]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Drop driver_registered variable
[karo-tx-linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63         return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68         int mask, ret;
69
70         ret = fp_toint(x);
71         mask = (1 << FRAC_BITS) - 1;
72         if (x & mask)
73                 ret += 1;
74         return ret;
75 }
76
77 static inline int32_t percent_fp(int percent)
78 {
79         return div_fp(percent, 100);
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84         return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89         return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 static inline int32_t percent_ext_fp(int percent)
93 {
94         return div_ext_fp(percent, 100);
95 }
96
97 /**
98  * struct sample -      Store performance sample
99  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
100  *                      performance during last sample period
101  * @busy_scaled:        Scaled busy value which is used to calculate next
102  *                      P state. This can be different than core_avg_perf
103  *                      to account for cpu idle period
104  * @aperf:              Difference of actual performance frequency clock count
105  *                      read from APERF MSR between last and current sample
106  * @mperf:              Difference of maximum performance frequency clock count
107  *                      read from MPERF MSR between last and current sample
108  * @tsc:                Difference of time stamp counter between last and
109  *                      current sample
110  * @time:               Current time from scheduler
111  *
112  * This structure is used in the cpudata structure to store performance sample
113  * data for choosing next P State.
114  */
115 struct sample {
116         int32_t core_avg_perf;
117         int32_t busy_scaled;
118         u64 aperf;
119         u64 mperf;
120         u64 tsc;
121         u64 time;
122 };
123
124 /**
125  * struct pstate_data - Store P state data
126  * @current_pstate:     Current requested P state
127  * @min_pstate:         Min P state possible for this platform
128  * @max_pstate:         Max P state possible for this platform
129  * @max_pstate_physical:This is physical Max P state for a processor
130  *                      This can be higher than the max_pstate which can
131  *                      be limited by platform thermal design power limits
132  * @scaling:            Scaling factor to  convert frequency to cpufreq
133  *                      frequency units
134  * @turbo_pstate:       Max Turbo P state possible for this platform
135  * @max_freq:           @max_pstate frequency in cpufreq units
136  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
137  *
138  * Stores the per cpu model P state limits and current P state.
139  */
140 struct pstate_data {
141         int     current_pstate;
142         int     min_pstate;
143         int     max_pstate;
144         int     max_pstate_physical;
145         int     scaling;
146         int     turbo_pstate;
147         unsigned int max_freq;
148         unsigned int turbo_freq;
149 };
150
151 /**
152  * struct vid_data -    Stores voltage information data
153  * @min:                VID data for this platform corresponding to
154  *                      the lowest P state
155  * @max:                VID data corresponding to the highest P State.
156  * @turbo:              VID data for turbo P state
157  * @ratio:              Ratio of (vid max - vid min) /
158  *                      (max P state - Min P State)
159  *
160  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161  * This data is used in Atom platforms, where in addition to target P state,
162  * the voltage data needs to be specified to select next P State.
163  */
164 struct vid_data {
165         int min;
166         int max;
167         int turbo;
168         int32_t ratio;
169 };
170
171 /**
172  * struct _pid -        Stores PID data
173  * @setpoint:           Target set point for busyness or performance
174  * @integral:           Storage for accumulated error values
175  * @p_gain:             PID proportional gain
176  * @i_gain:             PID integral gain
177  * @d_gain:             PID derivative gain
178  * @deadband:           PID deadband
179  * @last_err:           Last error storage for integral part of PID calculation
180  *
181  * Stores PID coefficients and last error for PID controller.
182  */
183 struct _pid {
184         int setpoint;
185         int32_t integral;
186         int32_t p_gain;
187         int32_t i_gain;
188         int32_t d_gain;
189         int deadband;
190         int32_t last_err;
191 };
192
193 /**
194  * struct global_params - Global parameters, mostly tunable via sysfs.
195  * @no_turbo:           Whether or not to use turbo P-states.
196  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
197  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
198  *                      not the maximum reported turbo P-state is different from
199  *                      the maximum reported non-turbo one.
200  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
201  *                      P-state capacity.
202  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
203  *                      P-state capacity.
204  */
205 struct global_params {
206         bool no_turbo;
207         bool turbo_disabled;
208         int max_perf_pct;
209         int min_perf_pct;
210 };
211
212 /**
213  * struct cpudata -     Per CPU instance data storage
214  * @cpu:                CPU number for this instance data
215  * @policy:             CPUFreq policy value
216  * @update_util:        CPUFreq utility callback information
217  * @update_util_set:    CPUFreq utility callback is set
218  * @iowait_boost:       iowait-related boost fraction
219  * @last_update:        Time of the last update.
220  * @pstate:             Stores P state limits for this CPU
221  * @vid:                Stores VID limits for this CPU
222  * @pid:                Stores PID parameters for this CPU
223  * @last_sample_time:   Last Sample time
224  * @prev_aperf:         Last APERF value read from APERF MSR
225  * @prev_mperf:         Last MPERF value read from MPERF MSR
226  * @prev_tsc:           Last timestamp counter (TSC) value
227  * @prev_cummulative_iowait: IO Wait time difference from last and
228  *                      current sample
229  * @sample:             Storage for storing last Sample data
230  * @min_perf:           Minimum capacity limit as a fraction of the maximum
231  *                      turbo P-state capacity.
232  * @max_perf:           Maximum capacity limit as a fraction of the maximum
233  *                      turbo P-state capacity.
234  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
235  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
236  * @epp_powersave:      Last saved HWP energy performance preference
237  *                      (EPP) or energy performance bias (EPB),
238  *                      when policy switched to performance
239  * @epp_policy:         Last saved policy used to set EPP/EPB
240  * @epp_default:        Power on default HWP energy performance
241  *                      preference/bias
242  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
243  *                      operation
244  *
245  * This structure stores per CPU instance data for all CPUs.
246  */
247 struct cpudata {
248         int cpu;
249
250         unsigned int policy;
251         struct update_util_data update_util;
252         bool   update_util_set;
253
254         struct pstate_data pstate;
255         struct vid_data vid;
256         struct _pid pid;
257
258         u64     last_update;
259         u64     last_sample_time;
260         u64     prev_aperf;
261         u64     prev_mperf;
262         u64     prev_tsc;
263         u64     prev_cummulative_iowait;
264         struct sample sample;
265         int32_t min_perf;
266         int32_t max_perf;
267 #ifdef CONFIG_ACPI
268         struct acpi_processor_performance acpi_perf_data;
269         bool valid_pss_table;
270 #endif
271         unsigned int iowait_boost;
272         s16 epp_powersave;
273         s16 epp_policy;
274         s16 epp_default;
275         s16 epp_saved;
276 };
277
278 static struct cpudata **all_cpu_data;
279
280 /**
281  * struct pstate_adjust_policy - Stores static PID configuration data
282  * @sample_rate_ms:     PID calculation sample rate in ms
283  * @sample_rate_ns:     Sample rate calculation in ns
284  * @deadband:           PID deadband
285  * @setpoint:           PID Setpoint
286  * @p_gain_pct:         PID proportional gain
287  * @i_gain_pct:         PID integral gain
288  * @d_gain_pct:         PID derivative gain
289  *
290  * Stores per CPU model static PID configuration data.
291  */
292 struct pstate_adjust_policy {
293         int sample_rate_ms;
294         s64 sample_rate_ns;
295         int deadband;
296         int setpoint;
297         int p_gain_pct;
298         int d_gain_pct;
299         int i_gain_pct;
300 };
301
302 /**
303  * struct pstate_funcs - Per CPU model specific callbacks
304  * @get_max:            Callback to get maximum non turbo effective P state
305  * @get_max_physical:   Callback to get maximum non turbo physical P state
306  * @get_min:            Callback to get minimum P state
307  * @get_turbo:          Callback to get turbo P state
308  * @get_scaling:        Callback to get frequency scaling factor
309  * @get_val:            Callback to convert P state to actual MSR write value
310  * @get_vid:            Callback to get VID data for Atom platforms
311  * @get_target_pstate:  Callback to a function to calculate next P state to use
312  *
313  * Core and Atom CPU models have different way to get P State limits. This
314  * structure is used to store those callbacks.
315  */
316 struct pstate_funcs {
317         int (*get_max)(void);
318         int (*get_max_physical)(void);
319         int (*get_min)(void);
320         int (*get_turbo)(void);
321         int (*get_scaling)(void);
322         u64 (*get_val)(struct cpudata*, int pstate);
323         void (*get_vid)(struct cpudata *);
324         int32_t (*get_target_pstate)(struct cpudata *);
325 };
326
327 /**
328  * struct cpu_defaults- Per CPU model default config data
329  * @funcs:              Callback function data
330  */
331 struct cpu_defaults {
332         struct pstate_funcs funcs;
333 };
334
335 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
336 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
337
338 static struct pstate_funcs pstate_funcs __read_mostly;
339 static struct pstate_adjust_policy pid_params __read_mostly = {
340         .sample_rate_ms = 10,
341         .sample_rate_ns = 10 * NSEC_PER_MSEC,
342         .deadband = 0,
343         .setpoint = 97,
344         .p_gain_pct = 20,
345         .d_gain_pct = 0,
346         .i_gain_pct = 0,
347 };
348
349 static int hwp_active __read_mostly;
350 static bool per_cpu_limits __read_mostly;
351
352 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
353
354 #ifdef CONFIG_ACPI
355 static bool acpi_ppc;
356 #endif
357
358 static struct global_params global;
359
360 static DEFINE_MUTEX(intel_pstate_driver_lock);
361 static DEFINE_MUTEX(intel_pstate_limits_lock);
362
363 #ifdef CONFIG_ACPI
364
365 static bool intel_pstate_get_ppc_enable_status(void)
366 {
367         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
368             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
369                 return true;
370
371         return acpi_ppc;
372 }
373
374 #ifdef CONFIG_ACPI_CPPC_LIB
375
376 /* The work item is needed to avoid CPU hotplug locking issues */
377 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
378 {
379         sched_set_itmt_support();
380 }
381
382 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
383
384 static void intel_pstate_set_itmt_prio(int cpu)
385 {
386         struct cppc_perf_caps cppc_perf;
387         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
388         int ret;
389
390         ret = cppc_get_perf_caps(cpu, &cppc_perf);
391         if (ret)
392                 return;
393
394         /*
395          * The priorities can be set regardless of whether or not
396          * sched_set_itmt_support(true) has been called and it is valid to
397          * update them at any time after it has been called.
