]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/imx6q-cpufreq.c
cpufreq: imx6q: use cpufreq_table_validate_and_show()
[karo-tx-linux.git] / drivers / cpufreq / imx6q-cpufreq.c
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19
20 #define PU_SOC_VOLTAGE_NORMAL   1250000
21 #define PU_SOC_VOLTAGE_HIGH     1275000
22 #define FREQ_1P2_GHZ            1200000000
23
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
27
28 static struct clk *arm_clk;
29 static struct clk *pll1_sys_clk;
30 static struct clk *pll1_sw_clk;
31 static struct clk *step_clk;
32 static struct clk *pll2_pfd2_396m_clk;
33
34 static struct device *cpu_dev;
35 static struct cpufreq_frequency_table *freq_table;
36 static unsigned int transition_latency;
37
38 static int imx6q_verify_speed(struct cpufreq_policy *policy)
39 {
40         return cpufreq_frequency_table_verify(policy, freq_table);
41 }
42
43 static unsigned int imx6q_get_speed(unsigned int cpu)
44 {
45         return clk_get_rate(arm_clk) / 1000;
46 }
47
48 static int imx6q_set_target(struct cpufreq_policy *policy,
49                             unsigned int target_freq, unsigned int relation)
50 {
51         struct cpufreq_freqs freqs;
52         struct opp *opp;
53         unsigned long freq_hz, volt, volt_old;
54         unsigned int index;
55         int ret;
56
57         ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
58                                              relation, &index);
59         if (ret) {
60                 dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
61                         target_freq, ret);
62                 return ret;
63         }
64
65         freqs.new = freq_table[index].frequency;
66         freq_hz = freqs.new * 1000;
67         freqs.old = clk_get_rate(arm_clk) / 1000;
68
69         if (freqs.old == freqs.new)
70                 return 0;
71
72         rcu_read_lock();
73         opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
74         if (IS_ERR(opp)) {
75                 rcu_read_unlock();
76                 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
77                 return PTR_ERR(opp);
78         }
79
80         volt = opp_get_voltage(opp);
81         rcu_read_unlock();
82         volt_old = regulator_get_voltage(arm_reg);
83
84         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
85                 freqs.old / 1000, volt_old / 1000,
86                 freqs.new / 1000, volt / 1000);
87
88         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
89
90         /* scaling up?  scale voltage before frequency */
91         if (freqs.new > freqs.old) {
92                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
93                 if (ret) {
94                         dev_err(cpu_dev,
95                                 "failed to scale vddarm up: %d\n", ret);
96                         freqs.new = freqs.old;
97                         goto post_notify;
98                 }
99
100                 /*
101                  * Need to increase vddpu and vddsoc for safety
102                  * if we are about to run at 1.2 GHz.
103                  */
104                 if (freqs.new == FREQ_1P2_GHZ / 1000) {
105                         regulator_set_voltage_tol(pu_reg,
106                                         PU_SOC_VOLTAGE_HIGH, 0);
107                         regulator_set_voltage_tol(soc_reg,
108                                         PU_SOC_VOLTAGE_HIGH, 0);
109                 }
110         }
111
112         /*
113          * The setpoints are selected per PLL/PDF frequencies, so we need to
114          * reprogram PLL for frequency scaling.  The procedure of reprogramming
115          * PLL1 is as below.
116          *
117          *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
118          *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
119          *  - Disable pll2_pfd2_396m_clk
120          */
121         clk_set_parent(step_clk, pll2_pfd2_396m_clk);
122         clk_set_parent(pll1_sw_clk, step_clk);
123         if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
124                 clk_set_rate(pll1_sys_clk, freqs.new * 1000);
125                 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
126         }
127
128         /* Ensure the arm clock divider is what we expect */
129         ret = clk_set_rate(arm_clk, freqs.new * 1000);
130         if (ret) {
131                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
132                 regulator_set_voltage_tol(arm_reg, volt_old, 0);
133                 freqs.new = freqs.old;
134                 goto post_notify;
135         }
136
137         /* scaling down?  scale voltage after frequency */
138         if (freqs.new < freqs.old) {
139                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
140                 if (ret) {
141                         dev_warn(cpu_dev,
142                                  "failed to scale vddarm down: %d\n", ret);
143                         ret = 0;
144                 }
145
146                 if (freqs.old == FREQ_1P2_GHZ / 1000) {
147                         regulator_set_voltage_tol(pu_reg,
148                                         PU_SOC_VOLTAGE_NORMAL, 0);
149                         regulator_set_voltage_tol(soc_reg,
150                                         PU_SOC_VOLTAGE_NORMAL, 0);
151                 }
152         }
153
154 post_notify:
155         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
156
157         return ret;
158 }
159
160 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
161 {
162         int ret;
163
164         ret = cpufreq_table_validate_and_show(policy, freq_table);
165         if (ret) {
