]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/intel_pstate.c
cpufreq: intel_pstate: Fold intel_pstate_reset_all_pid() into the caller
[karo-tx-linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63         return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65
66 static inline int ceiling_fp(int32_t x)
67 {
68         int mask, ret;
69
70         ret = fp_toint(x);
71         mask = (1 << FRAC_BITS) - 1;
72         if (x & mask)
73                 ret += 1;
74         return ret;
75 }
76
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79         return (x * y) >> EXT_FRAC_BITS;
80 }
81
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84         return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86
87 static inline int32_t percent_ext_fp(int percent)
88 {
89         return div_ext_fp(percent, 100);
90 }
91
92 /**
93  * struct sample -      Store performance sample
94  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
95  *                      performance during last sample period
96  * @busy_scaled:        Scaled busy value which is used to calculate next
97  *                      P state. This can be different than core_avg_perf
98  *                      to account for cpu idle period
99  * @aperf:              Difference of actual performance frequency clock count
100  *                      read from APERF MSR between last and current sample
101  * @mperf:              Difference of maximum performance frequency clock count
102  *                      read from MPERF MSR between last and current sample
103  * @tsc:                Difference of time stamp counter between last and
104  *                      current sample
105  * @time:               Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111         int32_t core_avg_perf;
112         int32_t busy_scaled;
113         u64 aperf;
114         u64 mperf;
115         u64 tsc;
116         u64 time;
117 };
118
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:     Current requested P state
122  * @min_pstate:         Min P state possible for this platform
123  * @max_pstate:         Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *                      This can be higher than the max_pstate which can
126  *                      be limited by platform thermal design power limits
127  * @scaling:            Scaling factor to  convert frequency to cpufreq
128  *                      frequency units
129  * @turbo_pstate:       Max Turbo P state possible for this platform
130  * @max_freq:           @max_pstate frequency in cpufreq units
131  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136         int     current_pstate;
137         int     min_pstate;
138         int     max_pstate;
139         int     max_pstate_physical;
140         int     scaling;
141         int     turbo_pstate;
142         unsigned int max_freq;
143         unsigned int turbo_freq;
144 };
145
146 /**
147  * struct vid_data -    Stores voltage information data
148  * @min:                VID data for this platform corresponding to
149  *                      the lowest P state
150  * @max:                VID data corresponding to the highest P State.
151  * @turbo:              VID data for turbo P state
152  * @ratio:              Ratio of (vid max - vid min) /
153  *                      (max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160         int min;
161         int max;
162         int turbo;
163         int32_t ratio;
164 };
165
166 /**
167  * struct _pid -        Stores PID data
168  * @setpoint:           Target set point for busyness or performance
169  * @integral:           Storage for accumulated error values
170  * @p_gain:             PID proportional gain
171  * @i_gain:             PID integral gain
172  * @d_gain:             PID derivative gain
173  * @deadband:           PID deadband
174  * @last_err:           Last error storage for integral part of PID calculation
175  *
176  * Stores PID coefficients and last error for PID controller.
177  */
178 struct _pid {
179         int setpoint;
180         int32_t integral;
181         int32_t p_gain;
182         int32_t i_gain;
183         int32_t d_gain;
184         int deadband;
185         int32_t last_err;
186 };
187
188 /**
189  * struct global_params - Global parameters, mostly tunable via sysfs.
190  * @no_turbo:           Whether or not to use turbo P-states.
191  * @turbo_disabled:     Whethet or not turbo P-states are available at all,
192  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
193  *                      not the maximum reported turbo P-state is different from
194  *                      the maximum reported non-turbo one.
195  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
196  *                      P-state capacity.
197  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
198  *                      P-state capacity.
199  */
200 struct global_params {
201         bool no_turbo;
202         bool turbo_disabled;
203         int max_perf_pct;
204         int min_perf_pct;
205 };
206
207 /**
208  * struct cpudata -     Per CPU instance data storage
209  * @cpu:                CPU number for this instance data
210  * @policy:             CPUFreq policy value
211  * @update_util:        CPUFreq utility callback information
212  * @update_util_set:    CPUFreq utility callback is set
213  * @iowait_boost:       iowait-related boost fraction
214  * @last_update:        Time of the last update.
215  * @pstate:             Stores P state limits for this CPU
216  * @vid:                Stores VID limits for this CPU
217  * @pid:                Stores PID parameters for this CPU
218  * @last_sample_time:   Last Sample time
219  * @prev_aperf:         Last APERF value read from APERF MSR
220  * @prev_mperf:         Last MPERF value read from MPERF MSR
221  * @prev_tsc:           Last timestamp counter (TSC) value
222  * @prev_cummulative_iowait: IO Wait time difference from last and
223  *                      current sample
224  * @sample:             Storage for storing last Sample data
225  * @min_perf:           Minimum capacity limit as a fraction of the maximum
226  *                      turbo P-state capacity.
227  * @max_perf:           Maximum capacity limit as a fraction of the maximum
228  *                      turbo P-state capacity.
229  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
230  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
231  * @epp_powersave:      Last saved HWP energy performance preference
232  *                      (EPP) or energy performance bias (EPB),
233  *                      when policy switched to performance
234  * @epp_policy:         Last saved policy used to set EPP/EPB
235  * @epp_default:        Power on default HWP energy performance
236  *                      preference/bias
237  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
238  *                      operation
239  *
240  * This structure stores per CPU instance data for all CPUs.
241  */
242 struct cpudata {
243         int cpu;
244
245         unsigned int policy;
246         struct update_util_data update_util;
247         bool   update_util_set;
248
249         struct pstate_data pstate;
250         struct vid_data vid;
251         struct _pid pid;
252
253         u64     last_update;
254         u64     last_sample_time;
255         u64     prev_aperf;
256         u64     prev_mperf;
257         u64     prev_tsc;
258         u64     prev_cummulative_iowait;
259         struct sample sample;
260         int32_t min_perf;
261         int32_t max_perf;
262 #ifdef CONFIG_ACPI
263         struct acpi_processor_performance acpi_perf_data;
264         bool valid_pss_table;
265 #endif
266         unsigned int iowait_boost;
267         s16 epp_powersave;
268         s16 epp_policy;
269         s16 epp_default;
270         s16 epp_saved;
271 };
272
273 static struct cpudata **all_cpu_data;
274
275 /**
276  * struct pstate_adjust_policy - Stores static PID configuration data
277  * @sample_rate_ms:     PID calculation sample rate in ms
278  * @sample_rate_ns:     Sample rate calculation in ns
279  * @deadband:           PID deadband
280  * @setpoint:           PID Setpoint
281  * @p_gain_pct:         PID proportional gain
282  * @i_gain_pct:         PID integral gain
283  * @d_gain_pct:         PID derivative gain
284  *
285  * Stores per CPU model static PID configuration data.