398          */
399         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
400
401         if (max_highest_perf <= min_highest_perf) {
402                 if (cppc_perf.highest_perf > max_highest_perf)
403                         max_highest_perf = cppc_perf.highest_perf;
404
405                 if (cppc_perf.highest_perf < min_highest_perf)
406                         min_highest_perf = cppc_perf.highest_perf;
407
408                 if (max_highest_perf > min_highest_perf) {
409                         /*
410                          * This code can be run during CPU online under the
411                          * CPU hotplug locks, so sched_set_itmt_support()
412                          * cannot be called from here.  Queue up a work item
413                          * to invoke it.
414                          */
415                         schedule_work(&sched_itmt_work);
416                 }
417         }
418 }
419 #else
420 static void intel_pstate_set_itmt_prio(int cpu)
421 {
422 }
423 #endif
424
425 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
426 {
427         struct cpudata *cpu;
428         int ret;
429         int i;
430
431         if (hwp_active) {
432                 intel_pstate_set_itmt_prio(policy->cpu);
433                 return;
434         }
435
436         if (!intel_pstate_get_ppc_enable_status())
437                 return;
438
439         cpu = all_cpu_data[policy->cpu];
440
441         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
442                                                   policy->cpu);
443         if (ret)
444                 return;
445
446         /*
447          * Check if the control value in _PSS is for PERF_CTL MSR, which should
448          * guarantee that the states returned by it map to the states in our
449          * list directly.
450          */
451         if (cpu->acpi_perf_data.control_register.space_id !=
452                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
453                 goto err;
454
455         /*
456          * If there is only one entry _PSS, simply ignore _PSS and continue as
457          * usual without taking _PSS into account
458          */
459         if (cpu->acpi_perf_data.state_count < 2)
460                 goto err;
461
462         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
463         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
464                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
465                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
466                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
467                          (u32) cpu->acpi_perf_data.states[i].power,
468                          (u32) cpu->acpi_perf_data.states[i].control);
469         }
470
471         /*
472          * The _PSS table doesn't contain whole turbo frequency range.
473          * This just contains +1 MHZ above the max non turbo frequency,
474          * with control value corresponding to max turbo ratio. But
475          * when cpufreq set policy is called, it will call with this
476          * max frequency, which will cause a reduced performance as
477          * this driver uses real max turbo frequency as the max
478          * frequency. So correct this frequency in _PSS table to
479          * correct max turbo frequency based on the turbo state.
480          * Also need to convert to MHz as _PSS freq is in MHz.
481          */
482         if (!global.turbo_disabled)
483                 cpu->acpi_perf_data.states[0].core_frequency =
484                                         policy->cpuinfo.max_freq / 1000;
485         cpu->valid_pss_table = true;
486         pr_debug("_PPC limits will be enforced\n");
487
488         return;
489
490  err:
491         cpu->valid_pss_table = false;
492         acpi_processor_unregister_performance(policy->cpu);
493 }
494
495 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
496 {
497         struct cpudata *cpu;
498
499         cpu = all_cpu_data[policy->cpu];
500         if (!cpu->valid_pss_table)
501                 return;
502
503         acpi_processor_unregister_performance(policy->cpu);
504 }
505 #else
506 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
507 {
508 }
509
510 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
511 {
512 }
513 #endif
514
515 static signed int pid_calc(struct _pid *pid, int32_t busy)
516 {
517         signed int result;
518         int32_t pterm, dterm, fp_error;
519         int32_t integral_limit;
520
521         fp_error = pid->setpoint - busy;
522
523         if (abs(fp_error) <= pid->deadband)
524                 return 0;
525
526         pterm = mul_fp(pid->p_gain, fp_error);
527
528         pid->integral += fp_error;
529
530         /*
531          * We limit the integral here so that it will never
532          * get higher than 30.  This prevents it from becoming
533          * too large an input over long periods of time and allows
534          * it to get factored out sooner.
535          *
536          * The value of 30 was chosen through experimentation.
537          */
538         integral_limit = int_tofp(30);
539         if (pid->integral > integral_limit)
540                 pid->integral = integral_limit;
541         if (pid->integral < -integral_limit)
542                 pid->integral = -integral_limit;
543
544         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
545         pid->last_err = fp_error;
546
547         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
548         result = result + (1 << (FRAC_BITS-1));
549         return (signed int)fp_toint(result);
550 }
551
552 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
553 {
554         struct _pid *pid = &cpu->pid;
555
556         pid->p_gain = percent_fp(pid_params.p_gain_pct);
557         pid->d_gain = percent_fp(pid_params.d_gain_pct);
558         pid->i_gain = percent_fp(pid_params.i_gain_pct);
559         pid->setpoint = int_tofp(pid_params.setpoint);
560         pid->last_err  = pid->setpoint - int_tofp(100);
561         pid->deadband  = int_tofp(pid_params.deadband);
562         pid->integral  = 0;
563 }
564
565 static inline void update_turbo_state(void)
566 {
567         u64 misc_en;
568         struct cpudata *cpu;
569
570         cpu = all_cpu_data[0];
571         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
572         global.turbo_disabled =
573                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
574                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
575 }
576
577 static int min_perf_pct_min(void)
578 {
579         struct cpudata *cpu = all_cpu_data[0];
580
581         return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
582                             cpu->pstate.turbo_pstate);
583 }
584
585 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
586 {
587         u64 epb;
588         int ret;
589
590         if (!static_cpu_has(X86_FEATURE_EPB))
591                 return -ENXIO;
592
593         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
594         if (ret)
595                 return (s16)ret;
596
597         return (s16)(epb & 0x0f);
598 }
599
600 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
601 {
602         s16 epp;
603
604         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
605                 /*
606                  * When hwp_req_data is 0, means that caller didn't read
607                  * MSR_HWP_REQUEST, so need to read and get EPP.
608                  */
609                 if (!hwp_req_data) {
610                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
611                                             &hwp_req_data);
612                         if (epp)
613                                 return epp;
614                 }
615                 epp = (hwp_req_data >> 24) & 0xff;
616         } else {
617                 /* When there is no EPP present, HWP uses EPB settings */
618                 epp = intel_pstate_get_epb(cpu_data);
619         }
620
621         return epp;
622 }
623
624 static int intel_pstate_set_epb(int cpu, s16 pref)
625 {
626         u64 epb;
627         int ret;
628
629         if (!static_cpu_has(X86_FEATURE_EPB))
630                 return -ENXIO;
631
632         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
633         if (ret)
634                 return ret;
635
636         epb = (epb & ~0x0f) | pref;
637         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
638
639         return 0;
640 }
641
642 /*
643  * EPP/EPB display strings corresponding to EPP index in the
644  * energy_perf_strings[]
645  *      index           String
646  *-------------------------------------
647  *      0               default
648  *      1               performance
649  *      2               balance_performance
650  *      3               balance_power
651  *      4               power
652  */
653 static const char * const energy_perf_strings[] = {
654         "default",
655         "performance",
656         "balance_performance",
657         "balance_power",
658         "power",
659         NULL
660 };
661
662 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
663 {
664         s16 epp;
665         int index = -EINVAL;
666
667         epp = intel_pstate_get_epp(cpu_data, 0);
668         if (epp < 0)
669                 return epp;
670
671         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
672                 /*
673                  * Range:
674                  *      0x00-0x3F       :       Performance
675                  *      0x40-0x7F       :       Balance performance
676                  *      0x80-0xBF       :       Balance power
677                  *      0xC0-0xFF       :       Power
678                  * The EPP is a 8 bit value, but our ranges restrict the
679                  * value which can be set. Here only using top two bits
680                  * effectively.
681                  */
682                 index = (epp >> 6) + 1;
683         } else if (static_cpu_has(X86_FEATURE_EPB)) {
684                 /*
685                  * Range:
686                  *      0x00-0x03       :       Performance
687                  *      0x04-0x07       :       Balance performance
688                  *      0x08-0x0B       :       Balance power
689                  *      0x0C-0x0F       :       Power
690                  * The EPB is a 4 bit value, but our ranges restrict the
691                  * value which can be set. Here only using top two bits
692                  * effectively.
