]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/imx6q-cpufreq.c
Merge remote-tracking branch 'gpio/for-next'
[karo-tx-linux.git] / drivers / cpufreq / imx6q-cpufreq.c
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19
20 #define PU_SOC_VOLTAGE_NORMAL   1250000
21 #define PU_SOC_VOLTAGE_HIGH     1275000
22 #define FREQ_1P2_GHZ            1200000000
23
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
27
28 static struct clk *arm_clk;
29 static struct clk *pll1_sys_clk;
30 static struct clk *pll1_sw_clk;
31 static struct clk *step_clk;
32 static struct clk *pll2_pfd2_396m_clk;
33
34 static struct device *cpu_dev;
35 static struct cpufreq_frequency_table *freq_table;
36 static unsigned int transition_latency;
37
38 static unsigned int imx6q_get_speed(unsigned int cpu)
39 {
40         return clk_get_rate(arm_clk) / 1000;
41 }
42
43 static int imx6q_set_target(struct cpufreq_policy *policy,
44                             unsigned int target_freq, unsigned int relation)
45 {
46         struct cpufreq_freqs freqs;
47         struct dev_pm_opp *opp;
48         unsigned long freq_hz, volt, volt_old;
49         unsigned int index;
50         int ret;
51
52         ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
53                                              relation, &index);
54         if (ret) {
55                 dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
56                         target_freq, ret);
57                 return ret;
58         }
59
60         freqs.new = freq_table[index].frequency;
61         freq_hz = freqs.new * 1000;
62         freqs.old = clk_get_rate(arm_clk) / 1000;
63
64         if (freqs.old == freqs.new)
65                 return 0;
66
67         rcu_read_lock();
68         opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
69         if (IS_ERR(opp)) {
70                 rcu_read_unlock();
71                 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
72                 return PTR_ERR(opp);
73         }
74
75         volt = dev_pm_opp_get_voltage(opp);
76         rcu_read_unlock();
77         volt_old = regulator_get_voltage(arm_reg);
78
79         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
80                 freqs.old / 1000, volt_old / 1000,
81                 freqs.new / 1000, volt / 1000);
82
83         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
84
85         /* scaling up?  scale voltage before frequency */
86         if (freqs.new > freqs.old) {
87                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
88                 if (ret) {
89                         dev_err(cpu_dev,
90                                 "failed to scale vddarm up: %d\n", ret);
91                         freqs.new = freqs.old;
92                         goto post_notify;
93                 }
94
95                 /*
96                  * Need to increase vddpu and vddsoc for safety
97                  * if we are about to run at 1.2 GHz.
98                  */
99                 if (freqs.new == FREQ_1P2_GHZ / 1000) {
100                         regulator_set_voltage_tol(pu_reg,
101                                         PU_SOC_VOLTAGE_HIGH, 0);
102                         regulator_set_voltage_tol(soc_reg,
103                                         PU_SOC_VOLTAGE_HIGH, 0);
104                 }
105         }
106
107         /*
108          * The setpoints are selected per PLL/PDF frequencies, so we need to
109          * reprogram PLL for frequency scaling.  The procedure of reprogramming
110          * PLL1 is as below.