286  */
287 struct pstate_adjust_policy {
288         int sample_rate_ms;
289         s64 sample_rate_ns;
290         int deadband;
291         int setpoint;
292         int p_gain_pct;
293         int d_gain_pct;
294         int i_gain_pct;
295 };
296
297 /**
298  * struct pstate_funcs - Per CPU model specific callbacks
299  * @get_max:            Callback to get maximum non turbo effective P state
300  * @get_max_physical:   Callback to get maximum non turbo physical P state
301  * @get_min:            Callback to get minimum P state
302  * @get_turbo:          Callback to get turbo P state
303  * @get_scaling:        Callback to get frequency scaling factor
304  * @get_val:            Callback to convert P state to actual MSR write value
305  * @get_vid:            Callback to get VID data for Atom platforms
306  * @get_target_pstate:  Callback to a function to calculate next P state to use
307  *
308  * Core and Atom CPU models have different way to get P State limits. This
309  * structure is used to store those callbacks.
310  */
311 struct pstate_funcs {
312         int (*get_max)(void);
313         int (*get_max_physical)(void);
314         int (*get_min)(void);
315         int (*get_turbo)(void);
316         int (*get_scaling)(void);
317         u64 (*get_val)(struct cpudata*, int pstate);
318         void (*get_vid)(struct cpudata *);
319         int32_t (*get_target_pstate)(struct cpudata *);
320 };
321
322 /**
323  * struct cpu_defaults- Per CPU model default config data
324  * @funcs:              Callback function data
325  */
326 struct cpu_defaults {
327         struct pstate_funcs funcs;
328 };
329
330 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
331 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
332
333 static struct pstate_funcs pstate_funcs __read_mostly;
334 static struct pstate_adjust_policy pid_params __read_mostly = {
335         .sample_rate_ms = 10,
336         .sample_rate_ns = 10 * NSEC_PER_MSEC,
337         .deadband = 0,
338         .setpoint = 97,
339         .p_gain_pct = 20,
340         .d_gain_pct = 0,
341         .i_gain_pct = 0,
342 };
343
344 static int hwp_active __read_mostly;
345 static bool per_cpu_limits __read_mostly;
346
347 static bool driver_registered __read_mostly;
348
349 #ifdef CONFIG_ACPI
350 static bool acpi_ppc;
351 #endif
352
353 static struct global_params global;
354
355 static DEFINE_MUTEX(intel_pstate_driver_lock);
356 static DEFINE_MUTEX(intel_pstate_limits_lock);
357
358 #ifdef CONFIG_ACPI
359
360 static bool intel_pstate_get_ppc_enable_status(void)
361 {
362         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
363             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
364                 return true;
365
366         return acpi_ppc;
367 }
368
369 #ifdef CONFIG_ACPI_CPPC_LIB
370
371 /* The work item is needed to avoid CPU hotplug locking issues */
372 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
373 {
374         sched_set_itmt_support();
375 }
376
377 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
378
379 static void intel_pstate_set_itmt_prio(int cpu)
380 {
381         struct cppc_perf_caps cppc_perf;
382         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
383         int ret;
384
385         ret = cppc_get_perf_caps(cpu, &cppc_perf);
386         if (ret)
387                 return;
388
389         /*
390          * The priorities can be set regardless of whether or not
391          * sched_set_itmt_support(true) has been called and it is valid to
392          * update them at any time after it has been called.
393          */
394         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
395
396         if (max_highest_perf <= min_highest_perf) {
397                 if (cppc_perf.highest_perf > max_highest_perf)
398                         max_highest_perf = cppc_perf.highest_perf;
399
400                 if (cppc_perf.highest_perf < min_highest_perf)
401                         min_highest_perf = cppc_perf.highest_perf;
402
403                 if (max_highest_perf > min_highest_perf) {
404                         /*
405                          * This code can be run during CPU online under the
406                          * CPU hotplug locks, so sched_set_itmt_support()
407                          * cannot be called from here.  Queue up a work item
408                          * to invoke it.
409                          */
410                         schedule_work(&sched_itmt_work);
411                 }
412         }
413 }
414 #else
415 static void intel_pstate_set_itmt_prio(int cpu)
416 {
417 }
418 #endif
419
420 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
421 {
422         struct cpudata *cpu;
423         int ret;
424         int i;
425
426         if (hwp_active) {
427                 intel_pstate_set_itmt_prio(policy->cpu);
428                 return;
429         }
430
431         if (!intel_pstate_get_ppc_enable_status())
432                 return;
433
434         cpu = all_cpu_data[policy->cpu];
435
436         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
437                                                   policy->cpu);
438         if (ret)
439                 return;
440
441         /*
442          * Check if the control value in _PSS is for PERF_CTL MSR, which should
443          * guarantee that the states returned by it map to the states in our
444          * list directly.
445          */
446         if (cpu->acpi_perf_data.control_register.space_id !=
447                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
448                 goto err;
449
450         /*
451          * If there is only one entry _PSS, simply ignore _PSS and continue as
452          * usual without taking _PSS into account
453          */
454         if (cpu->acpi_perf_data.state_count < 2)
455                 goto err;
456
457         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
458         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
459                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
460                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
461                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
462                          (u32) cpu->acpi_perf_data.states[i].power,
463                          (u32) cpu->acpi_perf_data.states[i].control);
464         }
465
466         /*
467          * The _PSS table doesn't contain whole turbo frequency range.
468          * This just contains +1 MHZ above the max non turbo frequency,
469          * with control value corresponding to max turbo ratio. But
470          * when cpufreq set policy is called, it will call with this
471          * max frequency, which will cause a reduced performance as
472          * this driver uses real max turbo frequency as the max
473          * frequency. So correct this frequency in _PSS table to
474          * correct max turbo frequency based on the turbo state.