693                  */
694                 index = (epp >> 2) + 1;
695         }
696
697         return index;
698 }
699
700 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
701                                               int pref_index)
702 {
703         int epp = -EINVAL;
704         int ret;
705
706         if (!pref_index)
707                 epp = cpu_data->epp_default;
708
709         mutex_lock(&intel_pstate_limits_lock);
710
711         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
712                 u64 value;
713
714                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
715                 if (ret)
716                         goto return_pref;
717
718                 value &= ~GENMASK_ULL(31, 24);
719
720                 /*
721                  * If epp is not default, convert from index into
722                  * energy_perf_strings to epp value, by shifting 6
723                  * bits left to use only top two bits in epp.
724                  * The resultant epp need to shifted by 24 bits to
725                  * epp position in MSR_HWP_REQUEST.
726                  */
727                 if (epp == -EINVAL)
728                         epp = (pref_index - 1) << 6;
729
730                 value |= (u64)epp << 24;
731                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
732         } else {
733                 if (epp == -EINVAL)
734                         epp = (pref_index - 1) << 2;
735                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
736         }
737 return_pref:
738         mutex_unlock(&intel_pstate_limits_lock);
739
740         return ret;
741 }
742
743 static ssize_t show_energy_performance_available_preferences(
744                                 struct cpufreq_policy *policy, char *buf)
745 {
746         int i = 0;
747         int ret = 0;
748
749         while (energy_perf_strings[i] != NULL)
750                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
751
752         ret += sprintf(&buf[ret], "\n");
753
754         return ret;
755 }
756
757 cpufreq_freq_attr_ro(energy_performance_available_preferences);
758
759 static ssize_t store_energy_performance_preference(
760                 struct cpufreq_policy *policy, const char *buf, size_t count)
761 {
762         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
763         char str_preference[21];
764         int ret, i = 0;
765
766         ret = sscanf(buf, "%20s", str_preference);
767         if (ret != 1)
768                 return -EINVAL;
769
770         while (energy_perf_strings[i] != NULL) {
771                 if (!strcmp(str_preference, energy_perf_strings[i])) {
772                         intel_pstate_set_energy_pref_index(cpu_data, i);
773                         return count;
774                 }
775                 ++i;
776         }
777
778         return -EINVAL;
779 }
780
781 static ssize_t show_energy_performance_preference(
782                                 struct cpufreq_policy *policy, char *buf)
783 {
784         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
785         int preference;
786
787         preference = intel_pstate_get_energy_pref_index(cpu_data);
788         if (preference < 0)
789                 return preference;
790
791         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
792 }
793
794 cpufreq_freq_attr_rw(energy_performance_preference);
795
796 static struct freq_attr *hwp_cpufreq_attrs[] = {
797         &energy_performance_preference,
798         &energy_performance_available_preferences,
799         NULL,
800 };
801
802 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
803 {
804         int min, hw_min, max, hw_max, cpu;
805         u64 value, cap;
806
807         for_each_cpu(cpu, policy->cpus) {
808                 struct cpudata *cpu_data = all_cpu_data[cpu];
809                 s16 epp;
810
811                 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
812                 hw_min = HWP_LOWEST_PERF(cap);
813                 if (global.no_turbo)
814                         hw_max = HWP_GUARANTEED_PERF(cap);
815                 else
816                         hw_max = HWP_HIGHEST_PERF(cap);
817
818                 max = fp_ext_toint(hw_max * cpu_data->max_perf);
819                 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
820                         min = max;
821                 else
822                         min = fp_ext_toint(hw_max * cpu_data->min_perf);
823
824                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
825
826                 value &= ~HWP_MIN_PERF(~0L);
827                 value |= HWP_MIN_PERF(min);
828
829                 value &= ~HWP_MAX_PERF(~0L);
830                 value |= HWP_MAX_PERF(max);
831
832                 if (cpu_data->epp_policy == cpu_data->policy)
833                         goto skip_epp;
834
835                 cpu_data->epp_policy = cpu_data->policy;
836
837                 if (cpu_data->epp_saved >= 0) {
838                         epp = cpu_data->epp_saved;
839                         cpu_data->epp_saved = -EINVAL;
840                         goto update_epp;
841                 }
842
843                 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
844                         epp = intel_pstate_get_epp(cpu_data, value);
845                         cpu_data->epp_powersave = epp;
846                         /* If EPP read was failed, then don't try to write */
847                         if (epp < 0)
848                                 goto skip_epp;
849
850
851                         epp = 0;
852                 } else {
853                         /* skip setting EPP, when saved value is invalid */
854                         if (cpu_data->epp_powersave < 0)
855                                 goto skip_epp;
856
857                         /*
858                          * No need to restore EPP when it is not zero. This
859                          * means:
860                          *  - Policy is not changed
861                          *  - user has manually changed
862                          *  - Error reading EPB
863                          */
864                         epp = intel_pstate_get_epp(cpu_data, value);
865                         if (epp)
866                                 goto skip_epp;
867
868                         epp = cpu_data->epp_powersave;
869                 }
870 update_epp:
871                 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
872                         value &= ~GENMASK_ULL(31, 24);
873                         value |= (u64)epp << 24;
874                 } else {
875                         intel_pstate_set_epb(cpu, epp);
876                 }
877 skip_epp:
878                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
879         }
880 }
881
882 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
883 {
884         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
885
886         if (!hwp_active)
887                 return 0;
888
889         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
890
891         return 0;
892 }
893
894 static int intel_pstate_resume(struct cpufreq_policy *policy)
895 {
896         if (!hwp_active)
897                 return 0;
898
899         mutex_lock(&intel_pstate_limits_lock);
900
901         all_cpu_data[policy->cpu]->epp_policy = 0;
902         intel_pstate_hwp_set(policy);
903
904         mutex_unlock(&intel_pstate_limits_lock);
905
906         return 0;
907 }
908
909 static void intel_pstate_update_policies(void)
910 {
911         int cpu;
912
913         for_each_possible_cpu(cpu)
914                 cpufreq_update_policy(cpu);
915 }
916
917 /************************** debugfs begin ************************/
918 static int pid_param_set(void *data, u64 val)
919 {
920         unsigned int cpu;
921
922         *(u32 *)data = val;
923         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
924         for_each_possible_cpu(cpu)
925                 if (all_cpu_data[cpu])
926                         intel_pstate_pid_reset(all_cpu_data[cpu]);
927
928         return 0;
929 }
930
931 static int pid_param_get(void *data, u64 *val)
932 {
933         *val = *(u32 *)data;
934         return 0;
935 }
936 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
937
938 static struct dentry *debugfs_parent;
939
940 struct pid_param {
941         char *name;
942         void *value;
943         struct dentry *dentry;
944 };
945
946 static struct pid_param pid_files[] = {
947         {"sample_rate_ms", &pid_params.sample_rate_ms, },
948         {"d_gain_pct", &pid_params.d_gain_pct, },
949         {"i_gain_pct", &pid_params.i_gain_pct, },
950         {"deadband", &pid_params.deadband, },
951         {"setpoint", &pid_params.setpoint, },
952         {"p_gain_pct", &pid_params.p_gain_pct, },
953         {NULL, NULL, }
954 };
955
956 static void intel_pstate_debug_expose_params(void)
957 {
958         int i;
959
960         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
961         if (IS_ERR_OR_NULL(debugfs_parent))
962                 return;
963
964         for (i = 0; pid_files[i].name; i++) {
965                 struct dentry *dentry;
966
967                 dentry = debugfs_create_file(pid_files[i].name, 0660,
968                                              debugfs_parent, pid_files[i].value,
969                                              &fops_pid_param);
970                 if (!IS_ERR(dentry))
971                         pid_files[i].dentry = dentry;
972         }
973 }
974
975 static void intel_pstate_debug_hide_params(void)
976 {
977         int i;
978
979         if (IS_ERR_OR_NULL(debugfs_parent))
980                 return;
981
982         for (i = 0; pid_files[i].name; i++) {
983                 debugfs_remove(pid_files[i].dentry);
984                 pid_files[i].dentry = NULL;
985         }
986
987         debugfs_remove(debugfs_parent);
988         debugfs_parent = NULL;
989 }
990
991 /************************** debugfs end ************************/
992
993 /************************** sysfs begin ************************/
994 #define show_one(file_name, object)                                     \
995         static ssize_t show_##file_name                                 \
996         (struct kobject *kobj, struct attribute *attr, char *buf)       \
997         {                                                               \
998                 return sprintf(buf, "%u\n", global.object);             \
999         }
1000
1001 static ssize_t intel_pstate_show_status(char *buf);
1002 static int intel_pstate_update_status(const char *buf, size_t size);
1003
1004 static ssize_t show_status(struct kobject *kobj,
1005                            struct attribute *attr, char *buf)
1006 {
1007         ssize_t ret;
1008
1009         mutex_lock(&intel_pstate_driver_lock);
1010         ret = intel_pstate_show_status(buf);
1011         mutex_unlock(&intel_pstate_driver_lock);
1012
1013         return ret;
1014 }
1015
1016 static ssize_t store_status(struct kobject *a, struct attribute *b,
