]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/intel_pstate.c
23bb798d0cd240bdd3c535fad98cb20a001580f1
[karo-tx-linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define ATOM_RATIOS             0x66a
38 #define ATOM_VIDS               0x66b
39 #define ATOM_TURBO_RATIOS       0x66c
40 #define ATOM_TURBO_VIDS         0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53         return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55
56 static inline int ceiling_fp(int32_t x)
57 {
58         int mask, ret;
59
60         ret = fp_toint(x);
61         mask = (1 << FRAC_BITS) - 1;
62         if (x & mask)
63                 ret += 1;
64         return ret;
65 }
66
67 struct sample {
68         int32_t core_pct_busy;
69         int32_t busy_scaled;
70         u64 aperf;
71         u64 mperf;
72         u64 tsc;
73         int freq;
74         u64 time;
75 };
76
77 struct pstate_data {
78         int     current_pstate;
79         int     min_pstate;
80         int     max_pstate;
81         int     max_pstate_physical;
82         int     scaling;
83         int     turbo_pstate;
84 };
85
86 struct vid_data {
87         int min;
88         int max;
89         int turbo;
90         int32_t ratio;
91 };
92
93 struct _pid {
94         int setpoint;
95         int32_t integral;
96         int32_t p_gain;
97         int32_t i_gain;
98         int32_t d_gain;
99         int deadband;
100         int32_t last_err;
101 };
102
103 struct cpudata {
104         int cpu;
105
106         struct update_util_data update_util;
107
108         struct pstate_data pstate;
109         struct vid_data vid;
110         struct _pid pid;
111
112         u64     last_sample_time;
113         u64     prev_aperf;
114         u64     prev_mperf;
115         u64     prev_tsc;
116         u64     prev_cummulative_iowait;
117         struct sample sample;
118 };
119
120 static struct cpudata **all_cpu_data;
121 struct pstate_adjust_policy {
122         int sample_rate_ms;
123         s64 sample_rate_ns;
124         int deadband;
125         int setpoint;
126         int p_gain_pct;
127         int d_gain_pct;
128         int i_gain_pct;
129 };
130
131 struct pstate_funcs {
132         int (*get_max)(void);
133         int (*get_max_physical)(void);
134         int (*get_min)(void);
135         int (*get_turbo)(void);
136         int (*get_scaling)(void);
137         void (*set)(struct cpudata*, int pstate);
138         void (*get_vid)(struct cpudata *);
139         int32_t (*get_target_pstate)(struct cpudata *);
140 };
141
142 struct cpu_defaults {
143         struct pstate_adjust_policy pid_policy;
144         struct pstate_funcs funcs;
145 };
146
147 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
148 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
149
150 static struct pstate_adjust_policy pid_params;
151 static struct pstate_funcs pstate_funcs;
152 static int hwp_active;
153
154 struct perf_limits {
155         int no_turbo;
156         int turbo_disabled;
157         int max_perf_pct;
158         int min_perf_pct;
159         int32_t max_perf;
160         int32_t min_perf;
161         int max_policy_pct;
162         int max_sysfs_pct;
163         int min_policy_pct;
164         int min_sysfs_pct;
165 };
166
167 static struct perf_limits performance_limits = {
168         .no_turbo = 0,
169         .turbo_disabled = 0,
170         .max_perf_pct = 100,
171         .max_perf = int_tofp(1),
172         .min_perf_pct = 100,
173         .min_perf = int_tofp(1),
174         .max_policy_pct = 100,
175         .max_sysfs_pct = 100,
176         .min_policy_pct = 0,
177         .min_sysfs_pct = 0,
178 };
179
180 static struct perf_limits powersave_limits = {
181         .no_turbo = 0,
182         .turbo_disabled = 0,
183         .max_perf_pct = 100,
184         .max_perf = int_tofp(1),
185         .min_perf_pct = 0,
186         .min_perf = 0,
187         .max_policy_pct = 100,
188         .max_sysfs_pct = 100,
189         .min_policy_pct = 0,
190         .min_sysfs_pct = 0,
191 };
192
193 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
194 static struct perf_limits *limits = &performance_limits;
195 #else
196 static struct perf_limits *limits = &powersave_limits;
197 #endif
198
199 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
200                              int deadband, int integral) {
201         pid->setpoint = setpoint;
202         pid->deadband  = deadband;
203         pid->integral  = int_tofp(integral);
204         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
205 }
206
207 static inline void pid_p_gain_set(struct _pid *pid, int percent)
208 {
209         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
210 }
211
212 static inline void pid_i_gain_set(struct _pid *pid, int percent)
213 {
214         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
215 }
216
217 static inline void pid_d_gain_set(struct _pid *pid, int percent)
218 {
219         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
220 }
221
222 static signed int pid_calc(struct _pid *pid, int32_t busy)
223 {
224         signed int result;
225         int32_t pterm, dterm, fp_error;
226         int32_t integral_limit;
227
228         fp_error = int_tofp(pid->setpoint) - busy;
229
230         if (abs(fp_error) <= int_tofp(pid->deadband))
231                 return 0;
232
233         pterm = mul_fp(pid->p_gain, fp_error);
234
235         pid->integral += fp_error;
236
237         /*
238          * We limit the integral here so that it will never
239          * get higher than 30.  This prevents it from becoming
240          * too large an input over long periods of time and allows
241          * it to get factored out sooner.