475          * Also need to convert to MHz as _PSS freq is in MHz.
476          */
477         if (!global.turbo_disabled)
478                 cpu->acpi_perf_data.states[0].core_frequency =
479                                         policy->cpuinfo.max_freq / 1000;
480         cpu->valid_pss_table = true;
481         pr_debug("_PPC limits will be enforced\n");
482
483         return;
484
485  err:
486         cpu->valid_pss_table = false;
487         acpi_processor_unregister_performance(policy->cpu);
488 }
489
490 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
491 {
492         struct cpudata *cpu;
493
494         cpu = all_cpu_data[policy->cpu];
495         if (!cpu->valid_pss_table)
496                 return;
497
498         acpi_processor_unregister_performance(policy->cpu);
499 }
500 #else
501 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
502 {
503 }
504
505 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
506 {
507 }
508 #endif
509
510 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
511                              int deadband, int integral) {
512         pid->setpoint = int_tofp(setpoint);
513         pid->deadband  = int_tofp(deadband);
514         pid->integral  = int_tofp(integral);
515         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
516 }
517
518 static inline void pid_p_gain_set(struct _pid *pid, int percent)
519 {
520         pid->p_gain = div_fp(percent, 100);
521 }
522
523 static inline void pid_i_gain_set(struct _pid *pid, int percent)
524 {
525         pid->i_gain = div_fp(percent, 100);
526 }
527
528 static inline void pid_d_gain_set(struct _pid *pid, int percent)
529 {
530         pid->d_gain = div_fp(percent, 100);
531 }
532
533 static signed int pid_calc(struct _pid *pid, int32_t busy)
534 {
535         signed int result;
536         int32_t pterm, dterm, fp_error;
537         int32_t integral_limit;
538
539         fp_error = pid->setpoint - busy;
540
541         if (abs(fp_error) <= pid->deadband)
542                 return 0;
543
544         pterm = mul_fp(pid->p_gain, fp_error);
545
546         pid->integral += fp_error;
547
548         /*
549          * We limit the integral here so that it will never
550          * get higher than 30.  This prevents it from becoming
551          * too large an input over long periods of time and allows
552          * it to get factored out sooner.
553          *
554          * The value of 30 was chosen through experimentation.
555          */
556         integral_limit = int_tofp(30);
557         if (pid->integral > integral_limit)
558                 pid->integral = integral_limit;
559         if (pid->integral < -integral_limit)
560                 pid->integral = -integral_limit;
561
562         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
563         pid->last_err = fp_error;
564
565         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
566         result = result + (1 << (FRAC_BITS-1));
567         return (signed int)fp_toint(result);
568 }
569
570 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
571 {
572         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
573         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
574         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
575
576         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
577 }
578
579 static inline void update_turbo_state(void)
580 {
581         u64 misc_en;
582         struct cpudata *cpu;
583
584         cpu = all_cpu_data[0];
585         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
586         global.turbo_disabled =
587                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
588                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
589 }
590
591 static int min_perf_pct_min(void)
592 {
593         struct cpudata *cpu = all_cpu_data[0];
594
595         return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
596                             cpu->pstate.turbo_pstate);
597 }
598
599 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
600 {
601         u64 epb;
602         int ret;
603
604         if (!static_cpu_has(X86_FEATURE_EPB))
605                 return -ENXIO;
606
607         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
608         if (ret)
609                 return (s16)ret;
610
611         return (s16)(epb & 0x0f);
612 }
613
614 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
615 {
616         s16 epp;
617
618         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
619                 /*
620                  * When hwp_req_data is 0, means that caller didn't read
621                  * MSR_HWP_REQUEST, so need to read and get EPP.
622                  */
623                 if (!hwp_req_data) {
624                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
625                                             &hwp_req_data);
626                         if (epp)
627                                 return epp;
628                 }
629                 epp = (hwp_req_data >> 24) & 0xff;
630         } else {
631                 /* When there is no EPP present, HWP uses EPB settings */
632                 epp = intel_pstate_get_epb(cpu_data);
633         }
634
635         return epp;
636 }
637
638 static int intel_pstate_set_epb(int cpu, s16 pref)
639 {
640         u64 epb;
641         int ret;
642
643         if (!static_cpu_has(X86_FEATURE_EPB))
644                 return -ENXIO;
645
646         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
647         if (ret)
648                 return ret;
649
650         epb = (epb & ~0x0f) | pref;
651         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
652
653         return 0;
654 }
655
656 /*
657  * EPP/EPB display strings corresponding to EPP index in the
658  * energy_perf_strings[]
659  *      index           String
660  *-------------------------------------
661  *      0               default
662  *      1               performance
663  *      2               balance_performance
664  *      3               balance_power
665  *      4               power
666  */
667 static const char * const energy_perf_strings[] = {
668         "default",
669         "performance",
670         "balance_performance",
671         "balance_power",
672         "power",
673         NULL
674 };
675
676 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
677 {
678         s16 epp;
679         int index = -EINVAL;
680
681         epp = intel_pstate_get_epp(cpu_data, 0);
682         if (epp < 0)
683                 return epp;
684
685         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
686                 /*
687                  * Range:
688                  *      0x00-0x3F       :       Performance
689                  *      0x40-0x7F       :       Balance performance
690                  *      0x80-0xBF       :       Balance power
691                  *      0xC0-0xFF       :       Power
692                  * The EPP is a 8 bit value, but our ranges restrict the
693                  * value which can be set. Here only using top two bits
694                  * effectively.
695                  */
696                 index = (epp >> 6) + 1;
697         } else if (static_cpu_has(X86_FEATURE_EPB)) {
698                 /*
699                  * Range:
700                  *      0x00-0x03       :       Performance
701                  *      0x04-0x07       :       Balance performance
702                  *      0x08-0x0B       :       Balance power
703                  *      0x0C-0x0F       :       Power
704                  * The EPB is a 4 bit value, but our ranges restrict the
705                  * value which can be set. Here only using top two bits
706                  * effectively.