1017                             const char *buf, size_t count)
1018 {
1019         char *p = memchr(buf, '\n', count);
1020         int ret;
1021
1022         mutex_lock(&intel_pstate_driver_lock);
1023         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1024         mutex_unlock(&intel_pstate_driver_lock);
1025
1026         return ret < 0 ? ret : count;
1027 }
1028
1029 static ssize_t show_turbo_pct(struct kobject *kobj,
1030                                 struct attribute *attr, char *buf)
1031 {
1032         struct cpudata *cpu;
1033         int total, no_turbo, turbo_pct;
1034         uint32_t turbo_fp;
1035
1036         mutex_lock(&intel_pstate_driver_lock);
1037
1038         if (!intel_pstate_driver) {
1039                 mutex_unlock(&intel_pstate_driver_lock);
1040                 return -EAGAIN;
1041         }
1042
1043         cpu = all_cpu_data[0];
1044
1045         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1046         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1047         turbo_fp = div_fp(no_turbo, total);
1048         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1049
1050         mutex_unlock(&intel_pstate_driver_lock);
1051
1052         return sprintf(buf, "%u\n", turbo_pct);
1053 }
1054
1055 static ssize_t show_num_pstates(struct kobject *kobj,
1056                                 struct attribute *attr, char *buf)
1057 {
1058         struct cpudata *cpu;
1059         int total;
1060
1061         mutex_lock(&intel_pstate_driver_lock);
1062
1063         if (!intel_pstate_driver) {
1064                 mutex_unlock(&intel_pstate_driver_lock);
1065                 return -EAGAIN;
1066         }
1067
1068         cpu = all_cpu_data[0];
1069         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1070
1071         mutex_unlock(&intel_pstate_driver_lock);
1072
1073         return sprintf(buf, "%u\n", total);
1074 }
1075
1076 static ssize_t show_no_turbo(struct kobject *kobj,
1077                              struct attribute *attr, char *buf)
1078 {
1079         ssize_t ret;
1080
1081         mutex_lock(&intel_pstate_driver_lock);
1082
1083         if (!intel_pstate_driver) {
1084                 mutex_unlock(&intel_pstate_driver_lock);
1085                 return -EAGAIN;
1086         }
1087
1088         update_turbo_state();
1089         if (global.turbo_disabled)
1090                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1091         else
1092                 ret = sprintf(buf, "%u\n", global.no_turbo);
1093
1094         mutex_unlock(&intel_pstate_driver_lock);
1095
1096         return ret;
1097 }
1098
1099 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1100                               const char *buf, size_t count)
1101 {
1102         unsigned int input;
1103         int ret;
1104
1105         ret = sscanf(buf, "%u", &input);
1106         if (ret != 1)
1107                 return -EINVAL;
1108
1109         mutex_lock(&intel_pstate_driver_lock);
1110
1111         if (!intel_pstate_driver) {
1112                 mutex_unlock(&intel_pstate_driver_lock);
1113                 return -EAGAIN;
1114         }
1115
1116         mutex_lock(&intel_pstate_limits_lock);
1117
1118         update_turbo_state();
1119         if (global.turbo_disabled) {
1120                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1121                 mutex_unlock(&intel_pstate_limits_lock);
1122                 mutex_unlock(&intel_pstate_driver_lock);
1123                 return -EPERM;
1124         }
1125
1126         global.no_turbo = clamp_t(int, input, 0, 1);
1127
1128         if (global.no_turbo) {
1129                 struct cpudata *cpu = all_cpu_data[0];
1130                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1131
1132                 /* Squash the global minimum into the permitted range. */
1133                 if (global.min_perf_pct > pct)
1134                         global.min_perf_pct = pct;
1135         }
1136
1137         mutex_unlock(&intel_pstate_limits_lock);
1138
1139         intel_pstate_update_policies();
1140
1141         mutex_unlock(&intel_pstate_driver_lock);
1142
1143         return count;
1144 }
1145
1146 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1147                                   const char *buf, size_t count)
1148 {
1149         unsigned int input;
1150         int ret;
1151
1152         ret = sscanf(buf, "%u", &input);
1153         if (ret != 1)
1154                 return -EINVAL;
1155
1156         mutex_lock(&intel_pstate_driver_lock);
1157
1158         if (!intel_pstate_driver) {
1159                 mutex_unlock(&intel_pstate_driver_lock);
1160                 return -EAGAIN;
1161         }
1162
1163         mutex_lock(&intel_pstate_limits_lock);
1164
1165         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1166
1167         mutex_unlock(&intel_pstate_limits_lock);
1168
1169         intel_pstate_update_policies();
1170
1171         mutex_unlock(&intel_pstate_driver_lock);
1172
1173         return count;
1174 }
1175
1176 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1177                                   const char *buf, size_t count)
1178 {
1179         unsigned int input;
1180         int ret;
1181
1182         ret = sscanf(buf, "%u", &input);
1183         if (ret != 1)
1184                 return -EINVAL;
1185
1186         mutex_lock(&intel_pstate_driver_lock);
1187
1188         if (!intel_pstate_driver) {
1189                 mutex_unlock(&intel_pstate_driver_lock);
1190                 return -EAGAIN;
1191         }
1192
1193         mutex_lock(&intel_pstate_limits_lock);
1194
1195         global.min_perf_pct = clamp_t(int, input,
1196                                       min_perf_pct_min(), global.max_perf_pct);
1197
1198         mutex_unlock(&intel_pstate_limits_lock);
1199
1200         intel_pstate_update_policies();
1201
1202         mutex_unlock(&intel_pstate_driver_lock);
1203
1204         return count;
1205 }
1206
1207 show_one(max_perf_pct, max_perf_pct);
1208 show_one(min_perf_pct, min_perf_pct);
1209
1210 define_one_global_rw(status);
1211 define_one_global_rw(no_turbo);
1212 define_one_global_rw(max_perf_pct);
1213 define_one_global_rw(min_perf_pct);
1214 define_one_global_ro(turbo_pct);
1215 define_one_global_ro(num_pstates);
1216
1217 static struct attribute *intel_pstate_attributes[] = {
1218         &status.attr,
1219         &no_turbo.attr,
1220         &turbo_pct.attr,
1221         &num_pstates.attr,
1222         NULL
1223 };
1224
1225 static struct attribute_group intel_pstate_attr_group = {
1226         .attrs = intel_pstate_attributes,
1227 };
1228
1229 static void __init intel_pstate_sysfs_expose_params(void)
1230 {
1231         struct kobject *intel_pstate_kobject;
1232         int rc;
1233
1234         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1235                                                 &cpu_subsys.dev_root->kobj);
1236         if (WARN_ON(!intel_pstate_kobject))
1237                 return;
1238
1239         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1240         if (WARN_ON(rc))
1241                 return;
1242
1243         /*
1244          * If per cpu limits are enforced there are no global limits, so
1245          * return without creating max/min_perf_pct attributes
1246          */
1247         if (per_cpu_limits)
1248                 return;
1249
1250         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1251         WARN_ON(rc);
1252
1253         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1254         WARN_ON(rc);
1255
1256 }
1257 /************************** sysfs end ************************/
1258
1259 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1260 {
1261         /* First disable HWP notification interrupt as we don't process them */
1262         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1263                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1264
1265         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1266         cpudata->epp_policy = 0;
1267         if (cpudata->epp_default == -EINVAL)
1268                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1269 }
1270
1271 #define MSR_IA32_POWER_CTL_BIT_EE       19
1272
1273 /* Disable energy efficiency optimization */
1274 static void intel_pstate_disable_ee(int cpu)
1275 {
1276         u64 power_ctl;
1277         int ret;
1278
1279         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1280         if (ret)
1281                 return;
1282
1283         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1284                 pr_info("Disabling energy efficiency optimization\n");
1285                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1286                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1287         }
1288 }
1289
1290 static int atom_get_min_pstate(void)
1291 {
1292         u64 value;
1293
1294         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1295         return (value >> 8) & 0x7F;
1296 }
1297
1298 static int atom_get_max_pstate(void)
1299 {
1300         u64 value;
1301
1302         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1303         return (value >> 16) & 0x7F;
1304 }
1305
1306 static int atom_get_turbo_pstate(void)
1307 {
1308         u64 value;
1309
1310         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1311         return value & 0x7F;
1312 }
1313
1314 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1315 {
1316         u64 val;
1317         int32_t vid_fp;
1318         u32 vid;
1319
1320         val = (u64)pstate << 8;
1321         if (global.no_turbo && !global.turbo_disabled)
1322                 val |= (u64)1 << 32;
1323
1324         vid_fp = cpudata->vid.min + mul_fp(
1325                 int_tofp(pstate - cpudata->pstate.min_pstate),
1326                 cpudata->vid.ratio);
1327
1328         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1329         vid = ceiling_fp(vid_fp);
1330
1331         if (pstate > cpudata->pstate.max_pstate)
1332                 vid = cpudata->vid.turbo;
1333
1334         return val | vid;
1335 }
1336
1337 static int silvermont_get_scaling(void)
1338 {
1339         u64 value;
1340         int i;
1341         /* Defined in Table 35-6 from SDM (Sept 2015) */
1342         static int silvermont_freq_table[] = {
1343                 83300, 100000, 133300, 116700, 80000};
1344
1345         rdmsrl(MSR_FSB_FREQ, value);
1346         i = value & 0x7;
1347         WARN_ON(i > 4);
1348
1349         return silvermont_freq_table[i];
1350 }
1351
1352 static int airmont_get_scaling(void)
1353 {
1354         u64 value;
1355         int i;
1356         /* Defined in Table 35-10 from SDM (Sept 2015) */
1357         static int airmont_freq_table[] = {
1358                 83300, 100000, 133300, 116700, 80000,
1359                 93300, 90000, 88900, 87500};
1360
1361         rdmsrl(MSR_FSB_FREQ, value);
1362         i = value & 0xF;
1363         WARN_ON(i > 8);
1364
1365         return airmont_freq_table[i];
1366 }
1367
1368 static void atom_get_vid(struct cpudata *cpudata)
1369 {
