linux/acpi.h>
25 #include <acpi/processor.h>
26 #endif
27
28 #define EPS_BRAND_C7M   0
29 #define EPS_BRAND_C7    1
30 #define EPS_BRAND_EDEN  2
31 #define EPS_BRAND_C3    3
32 #define EPS_BRAND_C7D   4
33
34 struct eps_cpu_data {
35         u32 fsb;
36 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
37         u32 bios_limit;
38 #endif
39         struct cpufreq_frequency_table freq_table[];
40 };
41
42 static struct eps_cpu_data *eps_cpu[NR_CPUS];
43
44 /* Module parameters */
45 static int freq_failsafe_off;
46 static int voltage_failsafe_off;
47 static int set_max_voltage;
48
49 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
50 static int ignore_acpi_limit;
51
52 static struct acpi_processor_performance *eps_acpi_cpu_perf;
53
54 /* Minimum necessary to get acpi_processor_get_bios_limit() working */
55 static int eps_acpi_init(void)
56 {
57         eps_acpi_cpu_perf = kzalloc(sizeof(*eps_acpi_cpu_perf),
58                                       GFP_KERNEL);
59         if (!eps_acpi_cpu_perf)
60                 return -ENOMEM;
61
62         if (!zalloc_cpumask_var(&eps_acpi_cpu_perf->shared_cpu_map,
63                                                                 GFP_KERNEL)) {
64                 kfree(eps_acpi_cpu_perf);
65                 eps_acpi_cpu_perf = NULL;
66                 return -ENOMEM;
67         }
68
69         if (acpi_processor_register_performance(eps_acpi_cpu_perf, 0)) {
70                 free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
71                 kfree(eps_acpi_cpu_perf);
72                 eps_acpi_cpu_perf = NULL;
73                 return -EIO;
74         }
75         return 0;
76 }
77
78 static int eps_acpi_exit(struct cpufreq_policy *policy)
79 {
80         if (eps_acpi_cpu_perf) {
81                 acpi_processor_unregister_performance(eps_acpi_cpu_perf, 0);
82                 free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
83                 kfree(eps_acpi_cpu_perf);
84                 eps_acpi_cpu_perf = NULL;
85         }
86         return 0;
87 }
88 #endif
89
90 static unsigned int eps_get(unsigned int cpu)
91 {
92         struct eps_cpu_data *centaur;
93         u32 lo, hi;
94
95         if (cpu)
96                 return 0;
97         centaur = eps_cpu[cpu];
98         if (centaur == NULL)
99                 return 0;
100
101         /* Return current frequency */
102         rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
103         return centaur->fsb * ((lo >> 8) & 0xff);
104 }
105
106 static int eps_set_state(struct eps_cpu_data *centaur,
107                          struct cpufreq_policy *policy,
108                          u32 dest_state)
109 {
110         struct cpufreq_freqs freqs;
111         u32 lo, hi;
112         int err = 0;
113         int i;
114
115         freqs.old = eps_get(policy->cpu);
116         freqs.new = centaur->fsb * ((dest_state >> 8) & 0xff);
117         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
118
119         /* Wait while CPU is busy */
120         rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
121         i = 0;
122         while (lo & ((1 << 16) | (1 << 17))) {
123                 udelay(16);
124                 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
125                 i++;
126                 if (unlikely(i > 64)) {
127                         err = -ENODEV;
128                         goto postchange;
129                 }
130         }
131         /* Set new multiplier and voltage */
132         wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0);
133         /* Wait until transition end */
134         i = 0;
135         do {
136                 udelay(16);
137                 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
138                 i++;
139                 if (unlikely(i > 64)) {
140                         err = -ENODEV;
141                         goto postchange;
142                 }
143         } while (lo & ((1 << 16) | (1 << 17)));
144
145         /* Return current frequency */
146 postchange:
147         rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
148         freqs.new = centaur->fsb * ((lo >> 8) & 0xff);
149
150 #ifdef DEBUG
151         {
152         u8 current_multiplier, current_voltage;
153
154         /* Print voltage and multiplier */
155         rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