242          *
243          * The value of 30 was chosen through experimentation.
244          */
245         integral_limit = int_tofp(30);
246         if (pid->integral > integral_limit)
247                 pid->integral = integral_limit;
248         if (pid->integral < -integral_limit)
249                 pid->integral = -integral_limit;
250
251         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
252         pid->last_err = fp_error;
253
254         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
255         result = result + (1 << (FRAC_BITS-1));
256         return (signed int)fp_toint(result);
257 }
258
259 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
260 {
261         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
262         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
263         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
264
265         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
266 }
267
268 static inline void intel_pstate_reset_all_pid(void)
269 {
270         unsigned int cpu;
271
272         for_each_online_cpu(cpu) {
273                 if (all_cpu_data[cpu])
274                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
275         }
276 }
277
278 static inline void update_turbo_state(void)
279 {
280         u64 misc_en;
281         struct cpudata *cpu;
282
283         cpu = all_cpu_data[0];
284         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
285         limits->turbo_disabled =
286                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
287                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
288 }
289
290 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
291 {
292         int min, hw_min, max, hw_max, cpu, range, adj_range;
293         u64 value, cap;
294
295         rdmsrl(MSR_HWP_CAPABILITIES, cap);
296         hw_min = HWP_LOWEST_PERF(cap);
297         hw_max = HWP_HIGHEST_PERF(cap);
298         range = hw_max - hw_min;
299
300         for_each_cpu(cpu, cpumask) {
301                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
302                 adj_range = limits->min_perf_pct * range / 100;
303                 min = hw_min + adj_range;
304                 value &= ~HWP_MIN_PERF(~0L);
305                 value |= HWP_MIN_PERF(min);
306
307                 adj_range = limits->max_perf_pct * range / 100;
308                 max = hw_min + adj_range;
309                 if (limits->no_turbo) {
310                         hw_max = HWP_GUARANTEED_PERF(cap);
311                         if (hw_max < max)
312                                 max = hw_max;
313                 }
314
315                 value &= ~HWP_MAX_PERF(~0L);
316                 value |= HWP_MAX_PERF(max);
317                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
318         }
319 }
320
321 static void intel_pstate_hwp_set_online_cpus(void)
322 {
323         get_online_cpus();
324         intel_pstate_hwp_set(cpu_online_mask);
325         put_online_cpus();
326 }
327
328 /************************** debugfs begin ************************/
329 static int pid_param_set(void *data, u64 val)
330 {
331         *(u32 *)data = val;
332         intel_pstate_reset_all_pid();
333         return 0;
334 }
335
336 static int pid_param_get(void *data, u64 *val)
337 {
338         *val = *(u32 *)data;
339         return 0;
340 }
341 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
342
343 struct pid_param {
344         char *name;
345         void *value;
346 };
347
348 static struct pid_param pid_files[] = {
349         {"sample_rate_ms", &pid_params.sample_rate_ms},
350         {"d_gain_pct", &pid_params.d_gain_pct},
351         {"i_gain_pct", &pid_params.i_gain_pct},
352         {"deadband", &pid_params.deadband},
353         {"setpoint", &pid_params.setpoint},
354         {"p_gain_pct", &pid_params.p_gain_pct},
355         {NULL, NULL}
356 };
357
358 static void __init intel_pstate_debug_expose_params(void)
359 {
360         struct dentry *debugfs_parent;
361         int i = 0;
362
363         if (hwp_active)
364                 return;
365         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
366         if (IS_ERR_OR_NULL(debugfs_parent))
367                 return;
368         while (pid_files[i].name) {
369                 debugfs_create_file(pid_files[i].name, 0660,
370                                     debugfs_parent, pid_files[i].value,
371                                     &fops_pid_param);
372                 i++;
373         }
374 }
375
376 /************************** debugfs end ************************/
377
378 /************************** sysfs begin ************************/
379 #define show_one(file_name, object)                                     \
380         static ssize_t show_##file_name                                 \
381         (struct kobject *kobj, struct attribute *attr, char *buf)       \
382         {                                                               \
383                 return sprintf(buf, "%u\n", limits->object);            \
384         }
385
386 static ssize_t show_turbo_pct(struct kobject *kobj,
387                                 struct attribute *attr, char *buf)
388 {
389         struct cpudata *cpu;
390         int total, no_turbo, turbo_pct;
391         uint32_t turbo_fp;
392
393         cpu = all_cpu_data[0];
394
395         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
396         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
397         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
398         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
399         return sprintf(buf, "%u\n", turbo_pct);
400 }
401
402 static ssize_t show_num_pstates(struct kobject *kobj,
403                                 struct attribute *attr, char *buf)
404 {
405         struct cpudata *cpu;
406         int total;
407
408         cpu = all_cpu_data[0];
409         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
410         return sprintf(buf, "%u\n", total);
411 }
412
413 static ssize_t show_no_turbo(struct kobject *kobj,
414                              struct attribute *attr, char *buf)
415 {
416         ssize_t ret;
417
418         update_turbo_state();
419         if (limits->turbo_disabled)
420                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
421         else
422                 ret = sprintf(buf, "%u\n", limits->no_turbo);
423
424         return ret;
425 }
426
427 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