1370         u64 value;
1371
1372         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1373         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1374         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1375         cpudata->vid.ratio = div_fp(
1376                 cpudata->vid.max - cpudata->vid.min,
1377                 int_tofp(cpudata->pstate.max_pstate -
1378                         cpudata->pstate.min_pstate));
1379
1380         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1381         cpudata->vid.turbo = value & 0x7f;
1382 }
1383
1384 static int core_get_min_pstate(void)
1385 {
1386         u64 value;
1387
1388         rdmsrl(MSR_PLATFORM_INFO, value);
1389         return (value >> 40) & 0xFF;
1390 }
1391
1392 static int core_get_max_pstate_physical(void)
1393 {
1394         u64 value;
1395
1396         rdmsrl(MSR_PLATFORM_INFO, value);
1397         return (value >> 8) & 0xFF;
1398 }
1399
1400 static int core_get_tdp_ratio(u64 plat_info)
1401 {
1402         /* Check how many TDP levels present */
1403         if (plat_info & 0x600000000) {
1404                 u64 tdp_ctrl;
1405                 u64 tdp_ratio;
1406                 int tdp_msr;
1407                 int err;
1408
1409                 /* Get the TDP level (0, 1, 2) to get ratios */
1410                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1411                 if (err)
1412                         return err;
1413
1414                 /* TDP MSR are continuous starting at 0x648 */
1415                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1416                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1417                 if (err)
1418                         return err;
1419
1420                 /* For level 1 and 2, bits[23:16] contain the ratio */
1421                 if (tdp_ctrl & 0x03)
1422                         tdp_ratio >>= 16;
1423
1424                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1425                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1426
1427                 return (int)tdp_ratio;
1428         }
1429
1430         return -ENXIO;
1431 }
1432
1433 static int core_get_max_pstate(void)
1434 {
1435         u64 tar;
1436         u64 plat_info;
1437         int max_pstate;
1438         int tdp_ratio;
1439         int err;
1440
1441         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1442         max_pstate = (plat_info >> 8) & 0xFF;
1443
1444         tdp_ratio = core_get_tdp_ratio(plat_info);
1445         if (tdp_ratio <= 0)
1446                 return max_pstate;
1447
1448         if (hwp_active) {
1449                 /* Turbo activation ratio is not used on HWP platforms */
1450                 return tdp_ratio;
1451         }
1452
1453         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1454         if (!err) {
1455                 int tar_levels;
1456
1457                 /* Do some sanity checking for safety */
1458                 tar_levels = tar & 0xff;
1459                 if (tdp_ratio - 1 == tar_levels) {
1460                         max_pstate = tar_levels;
1461                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1462                 }
1463         }
1464
1465         return max_pstate;
1466 }
1467
1468 static int core_get_turbo_pstate(void)
1469 {
1470         u64 value;
1471         int nont, ret;
1472
1473         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1474         nont = core_get_max_pstate();
1475         ret = (value) & 255;
1476         if (ret <= nont)
1477                 ret = nont;
1478         return ret;
1479 }
1480
1481 static inline int core_get_scaling(void)
1482 {
1483         return 100000;
1484 }
1485
1486 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1487 {
1488         u64 val;
1489
1490         val = (u64)pstate << 8;
1491         if (global.no_turbo && !global.turbo_disabled)
1492                 val |= (u64)1 << 32;
1493
1494         return val;
1495 }
1496
1497 static int knl_get_turbo_pstate(void)
1498 {
1499         u64 value;
1500         int nont, ret;
1501
1502         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1503         nont = core_get_max_pstate();
1504         ret = (((value) >> 8) & 0xFF);
1505         if (ret <= nont)
1506                 ret = nont;
1507         return ret;
1508 }
1509
1510 static struct cpu_defaults core_params = {
1511         .funcs = {
1512                 .get_max = core_get_max_pstate,
1513                 .get_max_physical = core_get_max_pstate_physical,
1514                 .get_min = core_get_min_pstate,
1515                 .get_turbo = core_get_turbo_pstate,
1516                 .get_scaling = core_get_scaling,
1517                 .get_val = core_get_val,
1518                 .get_target_pstate = get_target_pstate_use_performance,
1519         },
1520 };
1521
1522 static const struct cpu_defaults silvermont_params = {
1523         .funcs = {
1524                 .get_max = atom_get_max_pstate,
1525                 .get_max_physical = atom_get_max_pstate,
1526                 .get_min = atom_get_min_pstate,
1527                 .get_turbo = atom_get_turbo_pstate,
1528                 .get_val = atom_get_val,
1529                 .get_scaling = silvermont_get_scaling,
1530                 .get_vid = atom_get_vid,
1531                 .get_target_pstate = get_target_pstate_use_cpu_load,
1532         },
1533 };
1534
1535 static const struct cpu_defaults airmont_params = {
1536         .funcs = {
1537                 .get_max = atom_get_max_pstate,
1538                 .get_max_physical = atom_get_max_pstate,
1539                 .get_min = atom_get_min_pstate,
1540                 .get_turbo = atom_get_turbo_pstate,
1541                 .get_val = atom_get_val,
1542                 .get_scaling = airmont_get_scaling,
1543                 .get_vid = atom_get_vid,
1544                 .get_target_pstate = get_target_pstate_use_cpu_load,
1545         },
1546 };
1547
1548 static const struct cpu_defaults knl_params = {
1549         .funcs = {
1550                 .get_max = core_get_max_pstate,
1551                 .get_max_physical = core_get_max_pstate_physical,
1552                 .get_min = core_get_min_pstate,
1553                 .get_turbo = knl_get_turbo_pstate,
1554                 .get_scaling = core_get_scaling,
1555                 .get_val = core_get_val,
1556                 .get_target_pstate = get_target_pstate_use_performance,
1557         },
1558 };
1559
1560 static const struct cpu_defaults bxt_params = {
1561         .funcs = {
1562                 .get_max = core_get_max_pstate,
1563                 .get_max_physical = core_get_max_pstate_physical,
1564                 .get_min = core_get_min_pstate,
1565                 .get_turbo = core_get_turbo_pstate,
1566                 .get_scaling = core_get_scaling,
1567                 .get_val = core_get_val,
1568                 .get_target_pstate = get_target_pstate_use_cpu_load,
1569         },
1570 };
1571
1572 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1573 {
1574         int max_perf = cpu->pstate.turbo_pstate;
1575         int max_perf_adj;
1576         int min_perf;
1577
1578         if (global.no_turbo || global.turbo_disabled)
1579                 max_perf = cpu->pstate.max_pstate;
1580
1581         /*
1582          * performance can be limited by user through sysfs, by cpufreq
1583          * policy, or by cpu specific default values determined through
1584          * experimentation.
1585          */
1586         max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1587         *max = clamp_t(int, max_perf_adj,
1588                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1589
1590         min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1591         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1592 }
1593
1594 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1595 {
1596         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1597         cpu->pstate.current_pstate = pstate;
1598         /*
1599          * Generally, there is no guarantee that this code will always run on
1600          * the CPU being updated, so force the register update to run on the
1601          * right CPU.
1602          */
1603         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1604                       pstate_funcs.get_val(cpu, pstate));
1605 }
1606
1607 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1608 {
1609         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1610 }
1611
1612 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1613 {
1614         int min_pstate, max_pstate;
1615
1616         update_turbo_state();
1617         intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1618         intel_pstate_set_pstate(cpu, max_pstate);
1619 }
1620
1621 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1622 {
1623         cpu->pstate.min_pstate = pstate_funcs.get_min();
1624         cpu->pstate.max_pstate = pstate_funcs.get_max();
1625         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1626         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1627         cpu->pstate.scaling = pstate_funcs.get_scaling();
1628         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1629         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1630
1631         if (pstate_funcs.get_vid)
1632                 pstate_funcs.get_vid(cpu);
1633
1634         intel_pstate_set_min_pstate(cpu);
1635 }
1636
1637 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1638 {
1639         struct sample *sample = &cpu->sample;
1640
1641         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1642 }
1643
1644 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1645 {
1646         u64 aperf, mperf;
1647         unsigned long flags;
1648         u64 tsc;
1649
1650         local_irq_save(flags);
1651         rdmsrl(MSR_IA32_APERF, aperf);
1652         rdmsrl(MSR_IA32_MPERF, mperf);
1653         tsc = rdtsc();
1654         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1655                 local_irq_restore(flags);
1656                 return false;
1657         }
1658         local_irq_restore(flags);
1659
1660         cpu->last_sample_time = cpu->sample.time;
1661         cpu->sample.time = time;
1662         cpu->sample.aperf = aperf;
1663         cpu->sample.mperf = mperf;
1664         cpu->sample.tsc =  tsc;
1665         cpu->sample.aperf -= cpu->prev_aperf;
1666         cpu->sample.mperf -= cpu->prev_mperf;
1667         cpu->sample.tsc -= cpu->prev_tsc;
1668
1669         cpu->prev_aperf = aperf;
1670         cpu->prev_mperf = mperf;
1671         cpu->prev_tsc = tsc;
1672         /*
1673          * First time this function is invoked in a given cycle, all of the
1674          * previous sample data fields are equal to zero or stale and they must
1675          * be populated with meaningful numbers for things to work, so assume
1676          * that sample.time will always be reset before setting the utilization
1677          * update hook and make the caller skip the sample then.
