]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/exynos-cpufreq.c
cpufreq: exynos: Check old & new frequency early
[karo-tx-linux.git] / drivers / cpufreq / exynos-cpufreq.c
1 /*
2  * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
3  *              http://www.samsung.com
4  *
5  * EXYNOS - CPU frequency scaling support for EXYNOS series
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/err.h>
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/slab.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/cpufreq.h>
19 #include <linux/suspend.h>
20
21 #include <mach/cpufreq.h>
22
23 #include <plat/cpu.h>
24
25 static struct exynos_dvfs_info *exynos_info;
26
27 static struct regulator *arm_regulator;
28 static struct cpufreq_freqs freqs;
29
30 static unsigned int locking_frequency;
31 static bool frequency_locked;
32 static DEFINE_MUTEX(cpufreq_lock);
33
34 static int exynos_verify_speed(struct cpufreq_policy *policy)
35 {
36         return cpufreq_frequency_table_verify(policy,
37                                               exynos_info->freq_table);
38 }
39
40 static unsigned int exynos_getspeed(unsigned int cpu)
41 {
42         return clk_get_rate(exynos_info->cpu_clk) / 1000;
43 }
44
45 static int exynos_target(struct cpufreq_policy *policy,
46                           unsigned int target_freq,
47                           unsigned int relation)
48 {
49         unsigned int index, old_index;
50         unsigned int arm_volt, safe_arm_volt = 0;
51         int ret = 0;
52         struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
53         unsigned int *volt_table = exynos_info->volt_table;
54         unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
55
56         mutex_lock(&cpufreq_lock);
57
58         freqs.old = policy->cur;
59
60         if (frequency_locked && target_freq != locking_frequency) {
61                 ret = -EAGAIN;
62                 goto out;
63         }
64
65         /*
66          * The policy max have been changed so that we cannot get proper
67          * old_index with cpufreq_frequency_table_target(). Thus, ignore
68          * policy and get the index from the raw freqeuncy table.
69          */
70         for (old_index = 0;
71                 freq_table[old_index].frequency != CPUFREQ_TABLE_END;
72                 old_index++)
73                 if (freq_table[old_index].frequency == freqs.old)
74                         break;
75
76         if (freq_table[old_index].frequency == CPUFREQ_TABLE_END) {
77                 ret = -EINVAL;
78                 goto out;
79         }
80
81         if (cpufreq_frequency_table_target(policy, freq_table,
82                                            target_freq, relation, &index)) {
83                 ret = -EINVAL;
84                 goto out;
85         }
86
87         freqs.new = freq_table[index].frequency;
88         freqs.cpu = policy->cpu;
89
90         if (freqs.new == freqs.old)
91                 goto out;
92
93         /*
94          * ARM clock source will be changed APLL to MPLL temporary
95          * To support this level, need to control regulator for
96          * required voltage level
97          */
98         if (exynos_info->need_apll_change != NULL) {
99                 if (exynos_info->need_apll_change(old_index, index) &&
100                    (freq_table[index].frequency < mpll_freq_khz) &&
101                    (freq_table[old_index].frequency < mpll_freq_khz))
102                         safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
103         }
104         arm_volt = volt_table[index];
105
106         for_each_cpu(freqs.cpu, policy->cpus)
107                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
108
109         /* When the new frequency is higher than current frequency */
110         if ((freqs.new > freqs.old) && !safe_arm_volt) {
111                 /* Firstly, voltage up to increase frequency */
112                 regulator_set_voltage(arm_regulator, arm_volt,
113                                 arm_volt);
114         }
115
116         if (safe_arm_volt)
117                 regulator_set_voltage(arm_regulator, safe_arm_volt,
118                                       safe_arm_volt);
119
120         exynos_info->set_freq(old_index, index);
121
122         for_each_cpu(freqs.cpu, policy->cpus)
123                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
124
125         /* When the new frequency is lower than current frequency */
126         if ((freqs.new < freqs.old) ||
127            ((freqs.new > freqs.old) && safe_arm_volt)) {
128                 /* down the voltage after frequency change */
129                 regulator_set_voltage(arm_regulator, arm_volt,
130                                 arm_volt);
131         }
132
133 out:
134         mutex_unlock(&cpufreq_lock);
135
136         return ret;
137 }
138
139 #ifdef CONFIG_PM
140 static int exynos_cpufreq_suspend(struct cpufreq_policy *policy)
141 {
142         return 0;
143 }
144
145 static int exynos_cpufreq_resume(struct cpufreq_policy *policy)
146 {
147         return 0;
148 }
149 #endif
150
151 /**
152  * exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
153  *                      context
154  * @notifier
155  * @pm_event
156  * @v
157  *
158  * While frequency_locked == true, target() ignores every frequency but
159  * locking_frequency. The locking_frequency value is the initial frequency,
160  * which is set by the bootloader. In order to eliminate possible
161  * inconsistency in clock values, we save and restore frequencies during
162  * suspend and resume and block CPUFREQ activities. Note that the standard
163  * suspend/resume cannot be used as they are too deep (syscore_ops) for
164  * regulator actions.