428                               const char *buf, size_t count)
429 {
430         unsigned int input;
431         int ret;
432
433         ret = sscanf(buf, "%u", &input);
434         if (ret != 1)
435                 return -EINVAL;
436
437         update_turbo_state();
438         if (limits->turbo_disabled) {
439                 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
440                 return -EPERM;
441         }
442
443         limits->no_turbo = clamp_t(int, input, 0, 1);
444
445         if (hwp_active)
446                 intel_pstate_hwp_set_online_cpus();
447
448         return count;
449 }
450
451 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
452                                   const char *buf, size_t count)
453 {
454         unsigned int input;
455         int ret;
456
457         ret = sscanf(buf, "%u", &input);
458         if (ret != 1)
459                 return -EINVAL;
460
461         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
462         limits->max_perf_pct = min(limits->max_policy_pct,
463                                    limits->max_sysfs_pct);
464         limits->max_perf_pct = max(limits->min_policy_pct,
465                                    limits->max_perf_pct);
466         limits->max_perf_pct = max(limits->min_perf_pct,
467                                    limits->max_perf_pct);
468         limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
469                                   int_tofp(100));
470
471         if (hwp_active)
472                 intel_pstate_hwp_set_online_cpus();
473         return count;
474 }
475
476 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
477                                   const char *buf, size_t count)
478 {
479         unsigned int input;
480         int ret;
481
482         ret = sscanf(buf, "%u", &input);
483         if (ret != 1)
484                 return -EINVAL;
485
486         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
487         limits->min_perf_pct = max(limits->min_policy_pct,
488                                    limits->min_sysfs_pct);
489         limits->min_perf_pct = min(limits->max_policy_pct,
490                                    limits->min_perf_pct);
491         limits->min_perf_pct = min(limits->max_perf_pct,
492                                    limits->min_perf_pct);
493         limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
494                                   int_tofp(100));
495
496         if (hwp_active)
497                 intel_pstate_hwp_set_online_cpus();
498         return count;
499 }
500
501 show_one(max_perf_pct, max_perf_pct);
502 show_one(min_perf_pct, min_perf_pct);
503
504 define_one_global_rw(no_turbo);
505 define_one_global_rw(max_perf_pct);
506 define_one_global_rw(min_perf_pct);
507 define_one_global_ro(turbo_pct);
508 define_one_global_ro(num_pstates);
509
510 static struct attribute *intel_pstate_attributes[] = {
511         &no_turbo.attr,
512         &max_perf_pct.attr,
513         &min_perf_pct.attr,
514         &turbo_pct.attr,
515         &num_pstates.attr,
516         NULL
517 };
518
519 static struct attribute_group intel_pstate_attr_group = {
520         .attrs = intel_pstate_attributes,
521 };
522
523 static void __init intel_pstate_sysfs_expose_params(void)
524 {
525         struct kobject *intel_pstate_kobject;
526         int rc;
527
528         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
529                                                 &cpu_subsys.dev_root->kobj);
530         BUG_ON(!intel_pstate_kobject);
531         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
532         BUG_ON(rc);
533 }
534 /************************** sysfs end ************************/
535
536 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
537 {
538         /* First disable HWP notification interrupt as we don't process them */
539         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
540
541         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
542 }
543
544 static int atom_get_min_pstate(void)
545 {
546         u64 value;
547
548         rdmsrl(ATOM_RATIOS, value);
549         return (value >> 8) & 0x7F;
550 }
551
552 static int atom_get_max_pstate(void)
553 {
554         u64 value;
555
556         rdmsrl(ATOM_RATIOS, value);
557         return (value >> 16) & 0x7F;
558 }
559
560 static int atom_get_turbo_pstate(void)
561 {
562         u64 value;
563
564         rdmsrl(ATOM_TURBO_RATIOS, value);
565         return value & 0x7F;
566 }
567
568 static void atom_set_pstate(struct cpudata *cpudata, int pstate)
569 {
570         u64 val;
571         int32_t vid_fp;
572         u32 vid;
573
574         val = (u64)pstate << 8;
575         if (limits->no_turbo && !limits->turbo_disabled)
576                 val |= (u64)1 << 32;
577
578         vid_fp = cpudata->vid.min + mul_fp(
579                 int_tofp(pstate - cpudata->pstate.min_pstate),
580                 cpudata->vid.ratio);
581
582         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
583         vid = ceiling_fp(vid_fp);
584
585         if (pstate > cpudata->pstate.max_pstate)
586                 vid = cpudata->vid.turbo;
587
588         val |= vid;
589
590         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
591 }
592
593 static int silvermont_get_scaling(void)
594 {
595         u64 value;
596         int i;
597         /* Defined in Table 35-6 from SDM (Sept 2015) */
598         static int silvermont_freq_table[] = {
599                 83300, 100000, 133300, 116700, 80000};
600
601         rdmsrl(MSR_FSB_FREQ, value);
602         i = value & 0x7;
603         WARN_ON(i > 4);
604
605         return silvermont_freq_table[i];
606 }
607
608 static int airmont_get_scaling(void)
609 {
610         u64 value;
611         int i;
612         /* Defined in Table 35-10 from SDM (Sept 2015) */
613         static int airmont_freq_table[] = {
614                 83300, 100000, 133300, 116700, 80000,
615                 93300, 90000, 88900, 87500};
616
617         rdmsrl(MSR_FSB_FREQ, value);
618         i = value & 0xF;
619         WARN_ON(i > 8);
620
621         return airmont_freq_table[i];
622 }
623
624 static void atom_get_vid(struct cpudata *cpudata)
625 {
626         u64 value;
627
628         rdmsrl(ATOM_VIDS, value);
629         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
630         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
631         cpudata->vid.ratio = div_fp(
632                 cpudata->vid.max - cpudata->vid.min,
633                 int_tofp(cpudata->pstate.max_pstate -