707                  */
708                 index = (epp >> 2) + 1;
709         }
710
711         return index;
712 }
713
714 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
715                                               int pref_index)
716 {
717         int epp = -EINVAL;
718         int ret;
719
720         if (!pref_index)
721                 epp = cpu_data->epp_default;
722
723         mutex_lock(&intel_pstate_limits_lock);
724
725         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
726                 u64 value;
727
728                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
729                 if (ret)
730                         goto return_pref;
731
732                 value &= ~GENMASK_ULL(31, 24);
733
734                 /*
735                  * If epp is not default, convert from index into
736                  * energy_perf_strings to epp value, by shifting 6
737                  * bits left to use only top two bits in epp.
738                  * The resultant epp need to shifted by 24 bits to
739                  * epp position in MSR_HWP_REQUEST.
740                  */
741                 if (epp == -EINVAL)
742                         epp = (pref_index - 1) << 6;
743
744                 value |= (u64)epp << 24;
745                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
746         } else {
747                 if (epp == -EINVAL)
748                         epp = (pref_index - 1) << 2;
749                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
750         }
751 return_pref:
752         mutex_unlock(&intel_pstate_limits_lock);
753
754         return ret;
755 }
756
757 static ssize_t show_energy_performance_available_preferences(
758                                 struct cpufreq_policy *policy, char *buf)
759 {
760         int i = 0;
761         int ret = 0;
762
763         while (energy_perf_strings[i] != NULL)
764                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
765
766         ret += sprintf(&buf[ret], "\n");
767
768         return ret;
769 }
770
771 cpufreq_freq_attr_ro(energy_performance_available_preferences);
772
773 static ssize_t store_energy_performance_preference(
774                 struct cpufreq_policy *policy, const char *buf, size_t count)
775 {
776         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
777         char str_preference[21];
778         int ret, i = 0;
779
780         ret = sscanf(buf, "%20s", str_preference);
781         if (ret != 1)
782                 return -EINVAL;
783
784         while (energy_perf_strings[i] != NULL) {
785                 if (!strcmp(str_preference, energy_perf_strings[i])) {
786                         intel_pstate_set_energy_pref_index(cpu_data, i);
787                         return count;
788                 }
789                 ++i;
790         }
791
792         return -EINVAL;
793 }
794
795 static ssize_t show_energy_performance_preference(
796                                 struct cpufreq_policy *policy, char *buf)
797 {
798         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
799         int preference;
800
801         preference = intel_pstate_get_energy_pref_index(cpu_data);
802         if (preference < 0)
803                 return preference;
804
805         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
806 }
807
808 cpufreq_freq_attr_rw(energy_performance_preference);
809
810 static struct freq_attr *hwp_cpufreq_attrs[] = {
811         &energy_performance_preference,
812         &energy_performance_available_preferences,
813         NULL,
814 };
815
816 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
817 {
818         int min, hw_min, max, hw_max, cpu;
819         u64 value, cap;
820
821         for_each_cpu(cpu, policy->cpus) {
822                 struct cpudata *cpu_data = all_cpu_data[cpu];
823                 s16 epp;
824
825                 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
826                 hw_min = HWP_LOWEST_PERF(cap);
827                 if (global.no_turbo)
828                         hw_max = HWP_GUARANTEED_PERF(cap);
829                 else
830                         hw_max = HWP_HIGHEST_PERF(cap);
831
832                 max = fp_ext_toint(hw_max * cpu_data->max_perf);
833                 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
834                         min = max;
835                 else
836                         min = fp_ext_toint(hw_max * cpu_data->min_perf);
837
838                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
839
840                 value &= ~HWP_MIN_PERF(~0L);
841                 value |= HWP_MIN_PERF(min);
842
843                 value &= ~HWP_MAX_PERF(~0L);
844                 value |= HWP_MAX_PERF(max);
845
846                 if (cpu_data->epp_policy == cpu_data->policy)
847                         goto skip_epp;
848
849                 cpu_data->epp_policy = cpu_data->policy;
850
851                 if (cpu_data->epp_saved >= 0) {
852                         epp = cpu_data->epp_saved;
853                         cpu_data->epp_saved = -EINVAL;
854                         goto update_epp;
855                 }
856
857                 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
858                         epp = intel_pstate_get_epp(cpu_data, value);
859                         cpu_data->epp_powersave = epp;
860                         /* If EPP read was failed, then don't try to write */
861                         if (epp < 0)
862                                 goto skip_epp;
863
864
865                         epp = 0;
866                 } else {
867                         /* skip setting EPP, when saved value is invalid */
868                         if (cpu_data->epp_powersave < 0)
869                                 goto skip_epp;
870
871                         /*
872                          * No need to restore EPP when it is not zero. This
873                          * means:
874                          *  - Policy is not changed
875                          *  - user has manually changed
876                          *  - Error reading EPB
877                          */
878                         epp = intel_pstate_get_epp(cpu_data, value);
879                         if (epp)
880                                 goto skip_epp;
881
882                         epp = cpu_data->epp_powersave;
883                 }
884 update_epp:
885                 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
886                         value &= ~GENMASK_ULL(31, 24);
887                         value |= (u64)epp << 24;
888                 } else {
889                         intel_pstate_set_epb(cpu, epp);
890                 }
891 skip_epp:
892                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
893         }
894 }
895
896 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
897 {
898         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
899
900         if (!hwp_active)
901                 return 0;
902
903         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
904
905         return 0;
906 }
907
908 static int intel_pstate_resume(struct cpufreq_policy *policy)
909 {
910         if (!hwp_active)
911                 return 0;
912
913         mutex_lock(&intel_pstate_limits_lock);
914
915         all_cpu_data[policy->cpu]->epp_policy = 0;
916         intel_pstate_hwp_set(policy);
917