166                 dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
167                 return ret;
168         }
169
170         policy->cpuinfo.transition_latency = transition_latency;
171         policy->cur = clk_get_rate(arm_clk) / 1000;
172         cpumask_setall(policy->cpus);
173
174         return 0;
175 }
176
177 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
178 {
179         cpufreq_frequency_table_put_attr(policy->cpu);
180         return 0;
181 }
182
183 static struct freq_attr *imx6q_cpufreq_attr[] = {
184         &cpufreq_freq_attr_scaling_available_freqs,
185         NULL,
186 };
187
188 static struct cpufreq_driver imx6q_cpufreq_driver = {
189         .verify = imx6q_verify_speed,
190         .target = imx6q_set_target,
191         .get = imx6q_get_speed,
192         .init = imx6q_cpufreq_init,
193         .exit = imx6q_cpufreq_exit,
194         .name = "imx6q-cpufreq",
195         .attr = imx6q_cpufreq_attr,
196 };
197
198 static int imx6q_cpufreq_probe(struct platform_device *pdev)
199 {
200         struct device_node *np;
201         struct opp *opp;
202         unsigned long min_volt, max_volt;
203         int num, ret;
204
205         cpu_dev = get_cpu_device(0);
206         if (!cpu_dev) {
207                 pr_err("failed to get cpu0 device\n");
208                 return -ENODEV;
209         }
210
211         np = of_node_get(cpu_dev->of_node);
212         if (!np) {
213                 dev_err(cpu_dev, "failed to find cpu0 node\n");
214                 return -ENOENT;
215         }
216
217         arm_clk = devm_clk_get(cpu_dev, "arm");
218         pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
219         pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
220         step_clk = devm_clk_get(cpu_dev, "step");
221         pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
222         if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
223             IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
224                 dev_err(cpu_dev, "failed to get clocks\n");
225                 ret = -ENOENT;
226                 goto put_node;
227         }
228
229         arm_reg = devm_regulator_get(cpu_dev, "arm");
230         pu_reg = devm_regulator_get(cpu_dev, "pu");
231         soc_reg = devm_regulator_get(cpu_dev, "soc");
232         if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
233                 dev_err(cpu_dev, "failed to get regulators\n");
234                 ret = -ENOENT;
235                 goto put_node;
236         }
237
238         /* We expect an OPP table supplied by platform */
239         num = opp_get_opp_count(cpu_dev);
240         if (num < 0) {
241                 ret = num;
242                 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
243                 goto put_node;
244         }
245
246         ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
247         if (ret) {
248                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
249                 goto put_node;
250         }
251
252         if (of_property_read_u32(np, "clock-latency", &transition_latency))
253                 transition_latency = CPUFREQ_ETERNAL;
254
255         /*
256          * OPP is maintained in order of increasing frequency, and
257          * freq_table initialised from OPP is therefore sorted in the
258          * same order.
259          */
260         rcu_read_lock();
261         opp = opp_find_freq_exact(cpu_dev,
262                                   freq_table[0].frequency * 1000, true);
263         min_volt = opp_get_voltage(opp);
264         opp = opp_find_freq_exact(cpu_dev,
265                                   freq_table[--num].frequency * 1000, true);
266         max_volt = opp_get_voltage(opp);
267         rcu_read_unlock();
268         ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
269         if (ret > 0)
270                 transition_latency += ret * 1000;
271
272         /* Count vddpu and vddsoc latency in for 1.2 GHz support */
273         if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
274                 ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
275                                                  PU_SOC_VOLTAGE_HIGH);
276                 if (ret > 0)
277                         transition_latency += ret * 1000;
278                 ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
279                                                  PU_SOC_VOLTAGE_HIGH);
280                 if (ret > 0)
281                         transition_latency += ret * 1000;
282         }
283
284         ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
285         if (ret) {
286                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
287                 goto free_freq_table;
288         }
289
290         of_node_put(np);
291         return 0;
292
293 free_freq_table:
294         opp_free_cpufreq_table(cpu_dev, &freq_table);
295 put_node:
296         of_node_put(np);
297         return ret;
298 }
299
300 static int imx6q_cpufreq_remove(struct platform_device *pdev)
301 {
302         cpufreq_unregister_driver(&imx6q_cpufreq_driver);
303         opp_free_cpufreq_table(cpu_dev, &freq_table);
304
305         return 0;
306 }
307
308 static struct platform_driver imx6q_cpufreq_platdrv = {
309         .driver = {
310                 .name   = "imx6q-cpufreq",
311                 .owner  = THIS_MODULE,
312         },
313         .probe          = imx6q_cpufreq_probe,
314         .remove         = imx6q_cpufreq_remove,
315 };
316 module_platform_driver(imx6q_cpufreq_platdrv);
317
318 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
319 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
320 MODULE_LICENSE("GPL");