634                         cpudata->pstate.min_pstate));
635
636         rdmsrl(ATOM_TURBO_VIDS, value);
637         cpudata->vid.turbo = value & 0x7f;
638 }
639
640 static int core_get_min_pstate(void)
641 {
642         u64 value;
643
644         rdmsrl(MSR_PLATFORM_INFO, value);
645         return (value >> 40) & 0xFF;
646 }
647
648 static int core_get_max_pstate_physical(void)
649 {
650         u64 value;
651
652         rdmsrl(MSR_PLATFORM_INFO, value);
653         return (value >> 8) & 0xFF;
654 }
655
656 static int core_get_max_pstate(void)
657 {
658         u64 tar;
659         u64 plat_info;
660         int max_pstate;
661         int err;
662
663         rdmsrl(MSR_PLATFORM_INFO, plat_info);
664         max_pstate = (plat_info >> 8) & 0xFF;
665
666         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
667         if (!err) {
668                 /* Do some sanity checking for safety */
669                 if (plat_info & 0x600000000) {
670                         u64 tdp_ctrl;
671                         u64 tdp_ratio;
672                         int tdp_msr;
673
674                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
675                         if (err)
676                                 goto skip_tar;
677
678                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
679                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
680                         if (err)
681                                 goto skip_tar;
682
683                         if (tdp_ratio - 1 == tar) {
684                                 max_pstate = tar;
685                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
686                         } else {
687                                 goto skip_tar;
688                         }
689                 }
690         }
691
692 skip_tar:
693         return max_pstate;
694 }
695
696 static int core_get_turbo_pstate(void)
697 {
698         u64 value;
699         int nont, ret;
700
701         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
702         nont = core_get_max_pstate();
703         ret = (value) & 255;
704         if (ret <= nont)
705                 ret = nont;
706         return ret;
707 }
708
709 static inline int core_get_scaling(void)
710 {
711         return 100000;
712 }
713
714 static void core_set_pstate(struct cpudata *cpudata, int pstate)
715 {
716         u64 val;
717
718         val = (u64)pstate << 8;
719         if (limits->no_turbo && !limits->turbo_disabled)
720                 val |= (u64)1 << 32;
721
722         wrmsrl(MSR_IA32_PERF_CTL, val);
723 }
724
725 static int knl_get_turbo_pstate(void)
726 {
727         u64 value;
728         int nont, ret;
729
730         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
731         nont = core_get_max_pstate();
732         ret = (((value) >> 8) & 0xFF);
733         if (ret <= nont)
734                 ret = nont;
735         return ret;
736 }
737
738 static struct cpu_defaults core_params = {
739         .pid_policy = {
740                 .sample_rate_ms = 10,
741                 .deadband = 0,
742                 .setpoint = 97,
743                 .p_gain_pct = 20,
744                 .d_gain_pct = 0,
745                 .i_gain_pct = 0,
746         },
747         .funcs = {
748                 .get_max = core_get_max_pstate,
749                 .get_max_physical = core_get_max_pstate_physical,
750                 .get_min = core_get_min_pstate,
751                 .get_turbo = core_get_turbo_pstate,
752                 .get_scaling = core_get_scaling,
753                 .set = core_set_pstate,
754                 .get_target_pstate = get_target_pstate_use_performance,
755         },
756 };
757
758 static struct cpu_defaults silvermont_params = {
759         .pid_policy = {
760                 .sample_rate_ms = 10,
761                 .deadband = 0,
762                 .setpoint = 60,
763                 .p_gain_pct = 14,
764                 .d_gain_pct = 0,
765                 .i_gain_pct = 4,
766         },
767         .funcs = {
768                 .get_max = atom_get_max_pstate,
769                 .get_max_physical = atom_get_max_pstate,
770                 .get_min = atom_get_min_pstate,
771                 .get_turbo = atom_get_turbo_pstate,
772                 .set = atom_set_pstate,
773                 .get_scaling = silvermont_get_scaling,
774                 .get_vid = atom_get_vid,
775                 .get_target_pstate = get_target_pstate_use_cpu_load,
776         },
777 };
778
779 static struct cpu_defaults airmont_params = {
780         .pid_policy = {
781                 .sample_rate_ms = 10,
782                 .deadband = 0,
783                 .setpoint = 60,
784                 .p_gain_pct = 14,
785                 .d_gain_pct = 0,
786                 .i_gain_pct = 4,
787         },
788         .funcs = {
789                 .get_max = atom_get_max_pstate,
790                 .get_max_physical = atom_get_max_pstate,
791                 .get_min = atom_get_min_pstate,
792                 .get_turbo = atom_get_turbo_pstate,
793                 .set = atom_set_pstate,
794                 .get_scaling = airmont_get_scaling,
795                 .get_vid = atom_get_vid,
796                 .get_target_pstate = get_target_pstate_use_cpu_load,
797         },
798 };
799
800 static struct cpu_defaults knl_params = {
801         .pid_policy = {
802                 .sample_rate_ms = 10,
803                 .deadband = 0,
804                 .setpoint = 97,
805                 .p_gain_pct = 20,
806                 .d_gain_pct = 0,
807                 .i_gain_pct = 0,
808         },
809         .funcs = {
810                 .get_max = core_get_max_pstate,
811                 .get_max_physical = core_get_max_pstate_physical,
812                 .get_min = core_get_min_pstate,
813                 .get_turbo = knl_get_turbo_pstate,
814                 .get_scaling = core_get_scaling,
815                 .set = core_set_pstate,
816                 .get_target_pstate = get_target_pstate_use_performance,
817         },
818 };
819
820 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
821 {
822         int max_perf = cpu->pstate.turbo_pstate;
823         int max_perf_adj;
824         int min_perf;
825
826         if (limits->no_turbo || limits->turbo_disabled)
827                 max_perf = cpu->pstate.max_pstate;
828
829         /*
830          * performance can be limited by user through sysfs, by cpufreq
831          * policy, or by cpu specific default values determined through
832          * experimentation.