156         current_voltage = lo & 0xff;
157         printk(KERN_INFO "eps: Current voltage = %dmV\n",
158                 current_voltage * 16 + 700);
159         current_multiplier = (lo >> 8) & 0xff;
160         printk(KERN_INFO "eps: Current multiplier = %d\n",
161                 current_multiplier);
162         }
163 #endif
164         if (err)
165                 freqs.new = freqs.old;
166
167         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
168         return err;
169 }
170
171 static int eps_target(struct cpufreq_policy *policy,
172                                unsigned int target_freq,
173                                unsigned int relation)
174 {
175         struct eps_cpu_data *centaur;
176         unsigned int newstate = 0;
177         unsigned int cpu = policy->cpu;
178         unsigned int dest_state;
179         int ret;
180
181         if (unlikely(eps_cpu[cpu] == NULL))
182                 return -ENODEV;
183         centaur = eps_cpu[cpu];
184
185         if (unlikely(cpufreq_frequency_table_target(policy,
186                         &eps_cpu[cpu]->freq_table[0],
187                         target_freq,
188                         relation,
189                         &newstate))) {
190                 return -EINVAL;
191         }
192
193         /* Make frequency transition */
194         dest_state = centaur->freq_table[newstate].driver_data & 0xffff;
195         ret = eps_set_state(centaur, policy, dest_state);
196         if (ret)
197                 printk(KERN_ERR "eps: Timeout!\n");
198         return ret;
199 }
200
201 static int eps_verify(struct cpufreq_policy *policy)
202 {
203         return cpufreq_frequency_table_verify(policy,
204                         &eps_cpu[policy->cpu]->freq_table[0]);
205 }
206
207 static int eps_cpu_init(struct cpufreq_policy *policy)
208 {
209         unsigned int i;
210         u32 lo, hi;
211         u64 val;
212         u8 current_multiplier, current_voltage;
213         u8 max_multiplier, max_voltage;
214         u8 min_multiplier, min_voltage;
215         u8 brand = 0;
216         u32 fsb;
217         struct eps_cpu_data *centaur;
218         struct cpuinfo_x86 *c = &cpu_data(0);
219         struct cpufreq_frequency_table *f_table;
220         int k, step, voltage;
221         int ret;
222         int states;
223 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
224         unsigned int limit;
225 #endif
226
227         if (policy->cpu != 0)
228                 return -ENODEV;
229
230         /* Check brand */
231         printk(KERN_INFO "eps: Detected VIA ");
232
233         switch (c->x86_model) {
234         case 10:
235                 rdmsr(0x1153, lo, hi);
236                 brand = (((lo >> 2) ^ lo) >> 18) & 3;
237                 printk(KERN_CONT "Model A ");
238                 break;
239         case 13:
240                 rdmsr(0x1154, lo, hi);
241                 brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff;
242                 printk(KERN_CONT "Model D ");
243                 break;
244         }
245
246         switch (brand) {
247         case EPS_BRAND_C7M:
248                 printk(KERN_CONT "C7-M\n");
249                 break;
250         case EPS_BRAND_C7:
251                 printk(KERN_CONT "C7\n");
252                 break;
253         case EPS_BRAND_EDEN:
254                 printk(KERN_CONT "Eden\n");
255                 break;
256         case EPS_BRAND_C7D:
257                 printk(KERN_CONT "C7-D\n");
258                 break;
259         case EPS_BRAND_C3:
260                 printk(KERN_CONT "C3\n");
261                 return -ENODEV;
262                 break;
263         }
264         /* Enable Enhanced PowerSaver */
265         rdmsrl(MSR_IA32_MISC_ENABLE, val);
266         if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
267                 val |= MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP;
268                 wrmsrl(MSR_IA32_MISC_ENABLE, val);
269                 /* Can be locked at 0 */
270                 rdmsrl(MSR_IA32_MISC_ENABLE, val);
271                 if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
272                         printk(KERN_INFO "eps: Can't enable Enhanced PowerSaver\n");
273                         return -ENODEV;
274                 }
275         }
276