1678          */
1679         return !!cpu->last_sample_time;
1680 }
1681
1682 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1683 {
1684         return mul_ext_fp(cpu->sample.core_avg_perf,
1685                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1686 }
1687
1688 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1689 {
1690         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1691                           cpu->sample.core_avg_perf);
1692 }
1693
1694 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1695 {
1696         struct sample *sample = &cpu->sample;
1697         int32_t busy_frac, boost;
1698         int target, avg_pstate;
1699
1700         busy_frac = div_fp(sample->mperf, sample->tsc);
1701
1702         boost = cpu->iowait_boost;
1703         cpu->iowait_boost >>= 1;
1704
1705         if (busy_frac < boost)
1706                 busy_frac = boost;
1707
1708         sample->busy_scaled = busy_frac * 100;
1709
1710         target = global.no_turbo || global.turbo_disabled ?
1711                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1712         target += target >> 2;
1713         target = mul_fp(target, busy_frac);
1714         if (target < cpu->pstate.min_pstate)
1715                 target = cpu->pstate.min_pstate;
1716
1717         /*
1718          * If the average P-state during the previous cycle was higher than the
1719          * current target, add 50% of the difference to the target to reduce
1720          * possible performance oscillations and offset possible performance
1721          * loss related to moving the workload from one CPU to another within
1722          * a package/module.
1723          */
1724         avg_pstate = get_avg_pstate(cpu);
1725         if (avg_pstate > target)
1726                 target += (avg_pstate - target) >> 1;
1727
1728         return target;
1729 }
1730
1731 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1732 {
1733         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1734         u64 duration_ns;
1735
1736         /*
1737          * perf_scaled is the ratio of the average P-state during the last
1738          * sampling period to the P-state requested last time (in percent).
1739          *
1740          * That measures the system's response to the previous P-state
1741          * selection.
1742          */
1743         max_pstate = cpu->pstate.max_pstate_physical;
1744         current_pstate = cpu->pstate.current_pstate;
1745         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1746                                div_fp(100 * max_pstate, current_pstate));
1747
1748         /*
1749          * Since our utilization update callback will not run unless we are
1750          * in C0, check if the actual elapsed time is significantly greater (3x)
1751          * than our sample interval.  If it is, then we were idle for a long
1752          * enough period of time to adjust our performance metric.
1753          */
1754         duration_ns = cpu->sample.time - cpu->last_sample_time;
1755         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1756                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1757                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1758         } else {
1759                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1760                 if (sample_ratio < int_tofp(1))
1761                         perf_scaled = 0;
1762         }
1763
1764         cpu->sample.busy_scaled = perf_scaled;
1765         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1766 }
1767
1768 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1769 {
1770         int max_perf, min_perf;
1771
1772         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1773         pstate = clamp_t(int, pstate, min_perf, max_perf);
1774         return pstate;
1775 }
1776
1777 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1778 {
1779         if (pstate == cpu->pstate.current_pstate)
1780                 return;
1781
1782         cpu->pstate.current_pstate = pstate;
1783         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1784 }
1785
1786 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1787 {
1788         int from, target_pstate;
1789         struct sample *sample;
1790
1791         from = cpu->pstate.current_pstate;
1792
1793         target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1794                 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1795
1796         update_turbo_state();
1797
1798         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1799         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1800         intel_pstate_update_pstate(cpu, target_pstate);
1801
1802         sample = &cpu->sample;
1803         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1804                 fp_toint(sample->busy_scaled),
1805                 from,
1806                 cpu->pstate.current_pstate,
1807                 sample->mperf,
1808                 sample->aperf,
1809                 sample->tsc,
1810                 get_avg_frequency(cpu),
1811                 fp_toint(cpu->iowait_boost * 100));
1812 }
1813
1814 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1815                                      unsigned int flags)
1816 {
1817         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1818         u64 delta_ns;
1819
1820         if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1821                 if (flags & SCHED_CPUFREQ_IOWAIT) {
1822                         cpu->iowait_boost = int_tofp(1);
1823                 } else if (cpu->iowait_boost) {
1824                         /* Clear iowait_boost if the CPU may have been idle. */
1825                         delta_ns = time - cpu->last_update;
1826                         if (delta_ns > TICK_NSEC)
1827                                 cpu->iowait_boost = 0;
1828                 }
1829                 cpu->last_update = time;
1830         }
1831
1832         delta_ns = time - cpu->sample.time;
1833         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1834                 bool sample_taken = intel_pstate_sample(cpu, time);
1835
1836                 if (sample_taken) {
1837                         intel_pstate_calc_avg_perf(cpu);
1838                         if (!hwp_active)
1839                                 intel_pstate_adjust_busy_pstate(cpu);
1840                 }
1841         }
1842 }
1843
1844 #define ICPU(model, policy) \
1845         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1846                         (unsigned long)&policy }
1847
1848 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1849         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1850         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1851         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1852         ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1853         ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1854         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1855         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1856         ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1857         ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1858         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1859         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1860         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1861         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1862         ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1863         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1864         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1865         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1866         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_params),
1867         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_params),
1868         {}
1869 };
1870 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1871
1872 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1873         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1874         ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1875         ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1876         {}
1877 };
1878
1879 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1880         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1881         {}
1882 };
1883
1884 static int intel_pstate_init_cpu(unsigned int cpunum)
1885 {
1886         struct cpudata *cpu;
1887
1888         cpu = all_cpu_data[cpunum];
1889
1890         if (!cpu) {
1891                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1892                 if (!cpu)
1893                         return -ENOMEM;
1894
1895                 all_cpu_data[cpunum] = cpu;
1896
1897                 cpu->epp_default = -EINVAL;
1898                 cpu->epp_powersave = -EINVAL;
1899                 cpu->epp_saved = -EINVAL;
1900         }
1901
1902         cpu = all_cpu_data[cpunum];
1903
1904         cpu->cpu = cpunum;
1905
1906         if (hwp_active) {
1907                 const struct x86_cpu_id *id;
1908
1909                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1910                 if (id)
1911                         intel_pstate_disable_ee(cpunum);
1912
1913                 intel_pstate_hwp_enable(cpu);
1914         } else if (pstate_funcs.get_target_pstate == get_target_pstate_use_performance) {
1915                 intel_pstate_pid_reset(cpu);
1916         }
1917
1918         intel_pstate_get_cpu_pstates(cpu);
1919
1920         pr_debug("controlling: cpu %d\n", cpunum);
1921
1922         return 0;
1923 }
1924
1925 static unsigned int intel_pstate_get(unsigned int cpu_num)
1926 {
1927         struct cpudata *cpu = all_cpu_data[cpu_num];
1928
1929         return cpu ? get_avg_frequency(cpu) : 0;
1930 }
1931
1932 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1933 {
1934         struct cpudata *cpu = all_cpu_data[cpu_num];
1935
1936         if (cpu->update_util_set)
1937                 return;
1938
1939         /* Prevent intel_pstate_update_util() from using stale data. */
1940         cpu->sample.time = 0;
1941         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1942                                      intel_pstate_update_util);
1943         cpu->update_util_set = true;
1944 }
1945
1946 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1947 {
1948         struct cpudata *cpu_data = all_cpu_data[cpu];
1949
1950         if (!cpu_data->update_util_set)
1951                 return;
1952
1953         cpufreq_remove_update_util_hook(cpu);
1954         cpu_data->update_util_set = false;
1955         synchronize_sched();
1956 }
1957
1958 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1959 {
1960         return global.turbo_disabled || global.no_turbo ?
1961                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1962 }
1963
1964 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1965                                             struct cpudata *cpu)
1966 {
1967         int max_freq = intel_pstate_get_max_freq(cpu);
1968         int32_t max_policy_perf, min_policy_perf;
1969
1970         max_policy_perf = div_ext_fp(policy->max, max_freq);
1971         max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1972         if (policy->max == policy->min) {
1973                 min_policy_perf = max_policy_perf;
1974         } else {
1975                 min_policy_perf = div_ext_fp(policy->min, max_freq);
1976                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1977                                           0, max_policy_perf);
1978         }
1979
1980         /* Normalize user input to [min_perf, max_perf] */
1981         if (per_cpu_limits) {
1982                 cpu->min_perf = min_policy_perf;
1983                 cpu->max_perf = max_policy_perf;
1984         } else {
1985                 int32_t global_min, global_max;
1986
1987                 /* Global limits are in percent of the maximum turbo P-state. */
1988                 global_max = percent_ext_fp(global.max_perf_pct);
1989                 global_min = percent_ext_fp(global.min_perf_pct);
1990                 if (max_freq != cpu->pstate.turbo_freq) {
1991                         int32_t turbo_factor;
1992
1993                         turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
1994                                                   cpu->pstate.max_pstate);
1995                         global_min = mul_ext_fp(global_min, turbo_factor);
1996                         global_max = mul_ext_fp(global_max, turbo_factor);
1997                 }
1998                 global_min = clamp_t(int32_t, global_min, 0, global_max);
1999
2000                 cpu->min_perf = max(min_policy_perf, global_min);
2001                 cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2002                 cpu->max_perf = min(max_policy_perf, global_max);
2003                 cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2004
2005                 /* Make sure min_perf <= max_perf */
2006                 cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2007         }
2008
2009         cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2010         cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2011
2012         pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2013                  fp_ext_toint(cpu->max_perf * 100),
2014                  fp_ext_toint(cpu->min_perf * 100));
2015 }
2016
2017 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2018 {
2019         struct cpudata *cpu;
2020
2021         if (!policy->cpuinfo.max_freq)
2022                 return -ENODEV;
2023
2024         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2025                  policy->cpuinfo.max_freq, policy->max);
2026
2027         cpu = all_cpu_data[policy->cpu];
2028         cpu->policy = policy->policy;
2029
2030         mutex_lock(&intel_pstate_limits_lock);
2031
2032         intel_pstate_update_perf_limits(policy, cpu);
2033
2034         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2035                 /*
2036                  * NOHZ_FULL CPUs need this as the governor callback may not
2037                  * be invoked on them.