833          */
834         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf));
835         *max = clamp_t(int, max_perf_adj,
836                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
837
838         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf));
839         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
840 }
841
842 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
843 {
844         int max_perf, min_perf;
845
846         if (force) {
847                 update_turbo_state();
848
849                 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
850
851                 pstate = clamp_t(int, pstate, min_perf, max_perf);
852
853                 if (pstate == cpu->pstate.current_pstate)
854                         return;
855         }
856         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
857
858         cpu->pstate.current_pstate = pstate;
859
860         pstate_funcs.set(cpu, pstate);
861 }
862
863 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
864 {
865         cpu->pstate.min_pstate = pstate_funcs.get_min();
866         cpu->pstate.max_pstate = pstate_funcs.get_max();
867         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
868         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
869         cpu->pstate.scaling = pstate_funcs.get_scaling();
870
871         if (pstate_funcs.get_vid)
872                 pstate_funcs.get_vid(cpu);
873         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
874 }
875
876 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
877 {
878         struct sample *sample = &cpu->sample;
879         int64_t core_pct;
880
881         core_pct = int_tofp(sample->aperf) * int_tofp(100);
882         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
883
884         sample->freq = fp_toint(
885                 mul_fp(int_tofp(
886                         cpu->pstate.max_pstate_physical *
887                         cpu->pstate.scaling / 100),
888                         core_pct));
889
890         sample->core_pct_busy = (int32_t)core_pct;
891 }
892
893 static inline void intel_pstate_sample(struct cpudata *cpu, u64 time)
894 {
895         u64 aperf, mperf;
896         unsigned long flags;
897         u64 tsc;
898
899         local_irq_save(flags);
900         rdmsrl(MSR_IA32_APERF, aperf);
901         rdmsrl(MSR_IA32_MPERF, mperf);
902         tsc = rdtsc();
903         if ((cpu->prev_mperf == mperf) || (cpu->prev_tsc == tsc)) {
904                 local_irq_restore(flags);
905                 return;
906         }
907         local_irq_restore(flags);
908
909         cpu->last_sample_time = cpu->sample.time;
910         cpu->sample.time = time;
911         cpu->sample.aperf = aperf;
912         cpu->sample.mperf = mperf;
913         cpu->sample.tsc =  tsc;
914         cpu->sample.aperf -= cpu->prev_aperf;
915         cpu->sample.mperf -= cpu->prev_mperf;
916         cpu->sample.tsc -= cpu->prev_tsc;
917
918         intel_pstate_calc_busy(cpu);
919
920         cpu->prev_aperf = aperf;
921         cpu->prev_mperf = mperf;
922         cpu->prev_tsc = tsc;
923 }
924
925 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
926 {
927         struct sample *sample = &cpu->sample;
928         u64 cummulative_iowait, delta_iowait_us;
929         u64 delta_iowait_mperf;
930         u64 mperf, now;
931         int32_t cpu_load;
932
933         cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
934
935         /*
936          * Convert iowait time into number of IO cycles spent at max_freq.
937          * IO is considered as busy only for the cpu_load algorithm. For
938          * performance this is not needed since we always try to reach the
939          * maximum P-State, so we are already boosting the IOs.
940          */
941         delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
942         delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
943                 cpu->pstate.max_pstate, MSEC_PER_SEC);
944
945         mperf = cpu->sample.mperf + delta_iowait_mperf;
946         cpu->prev_cummulative_iowait = cummulative_iowait;
947
948
949         /*
950          * The load can be estimated as the ratio of the mperf counter
951          * running at a constant frequency during active periods
952          * (C0) and the time stamp counter running at the same frequency
953          * also during C-states.
954          */
955         cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
956         cpu->sample.busy_scaled = cpu_load;
957
958         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
959 }
960
961 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
962 {
963         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
964         u64 duration_ns;
965
966         /*
967          * core_busy is the ratio of actual performance to max
968          * max_pstate is the max non turbo pstate available
969          * current_pstate was the pstate that was requested during
970          *      the last sample period.