277         /* Print voltage and multiplier */
278         rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
279         current_voltage = lo & 0xff;
280         printk(KERN_INFO "eps: Current voltage = %dmV\n",
281                         current_voltage * 16 + 700);
282         current_multiplier = (lo >> 8) & 0xff;
283         printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier);
284
285         /* Print limits */
286         max_voltage = hi & 0xff;
287         printk(KERN_INFO "eps: Highest voltage = %dmV\n",
288                         max_voltage * 16 + 700);
289         max_multiplier = (hi >> 8) & 0xff;
290         printk(KERN_INFO "eps: Highest multiplier = %d\n", max_multiplier);
291         min_voltage = (hi >> 16) & 0xff;
292         printk(KERN_INFO "eps: Lowest voltage = %dmV\n",
293                         min_voltage * 16 + 700);
294         min_multiplier = (hi >> 24) & 0xff;
295         printk(KERN_INFO "eps: Lowest multiplier = %d\n", min_multiplier);
296
297         /* Sanity checks */
298         if (current_multiplier == 0 || max_multiplier == 0
299             || min_multiplier == 0)
300                 return -EINVAL;
301         if (current_multiplier > max_multiplier
302             || max_multiplier <= min_multiplier)
303                 return -EINVAL;
304         if (current_voltage > 0x1f || max_voltage > 0x1f)
305                 return -EINVAL;
306         if (max_voltage < min_voltage
307             || current_voltage < min_voltage
308             || current_voltage > max_voltage)
309                 return -EINVAL;
310
311         /* Check for systems using underclocked CPU */
312         if (!freq_failsafe_off && max_multiplier != current_multiplier) {
313                 printk(KERN_INFO "eps: Your processor is running at different "
314                         "frequency then its maximum. Aborting.\n");
315                 printk(KERN_INFO "eps: You can use freq_failsafe_off option "
316                         "to disable this check.\n");
317                 return -EINVAL;
318         }
319         if (!voltage_failsafe_off && max_voltage != current_voltage) {
320                 printk(KERN_INFO "eps: Your processor is running at different "
321                         "voltage then its maximum. Aborting.\n");
322                 printk(KERN_INFO "eps: You can use voltage_failsafe_off "
323                         "option to disable this check.\n");
324                 return -EINVAL;
325         }
326
327         /* Calc FSB speed */
328         fsb = cpu_khz / current_multiplier;
329
330 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
331         /* Check for ACPI processor speed limit */
332         if (!ignore_acpi_limit && !eps_acpi_init()) {
333                 if (!acpi_processor_get_bios_limit(policy->cpu, &limit)) {
334                         printk(KERN_INFO "eps: ACPI limit %u.%uGHz\n",
335                                 limit/1000000,
336                                 (limit%1000000)/10000);
337                         eps_acpi_exit(policy);
338                         /* Check if max_multiplier is in BIOS limits */
339                         if (limit && max_multiplier * fsb > limit) {
340                                 printk(KERN_INFO "eps: Aborting.\n");
341                                 return -EINVAL;
342                         }
343                 }
344         }
345 #endif
346
347         /* Allow user to set lower maximum voltage then that reported
348          * by processor */
349         if (brand == EPS_BRAND_C7M && set_max_voltage) {
350                 u32 v;
351
352                 /* Change mV to something hardware can use */
353                 v = (set_max_voltage - 700) / 16;
354                 /* Check if voltage is within limits */
355                 if (v >= min_voltage && v <= max_voltage) {
356                         printk(KERN_INFO "eps: Setting %dmV as maximum.\n",
357                                 v * 16 + 700);
358                         max_voltage = v;
359                 }
360         }
361
362         /* Calc number of p-states supported */
363         if (brand == EPS_BRAND_C7M)
364                 states = max_multiplier - min_multiplier + 1;
365         else
366                 states = 2;
367
368         /* Allocate private data and frequency table for current cpu */