918         mutex_unlock(&intel_pstate_limits_lock);
919
920         return 0;
921 }
922
923 static void intel_pstate_update_policies(void)
924 {
925         int cpu;
926
927         for_each_possible_cpu(cpu)
928                 cpufreq_update_policy(cpu);
929 }
930
931 /************************** debugfs begin ************************/
932 static int pid_param_set(void *data, u64 val)
933 {
934         unsigned int cpu;
935
936         *(u32 *)data = val;
937         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
938         for_each_possible_cpu(cpu)
939                 if (all_cpu_data[cpu])
940                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
941
942         return 0;
943 }
944
945 static int pid_param_get(void *data, u64 *val)
946 {
947         *val = *(u32 *)data;
948         return 0;
949 }
950 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
951
952 static struct dentry *debugfs_parent;
953
954 struct pid_param {
955         char *name;
956         void *value;
957         struct dentry *dentry;
958 };
959
960 static struct pid_param pid_files[] = {
961         {"sample_rate_ms", &pid_params.sample_rate_ms, },
962         {"d_gain_pct", &pid_params.d_gain_pct, },
963         {"i_gain_pct", &pid_params.i_gain_pct, },
964         {"deadband", &pid_params.deadband, },
965         {"setpoint", &pid_params.setpoint, },
966         {"p_gain_pct", &pid_params.p_gain_pct, },
967         {NULL, NULL, }
968 };
969
970 static void intel_pstate_debug_expose_params(void)
971 {
972         int i;
973
974         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
975         if (IS_ERR_OR_NULL(debugfs_parent))
976                 return;
977
978         for (i = 0; pid_files[i].name; i++) {
979                 struct dentry *dentry;
980
981                 dentry = debugfs_create_file(pid_files[i].name, 0660,
982                                              debugfs_parent, pid_files[i].value,
983                                              &fops_pid_param);
984                 if (!IS_ERR(dentry))
985                         pid_files[i].dentry = dentry;
986         }
987 }
988
989 static void intel_pstate_debug_hide_params(void)
990 {
991         int i;
992
993         if (IS_ERR_OR_NULL(debugfs_parent))
994                 return;
995
996         for (i = 0; pid_files[i].name; i++) {
997                 debugfs_remove(pid_files[i].dentry);
998                 pid_files[i].dentry = NULL;
999         }
1000
1001         debugfs_remove(debugfs_parent);
1002         debugfs_parent = NULL;
1003 }
1004
1005 /************************** debugfs end ************************/
1006
1007 /************************** sysfs begin ************************/
1008 #define show_one(file_name, object)                                     \
1009         static ssize_t show_##file_name                                 \
1010         (struct kobject *kobj, struct attribute *attr, char *buf)       \
1011         {                                                               \
1012                 return sprintf(buf, "%u\n", global.object);             \
1013         }
1014
1015 static ssize_t intel_pstate_show_status(char *buf);
1016 static int intel_pstate_update_status(const char *buf, size_t size);
1017
1018 static ssize_t show_status(struct kobject *kobj,
1019                            struct attribute *attr, char *buf)
1020 {
1021         ssize_t ret;
1022
1023         mutex_lock(&intel_pstate_driver_lock);
1024         ret = intel_pstate_show_status(buf);
1025         mutex_unlock(&intel_pstate_driver_lock);
1026
1027         return ret;
1028 }
1029
1030 static ssize_t store_status(struct kobject *a, struct attribute *b,
1031                             const char *buf, size_t count)
1032 {
1033         char *p = memchr(buf, '\n', count);
1034         int ret;
1035
1036         mutex_lock(&intel_pstate_driver_lock);
1037         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1038         mutex_unlock(&intel_pstate_driver_lock);
1039
1040         return ret < 0 ? ret : count;
1041 }
1042
1043 static ssize_t show_turbo_pct(struct kobject *kobj,
1044                                 struct attribute *attr, char *buf)
1045 {
1046         struct cpudata *cpu;
1047         int total, no_turbo, turbo_pct;
1048         uint32_t turbo_fp;
1049
1050         mutex_lock(&intel_pstate_driver_lock);
1051
1052         if (!driver_registered) {
1053                 mutex_unlock(&intel_pstate_driver_lock);
1054                 return -EAGAIN;
1055         }
1056
1057         cpu = all_cpu_data[0];
1058
1059         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1060         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1061         turbo_fp = div_fp(no_turbo, total);
1062         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1063
1064         mutex_unlock(&intel_pstate_driver_lock);
1065
1066         return sprintf(buf, "%u\n", turbo_pct);
1067 }
1068
1069 static ssize_t show_num_pstates(struct kobject *kobj,
1070                                 struct attribute *attr, char *buf)
1071 {
1072         struct cpudata *cpu;
1073         int total;
1074
1075         mutex_lock(&intel_pstate_driver_lock);
1076
1077         if (!driver_registered) {
1078                 mutex_unlock(&intel_pstate_driver_lock);
1079                 return -EAGAIN;
1080         }
1081
1082         cpu = all_cpu_data[0];
1083         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1084
1085         mutex_unlock(&intel_pstate_driver_lock);
1086
1087         return sprintf(buf, "%u\n", total);
1088 }
1089
1090 static ssize_t show_no_turbo(struct kobject *kobj,
1091                              struct attribute *attr, char *buf)
1092 {
1093         ssize_t ret;
1094
1095         mutex_lock(&intel_pstate_driver_lock);
1096
1097         if (!driver_registered) {
1098                 mutex_unlock(&intel_pstate_driver_lock);
1099                 return -EAGAIN;
1100         }
1101
1102         update_turbo_state();
1103         if (global.turbo_disabled)
1104                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1105         else
1106                 ret = sprintf(buf, "%u\n", global.no_turbo);
1107
1108         mutex_unlock(&intel_pstate_driver_lock);
1109
1110         return ret;
1111 }
1112
1113 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1114                               const char *buf, size_t count)
1115 {
1116         unsigned int input;
1117         int ret;
1118
1119         ret = sscanf(buf, "%u", &input);
1120         if (ret != 1)
1121                 return -EINVAL;
1122
1123         mutex_lock(&intel_pstate_driver_lock);
1124
1125         if (!driver_registered) {
1126                 mutex_unlock(&intel_pstate_driver_lock);
1127                 return -EAGAIN;
1128         }
1129
1130         mutex_lock(&intel_pstate_limits_lock);
1131
1132         update_turbo_state();
1133         if (global.turbo_disabled) {
1134                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1135                 mutex_unlock(&intel_pstate_limits_lock);
1136                 mutex_unlock(&intel_pstate_driver_lock);
1137                 return -EPERM;
1138         }
1139
1140         global.no_turbo = clamp_t(int, input, 0, 1);
1141
1142         if (global.no_turbo) {
1143                 struct cpudata *cpu = all_cpu_data[0];
1144                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1145