971          *
972          * We normalize core_busy, which was our actual percent
973          * performance to what we requested during the last sample
974          * period. The result will be a percentage of busy at a
975          * specified pstate.
976          */
977         core_busy = cpu->sample.core_pct_busy;
978         max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
979         current_pstate = int_tofp(cpu->pstate.current_pstate);
980         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
981
982         /*
983          * Since our utilization update callback will not run unless we are
984          * in C0, check if the actual elapsed time is significantly greater (3x)
985          * than our sample interval.  If it is, then we were idle for a long
986          * enough period of time to adjust our busyness.
987          */
988         duration_ns = cpu->sample.time - cpu->last_sample_time;
989         if ((s64)duration_ns > pid_params.sample_rate_ns * 3
990             && cpu->last_sample_time > 0) {
991                 sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
992                                       int_tofp(duration_ns));
993                 core_busy = mul_fp(core_busy, sample_ratio);
994         }
995
996         cpu->sample.busy_scaled = core_busy;
997         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
998 }
999
1000 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1001 {
1002         int from, target_pstate;
1003         struct sample *sample;
1004
1005         from = cpu->pstate.current_pstate;
1006
1007         target_pstate = pstate_funcs.get_target_pstate(cpu);
1008
1009         intel_pstate_set_pstate(cpu, target_pstate, true);
1010
1011         sample = &cpu->sample;
1012         trace_pstate_sample(fp_toint(sample->core_pct_busy),
1013                 fp_toint(sample->busy_scaled),
1014                 from,
1015                 cpu->pstate.current_pstate,
1016                 sample->mperf,
1017                 sample->aperf,
1018                 sample->tsc,
1019                 sample->freq);
1020 }
1021
1022 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1023                                      unsigned long util, unsigned long max)
1024 {
1025         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1026         u64 delta_ns = time - cpu->sample.time;
1027
1028         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1029                 intel_pstate_sample(cpu, time);
1030                 if (!hwp_active)
1031                         intel_pstate_adjust_busy_pstate(cpu);
1032         }
1033 }
1034
1035 #define ICPU(model, policy) \
1036         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1037                         (unsigned long)&policy }
1038
1039 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1040         ICPU(0x2a, core_params),
1041         ICPU(0x2d, core_params),
1042         ICPU(0x37, silvermont_params),
1043         ICPU(0x3a, core_params),
1044         ICPU(0x3c, core_params),
1045         ICPU(0x3d, core_params),
1046         ICPU(0x3e, core_params),
1047         ICPU(0x3f, core_params),
1048         ICPU(0x45, core_params),
1049         ICPU(0x46, core_params),
1050         ICPU(0x47, core_params),
1051         ICPU(0x4c, airmont_params),
1052         ICPU(0x4e, core_params),
1053         ICPU(0x4f, core_params),
1054         ICPU(0x5e, core_params),
1055         ICPU(0x56, core_params),
1056         ICPU(0x57, knl_params),
1057         {}
1058 };
1059 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1060
1061 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1062         ICPU(0x56, core_params),
1063         {}
1064 };
1065
1066 static int intel_pstate_init_cpu(unsigned int cpunum)
1067 {
1068         struct cpudata *cpu;
1069
1070         if (!all_cpu_data[cpunum])
1071                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1072                                                GFP_KERNEL);
1073         if (!all_cpu_data[cpunum])
1074                 return -ENOMEM;
1075
1076         cpu = all_cpu_data[cpunum];
1077
1078         cpu->cpu = cpunum;
1079
1080         if (hwp_active) {
1081                 intel_pstate_hwp_enable(cpu);
1082                 pid_params.sample_rate_ms = 50;
1083                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1084         }
1085
1086         intel_pstate_get_cpu_pstates(cpu);
1087
1088         intel_pstate_busy_pid_reset(cpu);
1089         intel_pstate_sample(cpu, 0);
1090
1091         cpu->update_util.func = intel_pstate_update_util;
1092         cpufreq_set_update_util_data(cpunum, &cpu->update_util);
1093
1094         pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1095
1096         return 0;
1097 }
1098
1099 static unsigned int intel_pstate_get(unsigned int cpu_num)
1100 {
1101         struct sample *sample;
1102         struct cpudata *cpu;
1103
1104         cpu = all_cpu_data[cpu_num];
1105         if (!cpu)
1106                 return 0;
1107         sample = &cpu->sample;
1108         return sample->freq;
1109 }
1110
1111 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1112 {
1113         if (!policy->cpuinfo.max_freq)
1114                 return -ENODEV;
1115
1116         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1117             policy->max >= policy->cpuinfo.max_freq) {
1118                 pr_debug("intel_pstate: set performance\n");
1119                 limits = &performance_limits;
1120                 if (hwp_active)
1121                         intel_pstate_hwp_set(policy->cpus);
1122                 return 0;
1123         }
1124
1125         pr_debug("intel_pstate: set powersave\n");
1126         limits = &powersave_limits;
1127         limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1128         limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1129         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1130                                               policy->cpuinfo.max_freq);
1131         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1132