165  */
166 static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier,
167                                        unsigned long pm_event, void *v)
168 {
169         struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
170         static unsigned int saved_frequency;
171         unsigned int temp;
172
173         mutex_lock(&cpufreq_lock);
174         switch (pm_event) {
175         case PM_SUSPEND_PREPARE:
176                 if (frequency_locked)
177                         goto out;
178
179                 frequency_locked = true;
180
181                 if (locking_frequency) {
182                         saved_frequency = exynos_getspeed(0);
183
184                         mutex_unlock(&cpufreq_lock);
185                         exynos_target(policy, locking_frequency,
186                                       CPUFREQ_RELATION_H);
187                         mutex_lock(&cpufreq_lock);
188                 }
189                 break;
190
191         case PM_POST_SUSPEND:
192                 if (saved_frequency) {
193                         /*
194                          * While frequency_locked, only locking_frequency
195                          * is valid for target(). In order to use
196                          * saved_frequency while keeping frequency_locked,
197                          * we temporarly overwrite locking_frequency.
198                          */
199                         temp = locking_frequency;
200                         locking_frequency = saved_frequency;
201
202                         mutex_unlock(&cpufreq_lock);
203                         exynos_target(policy, locking_frequency,
204                                       CPUFREQ_RELATION_H);
205                         mutex_lock(&cpufreq_lock);
206
207                         locking_frequency = temp;
208                 }
209                 frequency_locked = false;
210                 break;
211         }
212 out:
213         mutex_unlock(&cpufreq_lock);
214
215         return NOTIFY_OK;
216 }
217
218 static struct notifier_block exynos_cpufreq_nb = {
219         .notifier_call = exynos_cpufreq_pm_notifier,
220 };
221
222 static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
223 {
224         policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu);
225
226         cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu);
227
228         locking_frequency = exynos_getspeed(0);
229
230         /* set the transition latency value */
231         policy->cpuinfo.transition_latency = 100000;
232
233         /*
234          * EXYNOS4 multi-core processors has 2 cores
235          * that the frequency cannot be set independently.
236          * Each cpu is bound to the same speed.
237          * So the affected cpu is all of the cpus.
238          */
239         if (num_online_cpus() == 1) {
240                 cpumask_copy(policy->related_cpus, cpu_possible_mask);
241                 cpumask_copy(policy->cpus, cpu_online_mask);
242         } else {
243                 policy->shared_type = CPUFREQ_SHARED_TYPE_ANY;
244                 cpumask_setall(policy->cpus);
245         }
246
247         return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table);
248 }
249
250 static struct cpufreq_driver exynos_driver = {
251         .flags          = CPUFREQ_STICKY,
252         .verify         = exynos_verify_speed,
253         .target         = exynos_target,
254         .get            = exynos_getspeed,
255         .init           = exynos_cpufreq_cpu_init,
256         .name           = "exynos_cpufreq",
257 #ifdef CONFIG_PM
258         .suspend        = exynos_cpufreq_suspend,
259         .resume         = exynos_cpufreq_resume,
260 #endif
261 };
262
263 static int __init exynos_cpufreq_init(void)
264 {
265         int ret = -EINVAL;
266
267         exynos_info = kzalloc(sizeof(struct exynos_dvfs_info), GFP_KERNEL);
268         if (!exynos_info)
269                 return -ENOMEM;
270
271         if (soc_is_exynos4210())
272                 ret = exynos4210_cpufreq_init(exynos_info);
273         else if (soc_is_exynos4212() || soc_is_exynos4412())
274                 ret = exynos4x12_cpufreq_init(exynos_info);
275         else if (soc_is_exynos5250())
276                 ret = exynos5250_cpufreq_init(exynos_info);
277         else
278                 pr_err("%s: CPU type not found\n", __func__);
279
280         if (ret)
281                 goto err_vdd_arm;
282
283         if (exynos_info->set_freq == NULL) {
284                 pr_err("%s: No set_freq function (ERR)\n", __func__);
285                 goto err_vdd_arm;
286         }
287
288         arm_regulator = regulator_get(NULL, "vdd_arm");
289         if (IS_ERR(arm_regulator)) {
290                 pr_err("%s: failed to get resource vdd_arm\n", __func__);
291                 goto err_vdd_arm;
292         }
293
294         register_pm_notifier(&exynos_cpufreq_nb);
295
296         if (cpufreq_register_driver(&exynos_driver)) {
297                 pr_err("%s: failed to register cpufreq driver\n", __func__);
298                 goto err_cpufreq;
299         }
300
301         return 0;
302 err_cpufreq:
303         unregister_pm_notifier(&exynos_cpufreq_nb);
304
305         regulator_put(arm_regulator);
306 err_vdd_arm:
307         kfree(exynos_info);
308         pr_debug("%s: failed initialization\n", __func__);
309         return -EINVAL;
310 }
311 late_initcall(exynos_cpufreq_init);