1146                 /* Squash the global minimum into the permitted range. */
1147                 if (global.min_perf_pct > pct)
1148                         global.min_perf_pct = pct;
1149         }
1150
1151         mutex_unlock(&intel_pstate_limits_lock);
1152
1153         intel_pstate_update_policies();
1154
1155         mutex_unlock(&intel_pstate_driver_lock);
1156
1157         return count;
1158 }
1159
1160 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1161                                   const char *buf, size_t count)
1162 {
1163         unsigned int input;
1164         int ret;
1165
1166         ret = sscanf(buf, "%u", &input);
1167         if (ret != 1)
1168                 return -EINVAL;
1169
1170         mutex_lock(&intel_pstate_driver_lock);
1171
1172         if (!driver_registered) {
1173                 mutex_unlock(&intel_pstate_driver_lock);
1174                 return -EAGAIN;
1175         }
1176
1177         mutex_lock(&intel_pstate_limits_lock);
1178
1179         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1180
1181         mutex_unlock(&intel_pstate_limits_lock);
1182
1183         intel_pstate_update_policies();
1184
1185         mutex_unlock(&intel_pstate_driver_lock);
1186
1187         return count;
1188 }
1189
1190 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1191                                   const char *buf, size_t count)
1192 {
1193         unsigned int input;
1194         int ret;
1195
1196         ret = sscanf(buf, "%u", &input);
1197         if (ret != 1)
1198                 return -EINVAL;
1199
1200         mutex_lock(&intel_pstate_driver_lock);
1201
1202         if (!driver_registered) {
1203                 mutex_unlock(&intel_pstate_driver_lock);
1204                 return -EAGAIN;
1205         }
1206
1207         mutex_lock(&intel_pstate_limits_lock);
1208
1209         global.min_perf_pct = clamp_t(int, input,
1210                                       min_perf_pct_min(), global.max_perf_pct);
1211
1212         mutex_unlock(&intel_pstate_limits_lock);
1213
1214         intel_pstate_update_policies();
1215
1216         mutex_unlock(&intel_pstate_driver_lock);
1217
1218         return count;
1219 }
1220
1221 show_one(max_perf_pct, max_perf_pct);
1222 show_one(min_perf_pct, min_perf_pct);
1223
1224 define_one_global_rw(status);
1225 define_one_global_rw(no_turbo);
1226 define_one_global_rw(max_perf_pct);
1227 define_one_global_rw(min_perf_pct);
1228 define_one_global_ro(turbo_pct);
1229 define_one_global_ro(num_pstates);
1230
1231 static struct attribute *intel_pstate_attributes[] = {
1232         &status.attr,
1233         &no_turbo.attr,
1234         &turbo_pct.attr,
1235         &num_pstates.attr,
1236         NULL
1237 };
1238
1239 static struct attribute_group intel_pstate_attr_group = {
1240         .attrs = intel_pstate_attributes,
1241 };
1242
1243 static void __init intel_pstate_sysfs_expose_params(void)
1244 {
1245         struct kobject *intel_pstate_kobject;
1246         int rc;
1247
1248         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1249                                                 &cpu_subsys.dev_root->kobj);
1250         if (WARN_ON(!intel_pstate_kobject))
1251                 return;
1252
1253         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1254         if (WARN_ON(rc))
1255                 return;
1256
1257         /*
1258          * If per cpu limits are enforced there are no global limits, so
1259          * return without creating max/min_perf_pct attributes
1260          */
1261         if (per_cpu_limits)
1262                 return;
1263
1264         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1265         WARN_ON(rc);
1266
1267         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1268         WARN_ON(rc);
1269
1270 }
1271 /************************** sysfs end ************************/
1272
1273 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1274 {
1275         /* First disable HWP notification interrupt as we don't process them */
1276         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1277                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1278
1279         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1280         cpudata->epp_policy = 0;
1281         if (cpudata->epp_default == -EINVAL)
1282                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1283 }
1284
1285 #define MSR_IA32_POWER_CTL_BIT_EE       19
1286
1287 /* Disable energy efficiency optimization */
1288 static void intel_pstate_disable_ee(int cpu)
1289 {
1290         u64 power_ctl;
1291         int ret;
1292
1293         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1294         if (ret)
1295                 return;
1296
1297         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1298                 pr_info("Disabling energy efficiency optimization\n");
1299                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1300                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1301         }
1302 }
1303
1304 static int atom_get_min_pstate(void)
1305 {
1306         u64 value;
1307
1308         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1309         return (value >> 8) & 0x7F;
1310 }
1311
1312 static int atom_get_max_pstate(void)
1313 {
1314         u64 value;
1315
1316         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1317         return (value >> 16) & 0x7F;
1318 }
1319
1320 static int atom_get_turbo_pstate(void)
1321 {
1322         u64 value;
1323
1324         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1325         return value & 0x7F;
1326 }
1327
1328 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1329 {
1330         u64 val;
1331         int32_t vid_fp;
1332         u32 vid;
1333
1334         val = (u64)pstate << 8;
1335         if (global.no_turbo && !global.turbo_disabled)
1336                 val |= (u64)1 << 32;
1337
1338         vid_fp = cpudata->vid.min + mul_fp(
1339                 int_tofp(pstate - cpudata->pstate.min_pstate),
1340                 cpudata->vid.ratio);
1341
1342         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1343         vid = ceiling_fp(vid_fp);
1344
1345         if (pstate > cpudata->pstate.max_pstate)
1346                 vid = cpudata->vid.turbo;
1347
1348         return val | vid;
1349 }
1350
1351 static int silvermont_get_scaling(void)
1352 {
1353         u64 value;
1354         int i;
1355         /* Defined in Table 35-6 from SDM (Sept 2015) */
1356         static int silvermont_freq_table[] = {
1357                 83300, 100000, 133300, 116700, 80000};
1358
1359         rdmsrl(MSR_FSB_FREQ, value);
1360         i = value & 0x7;
1361         WARN_ON(i > 4);
1362
1363         return silvermont_freq_table[i];
1364 }
1365
1366 static int airmont_get_scaling(void)
1367 {
1368         u64 value;
1369         int i;
1370         /* Defined in Table 35-10 from SDM (Sept 2015) */
1371         static int airmont_freq_table[] = {
1372                 83300, 100000, 133300, 116700, 80000,
1373                 93300, 90000, 88900, 87500};
1374
1375         rdmsrl(MSR_FSB_FREQ, value);
1376         i = value & 0xF;
1377         WARN_ON(i > 8);
1378
1379         return airmont_freq_table[i];
1380 }
1381
1382 static void atom_get_vid(struct cpudata *cpudata)
1383 {
1384         u64 value;
1385