2038                  */
2039                 intel_pstate_clear_update_util_hook(policy->cpu);
2040                 intel_pstate_max_within_limits(cpu);
2041         }
2042
2043         intel_pstate_set_update_util_hook(policy->cpu);
2044
2045         if (hwp_active)
2046                 intel_pstate_hwp_set(policy);
2047
2048         mutex_unlock(&intel_pstate_limits_lock);
2049
2050         return 0;
2051 }
2052
2053 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2054                                          struct cpudata *cpu)
2055 {
2056         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2057             policy->max < policy->cpuinfo.max_freq &&
2058             policy->max > cpu->pstate.max_freq) {
2059                 pr_debug("policy->max > max non turbo frequency\n");
2060                 policy->max = policy->cpuinfo.max_freq;
2061         }
2062 }
2063
2064 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2065 {
2066         struct cpudata *cpu = all_cpu_data[policy->cpu];
2067
2068         update_turbo_state();
2069         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2070                                      intel_pstate_get_max_freq(cpu));
2071
2072         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2073             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2074                 return -EINVAL;
2075
2076         intel_pstate_adjust_policy_max(policy, cpu);
2077
2078         return 0;
2079 }
2080
2081 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2082 {
2083         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2084 }
2085
2086 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2087 {
2088         pr_debug("CPU %d exiting\n", policy->cpu);
2089
2090         intel_pstate_clear_update_util_hook(policy->cpu);
2091         if (hwp_active)
2092                 intel_pstate_hwp_save_state(policy);
2093         else
2094                 intel_cpufreq_stop_cpu(policy);
2095 }
2096
2097 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2098 {
2099         intel_pstate_exit_perf_limits(policy);
2100
2101         policy->fast_switch_possible = false;
2102
2103         return 0;
2104 }
2105
2106 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2107 {
2108         struct cpudata *cpu;
2109         int rc;
2110
2111         rc = intel_pstate_init_cpu(policy->cpu);
2112         if (rc)
2113                 return rc;
2114
2115         cpu = all_cpu_data[policy->cpu];
2116
2117         cpu->max_perf = int_ext_tofp(1);
2118         cpu->min_perf = 0;
2119
2120         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2122
2123         /* cpuinfo and default policy values */
2124         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2125         update_turbo_state();
2126         policy->cpuinfo.max_freq = global.turbo_disabled ?
2127                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2128         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2129
2130         intel_pstate_init_acpi_perf_limits(policy);
2131         cpumask_set_cpu(policy->cpu, policy->cpus);
2132
2133         policy->fast_switch_possible = true;
2134
2135         return 0;
2136 }
2137
2138 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2139 {
2140         int ret = __intel_pstate_cpu_init(policy);
2141
2142         if (ret)
2143                 return ret;
2144
2145         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2146         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2147                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2148         else
2149                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2150
2151         return 0;
2152 }
2153
2154 static struct cpufreq_driver intel_pstate = {
2155         .flags          = CPUFREQ_CONST_LOOPS,
2156         .verify         = intel_pstate_verify_policy,
2157         .setpolicy      = intel_pstate_set_policy,
2158         .suspend        = intel_pstate_hwp_save_state,
2159         .resume         = intel_pstate_resume,
2160         .get            = intel_pstate_get,
2161         .init           = intel_pstate_cpu_init,
2162         .exit           = intel_pstate_cpu_exit,
2163         .stop_cpu       = intel_pstate_stop_cpu,
2164         .name           = "intel_pstate",
2165 };
2166
2167 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2168 {
2169         struct cpudata *cpu = all_cpu_data[policy->cpu];
2170
2171         update_turbo_state();
2172         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2173                                      intel_pstate_get_max_freq(cpu));
2174
2175         intel_pstate_adjust_policy_max(policy, cpu);
2176
2177         intel_pstate_update_perf_limits(policy, cpu);
2178
2179         return 0;
2180 }
2181
2182 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2183                                 unsigned int target_freq,
2184                                 unsigned int relation)
2185 {
2186         struct cpudata *cpu = all_cpu_data[policy->cpu];
2187         struct cpufreq_freqs freqs;
2188         int target_pstate;
2189
2190         update_turbo_state();
2191
2192         freqs.old = policy->cur;
2193         freqs.new = target_freq;
2194
2195         cpufreq_freq_transition_begin(policy, &freqs);
2196         switch (relation) {
2197         case CPUFREQ_RELATION_L:
2198                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2199                 break;
2200         case CPUFREQ_RELATION_H:
2201                 target_pstate = freqs.new / cpu->pstate.scaling;
2202                 break;
2203         default:
2204                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2205                 break;
2206         }
2207         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2208         if (target_pstate != cpu->pstate.current_pstate) {
2209                 cpu->pstate.current_pstate = target_pstate;
2210                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2211                               pstate_funcs.get_val(cpu, target_pstate));
2212         }
2213         freqs.new = target_pstate * cpu->pstate.scaling;
2214         cpufreq_freq_transition_end(policy, &freqs, false);
2215
2216         return 0;
2217 }
2218
2219 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2220                                               unsigned int target_freq)
2221 {
2222         struct cpudata *cpu = all_cpu_data[policy->cpu];
2223         int target_pstate;
2224
2225         update_turbo_state();
2226
2227         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2228         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2229         intel_pstate_update_pstate(cpu, target_pstate);
2230         return target_pstate * cpu->pstate.scaling;
2231 }
2232
2233 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2234 {
2235         int ret = __intel_pstate_cpu_init(policy);
2236
2237         if (ret)
2238                 return ret;
2239
2240         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2241         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2242         policy->cur = policy->cpuinfo.min_freq;
2243
2244         return 0;
2245 }
2246
2247 static struct cpufreq_driver intel_cpufreq = {
2248         .flags          = CPUFREQ_CONST_LOOPS,
2249         .verify         = intel_cpufreq_verify_policy,
2250         .target         = intel_cpufreq_target,
2251         .fast_switch    = intel_cpufreq_fast_switch,
2252         .init           = intel_cpufreq_cpu_init,
2253         .exit           = intel_pstate_cpu_exit,
2254         .stop_cpu       = intel_cpufreq_stop_cpu,
2255         .name           = "intel_cpufreq",
2256 };
2257
2258 static struct cpufreq_driver *default_driver = &intel_pstate;
2259
2260 static void intel_pstate_driver_cleanup(void)
2261 {
2262         unsigned int cpu;
2263
2264         get_online_cpus();
2265         for_each_online_cpu(cpu) {
2266                 if (all_cpu_data[cpu]) {
2267                         if (intel_pstate_driver == &intel_pstate)
2268                                 intel_pstate_clear_update_util_hook(cpu);
2269
2270                         kfree(all_cpu_data[cpu]);
2271                         all_cpu_data[cpu] = NULL;
2272                 }
2273         }
2274         put_online_cpus();
2275         intel_pstate_driver = NULL;
2276 }
2277
2278 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2279 {
2280         int ret;
2281
2282         memset(&global, 0, sizeof(global));
2283         global.max_perf_pct = 100;
2284
2285         intel_pstate_driver = driver;
2286         ret = cpufreq_register_driver(intel_pstate_driver);
2287         if (ret) {
2288                 intel_pstate_driver_cleanup();
2289                 return ret;
2290         }
2291
2292         global.min_perf_pct = min_perf_pct_min();
2293
2294         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2295             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2296                 intel_pstate_debug_expose_params();
2297
2298         return 0;
2299 }
2300
2301 static int intel_pstate_unregister_driver(void)
2302 {
2303         if (hwp_active)
2304                 return -EBUSY;
2305
2306         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2307             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2308                 intel_pstate_debug_hide_params();
2309
2310         cpufreq_unregister_driver(intel_pstate_driver);
2311         intel_pstate_driver_cleanup();
2312
2313         return 0;
2314 }
2315
2316 static ssize_t intel_pstate_show_status(char *buf)
2317 {
2318         if (!intel_pstate_driver)
2319                 return sprintf(buf, "off\n");
2320
2321         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2322                                         "active" : "passive");
2323 }
2324
2325 static int intel_pstate_update_status(const char *buf, size_t size)
2326 {
2327         int ret;
2328
2329         if (size == 3 && !strncmp(buf, "off", size))
2330                 return intel_pstate_driver ?