111          *
112          *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
113          *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
114          *  - Disable pll2_pfd2_396m_clk
115          */
116         clk_set_parent(step_clk, pll2_pfd2_396m_clk);
117         clk_set_parent(pll1_sw_clk, step_clk);
118         if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
119                 clk_set_rate(pll1_sys_clk, freqs.new * 1000);
120                 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
121         }
122
123         /* Ensure the arm clock divider is what we expect */
124         ret = clk_set_rate(arm_clk, freqs.new * 1000);
125         if (ret) {
126                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
127                 regulator_set_voltage_tol(arm_reg, volt_old, 0);
128                 freqs.new = freqs.old;
129                 goto post_notify;
130         }
131
132         /* scaling down?  scale voltage after frequency */
133         if (freqs.new < freqs.old) {
134                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
135                 if (ret) {
136                         dev_warn(cpu_dev,
137                                  "failed to scale vddarm down: %d\n", ret);
138                         ret = 0;
139                 }
140
141                 if (freqs.old == FREQ_1P2_GHZ / 1000) {
142                         regulator_set_voltage_tol(pu_reg,
143                                         PU_SOC_VOLTAGE_NORMAL, 0);
144                         regulator_set_voltage_tol(soc_reg,
145                                         PU_SOC_VOLTAGE_NORMAL, 0);
146                 }
147         }
148
149 post_notify:
150         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
151
152         return ret;
153 }
154
155 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
156 {
157         return cpufreq_generic_init(policy, freq_table, transition_latency);
158 }
159
160 static struct cpufreq_driver imx6q_cpufreq_driver = {
161         .verify = cpufreq_generic_frequency_table_verify,
162         .target = imx6q_set_target,
163         .get = imx6q_get_speed,
164         .init = imx6q_cpufreq_init,
165         .exit = cpufreq_generic_exit,
166         .name = "imx6q-cpufreq",
167         .attr = cpufreq_generic_attr,
168 };
169
170 static int imx6q_cpufreq_probe(struct platform_device *pdev)
171 {
172         struct device_node *np;
173         struct dev_pm_opp *opp;
174         unsigned long min_volt, max_volt;
175         int num, ret;
176
177         cpu_dev = get_cpu_device(0);
178         if (!cpu_dev) {
179                 pr_err("failed to get cpu0 device\n");
180                 return -ENODEV;
181         }
182
183         np = of_node_get(cpu_dev->of_node);
184         if (!np) {
185                 dev_err(cpu_dev, "failed to find cpu0 node\n");
186                 return -ENOENT;
187         }
188
189         arm_clk = devm_clk_get(cpu_dev, "arm");
190         pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
191         pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
192         step_clk = devm_clk_get(cpu_dev, "step");
193         pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
194         if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
195             IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
196                 dev_err(cpu_dev, "failed to get clocks\n");
197                 ret = -ENOENT;
198                 goto put_node;
199         }
200
201         arm_reg = devm_regulator_get(cpu_dev, "arm");
202         pu_reg = devm_regulator_get(cpu_dev, "pu");
203         soc_reg = devm_regulator_get(cpu_dev, "soc");
204         if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
205                 dev_err(cpu_dev, "failed to get regulators\n");
206                 ret = -ENOENT;
207                 goto put_node;
208         }
209
210         /* We expect an OPP table supplied by platform */
211         num = dev_pm_opp_get_opp_count(cpu_dev);
212         if (num < 0) {
213                 ret = num;
214                 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
215                 goto put_node;
216         }
217
218         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
219         if (ret) {
220                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
221                 goto put_node;
222         }
223
224         if (of_property_read_u32(np, "clock-latency", &transition_latency))
225                 transition_latency = CPUFREQ_ETERNAL;
226
227         /*
228          * OPP is maintained in order of increasing frequency, and
229          * freq_table initialised from OPP is therefore sorted in the
230          * same order.
231          */
232         rcu_read_lock();
233         opp = dev_pm_opp_find_freq_exact(cpu_dev,
234                                   freq_table[0].frequency * 1000, true);
235         min_volt = dev_pm_opp_get_voltage(opp);
236         opp = dev_pm_opp_find_freq_exact(cpu_dev,
237                                   freq_table[--num].frequency * 1000, true);
238         max_volt = dev_pm_opp_get_voltage(opp);
239         rcu_read_unlock();
240         ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
241         if (ret > 0)
242                 transition_latency += ret * 1000;
243
244         /* Count vddpu and vddsoc latency in for 1.2 GHz support */
245         if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
246                 ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
247                                                  PU_SOC_VOLTAGE_HIGH);
248                 if (ret > 0)
249                         transition_latency += ret * 1000;
250                 ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
251                                                  PU_SOC_VOLTAGE_HIGH);
252                 if (ret > 0)
253                         transition_latency += ret * 1000;
254         }
255
256         ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
257         if (ret) {
258                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
259                 goto free_freq_table;
260         }
261
262         of_node_put(np);
263         return 0;
264
265 free_freq_table:
266         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
267 put_node:
268         of_node_put(np);
269         return ret;
270 }
271
272 static int imx6q_cpufreq_remove(struct platform_device *pdev)
273 {
274         cpufreq_unregister_driver(&imx6q_cpufreq_driver);
275         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
276
277         return 0;
278 }
279
280 static struct platform_driver imx6q_cpufreq_platdrv = {
281         .driver = {
282                 .name   = "imx6q-cpufreq",
283                 .owner  = THIS_MODULE,
284         },
285         .probe          = imx6q_cpufreq_probe,
286         .remove         = imx6q_cpufreq_remove,
287 };
288 module_platform_driver(imx6q_cpufreq_platdrv);
289
290 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
291 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
292 MODULE_LICENSE("GPL");