1133         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1134         limits->min_perf_pct = max(limits->min_policy_pct,
1135                                    limits->min_sysfs_pct);
1136         limits->min_perf_pct = min(limits->max_policy_pct,
1137                                    limits->min_perf_pct);
1138         limits->max_perf_pct = min(limits->max_policy_pct,
1139                                    limits->max_sysfs_pct);
1140         limits->max_perf_pct = max(limits->min_policy_pct,
1141                                    limits->max_perf_pct);
1142         limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1143
1144         /* Make sure min_perf_pct <= max_perf_pct */
1145         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1146
1147         limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1148                                   int_tofp(100));
1149         limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1150                                   int_tofp(100));
1151
1152         if (hwp_active)
1153                 intel_pstate_hwp_set(policy->cpus);
1154
1155         return 0;
1156 }
1157
1158 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1159 {
1160         cpufreq_verify_within_cpu_limits(policy);
1161
1162         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1163             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1164                 return -EINVAL;
1165
1166         return 0;
1167 }
1168
1169 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1170 {
1171         int cpu_num = policy->cpu;
1172         struct cpudata *cpu = all_cpu_data[cpu_num];
1173
1174         pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1175
1176         cpufreq_set_update_util_data(cpu_num, NULL);
1177         synchronize_sched();
1178
1179         if (hwp_active)
1180                 return;
1181
1182         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1183 }
1184
1185 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1186 {
1187         struct cpudata *cpu;
1188         int rc;
1189
1190         rc = intel_pstate_init_cpu(policy->cpu);
1191         if (rc)
1192                 return rc;
1193
1194         cpu = all_cpu_data[policy->cpu];
1195
1196         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1197                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1198         else
1199                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1200
1201         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1202         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1203
1204         /* cpuinfo and default policy values */
1205         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1206         policy->cpuinfo.max_freq =
1207                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1208         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1209         cpumask_set_cpu(policy->cpu, policy->cpus);
1210
1211         return 0;
1212 }
1213
1214 static struct cpufreq_driver intel_pstate_driver = {
1215         .flags          = CPUFREQ_CONST_LOOPS,
1216         .verify         = intel_pstate_verify_policy,
1217         .setpolicy      = intel_pstate_set_policy,
1218         .get            = intel_pstate_get,
1219         .init           = intel_pstate_cpu_init,
1220         .stop_cpu       = intel_pstate_stop_cpu,
1221         .name           = "intel_pstate",
1222 };
1223
1224 static int __initdata no_load;
1225 static int __initdata no_hwp;
1226 static int __initdata hwp_only;
1227 static unsigned int force_load;
1228
1229 static int intel_pstate_msrs_not_valid(void)
1230 {
1231         if (!pstate_funcs.get_max() ||
1232             !pstate_funcs.get_min() ||
1233             !pstate_funcs.get_turbo())
1234                 return -ENODEV;
1235
1236         return 0;
1237 }
1238
1239 static void copy_pid_params(struct pstate_adjust_policy *policy)
1240 {
1241         pid_params.sample_rate_ms = policy->sample_rate_ms;
1242         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1243         pid_params.p_gain_pct = policy->p_gain_pct;
1244         pid_params.i_gain_pct = policy->i_gain_pct;
1245         pid_params.d_gain_pct = policy->d_gain_pct;
1246         pid_params.deadband = policy->deadband;
1247         pid_params.setpoint = policy->setpoint;
1248 }
1249
1250 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1251 {
1252         pstate_funcs.get_max   = funcs->get_max;
1253         pstate_funcs.get_max_physical = funcs->get_max_physical;
1254         pstate_funcs.get_min   = funcs->get_min;
1255         pstate_funcs.get_turbo = funcs->get_turbo;
1256         pstate_funcs.get_scaling = funcs->get_scaling;
1257         pstate_funcs.set       = funcs->set;
1258         pstate_funcs.get_vid   = funcs->get_vid;
1259         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1260
1261 }
1262
1263 #if IS_ENABLED(CONFIG_ACPI)
1264 #include <acpi/processor.h>
1265
1266 static bool intel_pstate_no_acpi_pss(void)
1267 {
1268         int i;
1269
1270         for_each_possible_cpu(i) {
1271                 acpi_status status;
1272                 union acpi_object *pss;
1273                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1274                 struct acpi_processor *pr = per_cpu(processors, i);
1275
1276                 if (!pr)
1277                         continue;
1278
1279                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1280                 if (ACPI_FAILURE(status))
1281                         continue;
1282
1283                 pss = buffer.pointer;
1284                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1285                         kfree(pss);
1286                         return false;
1287                 }
1288
1289                 kfree(pss);
1290         }
1291
1292         return true;
1293 }
1294
1295 static bool intel_pstate_has_acpi_ppc(void)
1296 {
1297         int i;
1298
1299         for_each_possible_cpu(i) {