369         centaur = kzalloc(sizeof(*centaur)
370                     + (states + 1) * sizeof(struct cpufreq_frequency_table),
371                     GFP_KERNEL);
372         if (!centaur)
373                 return -ENOMEM;
374         eps_cpu[0] = centaur;
375
376         /* Copy basic values */
377         centaur->fsb = fsb;
378 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
379         centaur->bios_limit = limit;
380 #endif
381
382         /* Fill frequency and MSR value table */
383         f_table = &centaur->freq_table[0];
384         if (brand != EPS_BRAND_C7M) {
385                 f_table[0].frequency = fsb * min_multiplier;
386                 f_table[0].driver_data = (min_multiplier << 8) | min_voltage;
387                 f_table[1].frequency = fsb * max_multiplier;
388                 f_table[1].driver_data = (max_multiplier << 8) | max_voltage;
389                 f_table[2].frequency = CPUFREQ_TABLE_END;
390         } else {
391                 k = 0;
392                 step = ((max_voltage - min_voltage) * 256)
393                         / (max_multiplier - min_multiplier);
394                 for (i = min_multiplier; i <= max_multiplier; i++) {
395                         voltage = (k * step) / 256 + min_voltage;
396                         f_table[k].frequency = fsb * i;
397                         f_table[k].driver_data = (i << 8) | voltage;
398                         k++;
399                 }
400                 f_table[k].frequency = CPUFREQ_TABLE_END;
401         }
402
403         policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */
404         policy->cur = fsb * current_multiplier;
405
406         ret = cpufreq_frequency_table_cpuinfo(policy, &centaur->freq_table[0]);
407         if (ret) {
408                 kfree(centaur);
409                 return ret;
410         }
411
412         cpufreq_frequency_table_get_attr(&centaur->freq_table[0], policy->cpu);
413         return 0;
414 }
415
416 static int eps_cpu_exit(struct cpufreq_policy *policy)
417 {
418         unsigned int cpu = policy->cpu;
419
420         /* Bye */
421         cpufreq_frequency_table_put_attr(policy->cpu);
422         kfree(eps_cpu[cpu]);
423         eps_cpu[cpu] = NULL;
424         return 0;
425 }
426
427 static struct freq_attr *eps_attr[] = {
428         &cpufreq_freq_attr_scaling_available_freqs,
429         NULL,
430 };
431
432 static struct cpufreq_driver eps_driver = {
433         .verify         = eps_verify,
434         .target         = eps_target,
435         .init           = eps_cpu_init,
436         .exit           = eps_cpu_exit,
437         .get            = eps_get,
438         .name           = "e_powersaver",
439         .attr           = eps_attr,
440 };
441
442
443 /* This driver will work only on Centaur C7 processors with
444  * Enhanced SpeedStep/PowerSaver registers */
445 static const struct x86_cpu_id eps_cpu_id[] = {
446         { X86_VENDOR_CENTAUR, 6, X86_MODEL_ANY, X86_FEATURE_EST },
447         {}
448 };
449 MODULE_DEVICE_TABLE(x86cpu, eps_cpu_id);
450
451 static int __init eps_init(void)
452 {
453         if (!x86_match_cpu(eps_cpu_id) || boot_cpu_data.x86_model < 10)
454                 return -ENODEV;
455         if (cpufreq_register_driver(&eps_driver))
456                 return -EINVAL;
457         return 0;
458 }
459
460 static void __exit eps_exit(void)
461 {
462         cpufreq_unregister_driver(&eps_driver);
463 }
464
465 /* Allow user to overclock his machine or to change frequency to higher after
466  * unloading module */
467 module_param(freq_failsafe_off, int, 0644);
468 MODULE_PARM_DESC(freq_failsafe_off, "Disable current vs max frequency check");
469 module_param(voltage_failsafe_off, int, 0644);
470 MODULE_PARM_DESC(voltage_failsafe_off, "Disable current vs max voltage check");
471 #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
472 module_param(ignore_acpi_limit, int, 0644);
473 MODULE_PARM_DESC(ignore_acpi_limit, "Don't check ACPI's processor speed limit");
474 #endif
475 module_param(set_max_voltage, int, 0644);
476 MODULE_PARM_DESC(set_max_voltage, "Set maximum CPU voltage (mV) C7-M only");
477
478 MODULE_AUTHOR("Rafal Bilski <rafalbilski@interia.pl>");
479 MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's.");
480 MODULE_LICENSE("GPL");
481
482 module_init(eps_init);
483 module_exit(eps_exit);