1386         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1387         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1388         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1389         cpudata->vid.ratio = div_fp(
1390                 cpudata->vid.max - cpudata->vid.min,
1391                 int_tofp(cpudata->pstate.max_pstate -
1392                         cpudata->pstate.min_pstate));
1393
1394         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1395         cpudata->vid.turbo = value & 0x7f;
1396 }
1397
1398 static int core_get_min_pstate(void)
1399 {
1400         u64 value;
1401
1402         rdmsrl(MSR_PLATFORM_INFO, value);
1403         return (value >> 40) & 0xFF;
1404 }
1405
1406 static int core_get_max_pstate_physical(void)
1407 {
1408         u64 value;
1409
1410         rdmsrl(MSR_PLATFORM_INFO, value);
1411         return (value >> 8) & 0xFF;
1412 }
1413
1414 static int core_get_tdp_ratio(u64 plat_info)
1415 {
1416         /* Check how many TDP levels present */
1417         if (plat_info & 0x600000000) {
1418                 u64 tdp_ctrl;
1419                 u64 tdp_ratio;
1420                 int tdp_msr;
1421                 int err;
1422
1423                 /* Get the TDP level (0, 1, 2) to get ratios */
1424                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1425                 if (err)
1426                         return err;
1427
1428                 /* TDP MSR are continuous starting at 0x648 */
1429                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1430                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1431                 if (err)
1432                         return err;
1433
1434                 /* For level 1 and 2, bits[23:16] contain the ratio */
1435                 if (tdp_ctrl & 0x03)
1436                         tdp_ratio >>= 16;
1437
1438                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1439                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1440
1441                 return (int)tdp_ratio;
1442         }
1443
1444         return -ENXIO;
1445 }
1446
1447 static int core_get_max_pstate(void)
1448 {
1449         u64 tar;
1450         u64 plat_info;
1451         int max_pstate;
1452         int tdp_ratio;
1453         int err;
1454
1455         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1456         max_pstate = (plat_info >> 8) & 0xFF;
1457
1458         tdp_ratio = core_get_tdp_ratio(plat_info);
1459         if (tdp_ratio <= 0)
1460                 return max_pstate;
1461
1462         if (hwp_active) {
1463                 /* Turbo activation ratio is not used on HWP platforms */
1464                 return tdp_ratio;
1465         }
1466
1467         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1468         if (!err) {
1469                 int tar_levels;
1470
1471                 /* Do some sanity checking for safety */
1472                 tar_levels = tar & 0xff;
1473                 if (tdp_ratio - 1 == tar_levels) {
1474                         max_pstate = tar_levels;
1475                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1476                 }
1477         }
1478
1479         return max_pstate;
1480 }
1481
1482 static int core_get_turbo_pstate(void)
1483 {
1484         u64 value;
1485         int nont, ret;
1486
1487         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1488         nont = core_get_max_pstate();
1489         ret = (value) & 255;
1490         if (ret <= nont)
1491                 ret = nont;
1492         return ret;
1493 }
1494
1495 static inline int core_get_scaling(void)
1496 {
1497         return 100000;
1498 }
1499
1500 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1501 {
1502         u64 val;
1503
1504         val = (u64)pstate << 8;
1505         if (global.no_turbo && !global.turbo_disabled)
1506                 val |= (u64)1 << 32;
1507
1508         return val;
1509 }
1510
1511 static int knl_get_turbo_pstate(void)
1512 {
1513         u64 value;
1514         int nont, ret;
1515
1516         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1517         nont = core_get_max_pstate();
1518         ret = (((value) >> 8) & 0xFF);
1519         if (ret <= nont)
1520                 ret = nont;
1521         return ret;
1522 }
1523
1524 static struct cpu_defaults core_params = {
1525         .funcs = {
1526                 .get_max = core_get_max_pstate,
1527                 .get_max_physical = core_get_max_pstate_physical,
1528                 .get_min = core_get_min_pstate,
1529                 .get_turbo = core_get_turbo_pstate,
1530                 .get_scaling = core_get_scaling,
1531                 .get_val = core_get_val,
1532                 .get_target_pstate = get_target_pstate_use_performance,
1533         },
1534 };
1535
1536 static const struct cpu_defaults silvermont_params = {
1537         .funcs = {
1538                 .get_max = atom_get_max_pstate,
1539                 .get_max_physical = atom_get_max_pstate,
1540                 .get_min = atom_get_min_pstate,
1541                 .get_turbo = atom_get_turbo_pstate,
1542                 .get_val = atom_get_val,
1543                 .get_scaling = silvermont_get_scaling,
1544                 .get_vid = atom_get_vid,
1545                 .get_target_pstate = get_target_pstate_use_cpu_load,
1546         },
1547 };
1548
1549 static const struct cpu_defaults airmont_params = {
1550         .funcs = {
1551                 .get_max = atom_get_max_pstate,
1552                 .get_max_physical = atom_get_max_pstate,
1553                 .get_min = atom_get_min_pstate,
1554                 .get_turbo = atom_get_turbo_pstate,
1555                 .get_val = atom_get_val,
1556                 .get_scaling = airmont_get_scaling,
1557                 .get_vid = atom_get_vid,
1558                 .get_target_pstate = get_target_pstate_use_cpu_load,
1559         },
1560 };
1561
1562 static const struct cpu_defaults knl_params = {
1563         .funcs = {
1564                 .get_max = core_get_max_pstate,
1565                 .get_max_physical = core_get_max_pstate_physical,
1566                 .get_min = core_get_min_pstate,
1567                 .get_turbo = knl_get_turbo_pstate,
1568                 .get_scaling = core_get_scaling,
1569                 .get_val = core_get_val,
1570                 .get_target_pstate = get_target_pstate_use_performance,
1571         },
1572 };
1573
1574 static const struct cpu_defaults bxt_params = {
1575         .funcs = {
1576                 .get_max = core_get_max_pstate,
1577                 .get_max_physical = core_get_max_pstate_physical,
1578                 .get_min = core_get_min_pstate,
1579                 .get_turbo = core_get_turbo_pstate,
1580                 .get_scaling = core_get_scaling,
1581                 .get_val = core_get_val,
1582                 .get_target_pstate = get_target_pstate_use_cpu_load,
1583         },
1584 };
1585
1586 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1587 {
1588         int max_perf = cpu->pstate.turbo_pstate;
1589         int max_perf_adj;
1590         int min_perf;
1591
1592         if (global.no_turbo || global.turbo_disabled)
1593                 max_perf = cpu->pstate.max_pstate;
1594
1595         /*
1596          * performance can be limited by user through sysfs, by cpufreq
1597          * policy, or by cpu specific default values determined through
1598          * experimentation.