2331                         intel_pstate_unregister_driver() : -EINVAL;
2332
2333         if (size == 6 && !strncmp(buf, "active", size)) {
2334                 if (intel_pstate_driver) {
2335                         if (intel_pstate_driver == &intel_pstate)
2336                                 return 0;
2337
2338                         ret = intel_pstate_unregister_driver();
2339                         if (ret)
2340                                 return ret;
2341                 }
2342
2343                 return intel_pstate_register_driver(&intel_pstate);
2344         }
2345
2346         if (size == 7 && !strncmp(buf, "passive", size)) {
2347                 if (intel_pstate_driver) {
2348                         if (intel_pstate_driver != &intel_pstate)
2349                                 return 0;
2350
2351                         ret = intel_pstate_unregister_driver();
2352                         if (ret)
2353                                 return ret;
2354                 }
2355
2356                 return intel_pstate_register_driver(&intel_cpufreq);
2357         }
2358
2359         return -EINVAL;
2360 }
2361
2362 static int no_load __initdata;
2363 static int no_hwp __initdata;
2364 static int hwp_only __initdata;
2365 static unsigned int force_load __initdata;
2366
2367 static int __init intel_pstate_msrs_not_valid(void)
2368 {
2369         if (!pstate_funcs.get_max() ||
2370             !pstate_funcs.get_min() ||
2371             !pstate_funcs.get_turbo())
2372                 return -ENODEV;
2373
2374         return 0;
2375 }
2376
2377 #ifdef CONFIG_ACPI
2378 static void intel_pstate_use_acpi_profile(void)
2379 {
2380         switch (acpi_gbl_FADT.preferred_profile) {
2381         case PM_MOBILE:
2382         case PM_TABLET:
2383         case PM_APPLIANCE_PC:
2384         case PM_DESKTOP:
2385         case PM_WORKSTATION:
2386                 pstate_funcs.get_target_pstate =
2387                                 get_target_pstate_use_cpu_load;
2388         }
2389 }
2390 #else
2391 static void intel_pstate_use_acpi_profile(void)
2392 {
2393 }
2394 #endif
2395
2396 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2397 {
2398         pstate_funcs.get_max   = funcs->get_max;
2399         pstate_funcs.get_max_physical = funcs->get_max_physical;
2400         pstate_funcs.get_min   = funcs->get_min;
2401         pstate_funcs.get_turbo = funcs->get_turbo;
2402         pstate_funcs.get_scaling = funcs->get_scaling;
2403         pstate_funcs.get_val   = funcs->get_val;
2404         pstate_funcs.get_vid   = funcs->get_vid;
2405         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2406
2407         intel_pstate_use_acpi_profile();
2408 }
2409
2410 #ifdef CONFIG_ACPI
2411
2412 static bool __init intel_pstate_no_acpi_pss(void)
2413 {
2414         int i;
2415
2416         for_each_possible_cpu(i) {
2417                 acpi_status status;
2418                 union acpi_object *pss;
2419                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2420                 struct acpi_processor *pr = per_cpu(processors, i);
2421
2422                 if (!pr)
2423                         continue;
2424
2425                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2426                 if (ACPI_FAILURE(status))
2427                         continue;
2428
2429                 pss = buffer.pointer;
2430                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2431                         kfree(pss);
2432                         return false;
2433                 }
2434
2435                 kfree(pss);
2436         }
2437
2438         return true;
2439 }
2440
2441 static bool __init intel_pstate_has_acpi_ppc(void)
2442 {
2443         int i;
2444
2445         for_each_possible_cpu(i) {
2446                 struct acpi_processor *pr = per_cpu(processors, i);
2447
2448                 if (!pr)
2449                         continue;
2450                 if (acpi_has_method(pr->handle, "_PPC"))
2451                         return true;
2452         }
2453         return false;
2454 }
2455
2456 enum {
2457         PSS,
2458         PPC,
2459 };
2460
2461 struct hw_vendor_info {
2462         u16  valid;
2463         char oem_id[ACPI_OEM_ID_SIZE];
2464         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2465         int  oem_pwr_table;
2466 };
2467
2468 /* Hardware vendor-specific info that has its own power management modes */
2469 static struct hw_vendor_info vendor_info[] __initdata = {
2470         {1, "HP    ", "ProLiant", PSS},
2471         {1, "ORACLE", "X4-2    ", PPC},
2472         {1, "ORACLE", "X4-2L   ", PPC},
2473         {1, "ORACLE", "X4-2B   ", PPC},
2474         {1, "ORACLE", "X3-2    ", PPC},
2475         {1, "ORACLE", "X3-2L   ", PPC},
2476         {1, "ORACLE", "X3-2B   ", PPC},
2477         {1, "ORACLE", "X4470M2 ", PPC},
2478         {1, "ORACLE", "X4270M3 ", PPC},
2479         {1, "ORACLE", "X4270M2 ", PPC},
2480         {1, "ORACLE", "X4170M2 ", PPC},
2481         {1, "ORACLE", "X4170 M3", PPC},
2482         {1, "ORACLE", "X4275 M3", PPC},
2483         {1, "ORACLE", "X6-2    ", PPC},
2484         {1, "ORACLE", "Sudbury ", PPC},
2485         {0, "", ""},
2486 };
2487
2488 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2489 {
2490         struct acpi_table_header hdr;
2491         struct hw_vendor_info *v_info;
2492         const struct x86_cpu_id *id;
2493         u64 misc_pwr;
2494
2495         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2496         if (id) {
2497                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2498                 if ( misc_pwr & (1 << 8))
2499                         return true;
2500         }
2501
2502         if (acpi_disabled ||
2503             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2504                 return false;
2505
2506         for (v_info = vendor_info; v_info->valid; v_info++) {
2507                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2508                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2509                                                 ACPI_OEM_TABLE_ID_SIZE))
2510                         switch (v_info->oem_pwr_table) {
2511                         case PSS:
2512                                 return intel_pstate_no_acpi_pss();
2513                         case PPC:
2514                                 return intel_pstate_has_acpi_ppc() &&
2515                                         (!force_load);
2516                         }
2517         }
2518
2519         return false;
2520 }
2521
2522 static void intel_pstate_request_control_from_smm(void)
2523 {
2524         /*
2525          * It may be unsafe to request P-states control from SMM if _PPC support
2526          * has not been enabled.
2527          */
2528         if (acpi_ppc)
2529                 acpi_processor_pstate_control();
2530 }
2531 #else /* CONFIG_ACPI not enabled */
2532 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2533 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2534 static inline void intel_pstate_request_control_from_smm(void) {}
2535 #endif /* CONFIG_ACPI */
2536
2537 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2538         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2539         {}
2540 };
2541
2542 static int __init intel_pstate_init(void)
2543 {
2544         int rc;
2545
2546         if (no_load)
2547                 return -ENODEV;
2548
2549         if (x86_match_cpu(hwp_support_ids)) {
2550                 copy_cpu_funcs(&core_params.funcs);
2551                 if (no_hwp) {
2552                         pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
2553                 } else {
2554                         hwp_active++;
2555                         intel_pstate.attr = hwp_cpufreq_attrs;
2556                         pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2557                         goto hwp_cpu_matched;
2558                 }
2559         } else {
2560                 const struct x86_cpu_id *id;
2561                 struct cpu_defaults *cpu_def;
2562
2563                 id = x86_match_cpu(intel_pstate_cpu_ids);
2564                 if (!id)
2565                         return -ENODEV;
2566
2567                 cpu_def = (struct cpu_defaults *)id->driver_data;
2568                 copy_cpu_funcs(&cpu_def->funcs);
2569         }
2570
2571         if (intel_pstate_msrs_not_valid())
2572                 return -ENODEV;
2573
2574 hwp_cpu_matched:
2575         /*
2576          * The Intel pstate driver will be ignored if the platform
2577          * firmware has its own power management modes.
2578          */
2579         if (intel_pstate_platform_pwr_mgmt_exists())
2580                 return -ENODEV;
2581
2582         if (!hwp_active && hwp_only)
2583                 return -ENOTSUPP;
2584
2585         pr_info("Intel P-state driver initializing\n");
2586
2587         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2588         if (!all_cpu_data)
2589                 return -ENOMEM;
2590
2591         intel_pstate_request_control_from_smm();
2592
2593         intel_pstate_sysfs_expose_params();
2594
2595         mutex_lock(&intel_pstate_driver_lock);
2596         rc = intel_pstate_register_driver(default_driver);
2597         mutex_unlock(&intel_pstate_driver_lock);
2598         if (rc)
2599                 return rc;
2600
2601         if (hwp_active)
2602                 pr_info("HWP enabled\n");
2603
2604         return 0;
2605 }
2606 device_initcall(intel_pstate_init);
2607
2608 static int __init intel_pstate_setup(char *str)
2609 {
2610         if (!str)
2611                 return -EINVAL;
2612
2613         if (!strcmp(str, "disable")) {
2614                 no_load = 1;
2615         } else if (!strcmp(str, "passive")) {
2616                 pr_info("Passive mode enabled\n");
2617                 default_driver = &intel_cpufreq;
2618                 no_hwp = 1;
2619         }
2620         if (!strcmp(str, "no_hwp")) {
2621                 pr_info("HWP disabled\n");
2622                 no_hwp = 1;
2623         }
2624         if (!strcmp(str, "force"))
2625                 force_load = 1;
2626         if (!strcmp(str, "hwp_only"))
2627                 hwp_only = 1;
2628         if (!strcmp(str, "per_cpu_perf_limits"))
2629                 per_cpu_limits = true;
2630
2631 #ifdef CONFIG_ACPI
2632         if (!strcmp(str, "support_acpi_ppc"))
2633                 acpi_ppc = true;
2634 #endif
2635
2636         return 0;
2637 }
2638 early_param("intel_pstate", intel_pstate_setup);
2639
2640 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2641 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2642 MODULE_LICENSE("GPL");