1300                 struct acpi_processor *pr = per_cpu(processors, i);
1301
1302                 if (!pr)
1303                         continue;
1304                 if (acpi_has_method(pr->handle, "_PPC"))
1305                         return true;
1306         }
1307         return false;
1308 }
1309
1310 enum {
1311         PSS,
1312         PPC,
1313 };
1314
1315 struct hw_vendor_info {
1316         u16  valid;
1317         char oem_id[ACPI_OEM_ID_SIZE];
1318         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1319         int  oem_pwr_table;
1320 };
1321
1322 /* Hardware vendor-specific info that has its own power management modes */
1323 static struct hw_vendor_info vendor_info[] = {
1324         {1, "HP    ", "ProLiant", PSS},
1325         {1, "ORACLE", "X4-2    ", PPC},
1326         {1, "ORACLE", "X4-2L   ", PPC},
1327         {1, "ORACLE", "X4-2B   ", PPC},
1328         {1, "ORACLE", "X3-2    ", PPC},
1329         {1, "ORACLE", "X3-2L   ", PPC},
1330         {1, "ORACLE", "X3-2B   ", PPC},
1331         {1, "ORACLE", "X4470M2 ", PPC},
1332         {1, "ORACLE", "X4270M3 ", PPC},
1333         {1, "ORACLE", "X4270M2 ", PPC},
1334         {1, "ORACLE", "X4170M2 ", PPC},
1335         {1, "ORACLE", "X4170 M3", PPC},
1336         {1, "ORACLE", "X4275 M3", PPC},
1337         {1, "ORACLE", "X6-2    ", PPC},
1338         {1, "ORACLE", "Sudbury ", PPC},
1339         {0, "", ""},
1340 };
1341
1342 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1343 {
1344         struct acpi_table_header hdr;
1345         struct hw_vendor_info *v_info;
1346         const struct x86_cpu_id *id;
1347         u64 misc_pwr;
1348
1349         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1350         if (id) {
1351                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1352                 if ( misc_pwr & (1 << 8))
1353                         return true;
1354         }
1355
1356         if (acpi_disabled ||
1357             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1358                 return false;
1359
1360         for (v_info = vendor_info; v_info->valid; v_info++) {
1361                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1362                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1363                                                 ACPI_OEM_TABLE_ID_SIZE))
1364                         switch (v_info->oem_pwr_table) {
1365                         case PSS:
1366                                 return intel_pstate_no_acpi_pss();
1367                         case PPC:
1368                                 return intel_pstate_has_acpi_ppc() &&
1369                                         (!force_load);
1370                         }
1371         }
1372
1373         return false;
1374 }
1375 #else /* CONFIG_ACPI not enabled */
1376 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1377 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1378 #endif /* CONFIG_ACPI */
1379
1380 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1381         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1382         {}
1383 };
1384
1385 static int __init intel_pstate_init(void)
1386 {
1387         int cpu, rc = 0;
1388         const struct x86_cpu_id *id;
1389         struct cpu_defaults *cpu_def;
1390
1391         if (no_load)
1392                 return -ENODEV;
1393
1394         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1395                 copy_cpu_funcs(&core_params.funcs);
1396                 hwp_active++;
1397                 goto hwp_cpu_matched;
1398         }
1399
1400         id = x86_match_cpu(intel_pstate_cpu_ids);
1401         if (!id)
1402                 return -ENODEV;
1403
1404         cpu_def = (struct cpu_defaults *)id->driver_data;
1405
1406         copy_pid_params(&cpu_def->pid_policy);
1407         copy_cpu_funcs(&cpu_def->funcs);
1408
1409         if (intel_pstate_msrs_not_valid())
1410                 return -ENODEV;
1411
1412 hwp_cpu_matched:
1413         /*
1414          * The Intel pstate driver will be ignored if the platform
1415          * firmware has its own power management modes.
1416          */
1417         if (intel_pstate_platform_pwr_mgmt_exists())
1418                 return -ENODEV;
1419
1420         pr_info("Intel P-state driver initializing.\n");
1421
1422         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1423         if (!all_cpu_data)
1424                 return -ENOMEM;
1425
1426         if (!hwp_active && hwp_only)
1427                 goto out;
1428
1429         rc = cpufreq_register_driver(&intel_pstate_driver);
1430         if (rc)
1431                 goto out;
1432
1433         intel_pstate_debug_expose_params();
1434         intel_pstate_sysfs_expose_params();
1435
1436         if (hwp_active)
1437                 pr_info("intel_pstate: HWP enabled\n");
1438
1439         return rc;
1440 out:
1441         get_online_cpus();
1442         for_each_online_cpu(cpu) {
1443                 if (all_cpu_data[cpu]) {
1444                         cpufreq_set_update_util_data(cpu, NULL);
1445                         synchronize_sched();
1446                         kfree(all_cpu_data[cpu]);
1447                 }
1448         }
1449
1450         put_online_cpus();
1451         vfree(all_cpu_data);
1452         return -ENODEV;
1453 }
1454 device_initcall(intel_pstate_init);
1455
1456 static int __init intel_pstate_setup(char *str)
1457 {
1458         if (!str)
1459                 return -EINVAL;
1460
1461         if (!strcmp(str, "disable"))
1462                 no_load = 1;
1463         if (!strcmp(str, "no_hwp")) {
1464                 pr_info("intel_pstate: HWP disabled\n");
1465                 no_hwp = 1;
1466         }
1467         if (!strcmp(str, "force"))
1468                 force_load = 1;
1469         if (!strcmp(str, "hwp_only"))
1470                 hwp_only = 1;
1471         return 0;
1472 }
1473 early_param("intel_pstate", intel_pstate_setup);
1474
1475 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1476 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1477 MODULE_LICENSE("GPL");