1599          */
1600         max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1601         *max = clamp_t(int, max_perf_adj,
1602                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1603
1604         min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1605         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1606 }
1607
1608 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1609 {
1610         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1611         cpu->pstate.current_pstate = pstate;
1612         /*
1613          * Generally, there is no guarantee that this code will always run on
1614          * the CPU being updated, so force the register update to run on the
1615          * right CPU.
1616          */
1617         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1618                       pstate_funcs.get_val(cpu, pstate));
1619 }
1620
1621 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1622 {
1623         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1624 }
1625
1626 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1627 {
1628         int min_pstate, max_pstate;
1629
1630         update_turbo_state();
1631         intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1632         intel_pstate_set_pstate(cpu, max_pstate);
1633 }
1634
1635 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1636 {
1637         cpu->pstate.min_pstate = pstate_funcs.get_min();
1638         cpu->pstate.max_pstate = pstate_funcs.get_max();
1639         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1640         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1641         cpu->pstate.scaling = pstate_funcs.get_scaling();
1642         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1643         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1644
1645         if (pstate_funcs.get_vid)
1646                 pstate_funcs.get_vid(cpu);
1647
1648         intel_pstate_set_min_pstate(cpu);
1649 }
1650
1651 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1652 {
1653         struct sample *sample = &cpu->sample;
1654
1655         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1656 }
1657
1658 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1659 {
1660         u64 aperf, mperf;
1661         unsigned long flags;
1662         u64 tsc;
1663
1664         local_irq_save(flags);
1665         rdmsrl(MSR_IA32_APERF, aperf);
1666         rdmsrl(MSR_IA32_MPERF, mperf);
1667         tsc = rdtsc();
1668         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1669                 local_irq_restore(flags);
1670                 return false;
1671         }
1672         local_irq_restore(flags);
1673
1674         cpu->last_sample_time = cpu->sample.time;
1675         cpu->sample.time = time;
1676         cpu->sample.aperf = aperf;
1677         cpu->sample.mperf = mperf;
1678         cpu->sample.tsc =  tsc;
1679         cpu->sample.aperf -= cpu->prev_aperf;
1680         cpu->sample.mperf -= cpu->prev_mperf;
1681         cpu->sample.tsc -= cpu->prev_tsc;
1682
1683         cpu->prev_aperf = aperf;
1684         cpu->prev_mperf = mperf;
1685         cpu->prev_tsc = tsc;
1686         /*
1687          * First time this function is invoked in a given cycle, all of the
1688          * previous sample data fields are equal to zero or stale and they must
1689          * be populated with meaningful numbers for things to work, so assume
1690          * that sample.time will always be reset before setting the utilization
1691          * update hook and make the caller skip the sample then.
1692          */
1693         return !!cpu->last_sample_time;
1694 }
1695
1696 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1697 {
1698         return mul_ext_fp(cpu->sample.core_avg_perf,
1699                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1700 }
1701
1702 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1703 {
1704         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1705                           cpu->sample.core_avg_perf);
1706 }
1707
1708 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1709 {
1710         struct sample *sample = &cpu->sample;
1711         int32_t busy_frac, boost;
1712         int target, avg_pstate;
1713
1714         busy_frac = div_fp(sample->mperf, sample->tsc);
1715
1716         boost = cpu->iowait_boost;
1717         cpu->iowait_boost >>= 1;
1718
1719         if (busy_frac < boost)
1720                 busy_frac = boost;
1721
1722         sample->busy_scaled = busy_frac * 100;
1723
1724         target = global.no_turbo || global.turbo_disabled ?
1725                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1726         target += target >> 2;
1727         target = mul_fp(target, busy_frac);
1728         if (target < cpu->pstate.min_pstate)
1729                 target = cpu->pstate.min_pstate;
1730
1731         /*
1732          * If the average P-state during the previous cycle was higher than the
1733          * current target, add 50% of the difference to the target to reduce
1734          * possible performance oscillations and offset possible performance
1735          * loss related to moving the workload from one CPU to another within
1736          * a package/module.
1737          */
1738         avg_pstate = get_avg_pstate(cpu);
1739         if (avg_pstate > target)
1740                 target += (avg_pstate - target) >> 1;
1741
1742         return target;
1743 }
1744
1745 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1746 {
1747         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1748         u64 duration_ns;
1749
1750         /*
1751          * perf_scaled is the ratio of the average P-state during the last
1752          * sampling period to the P-state requested last time (in percent).
1753          *
1754          * That measures the system's response to the previous P-state
1755          * selection.
1756          */
1757         max_pstate = cpu->pstate.max_pstate_physical;
1758         current_pstate = cpu->pstate.current_pstate;
1759         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1760                                div_fp(100 * max_pstate, current_pstate));
1761
1762         /*
1763          * Since our utilization update callback will not run unless we are
1764          * in C0, check if the actual elapsed time is significantly greater (3x)
1765          * than our sample interval.  If it is, then we were idle for a long
1766          * enough period of time to adjust our performance metric.
1767          */
1768         duration_ns = cpu->sample.time - cpu->last_sample_time;
1769         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1770                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1771                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1772         } else {
1773                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1774                 if (sample_ratio < int_tofp(1))
1775                         perf_scaled = 0;
1776         }
1777
1778         cpu->sample.busy_scaled = perf_scaled;
1779         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1780 }
1781
1782 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1783 {
1784         int max_perf, min_perf;
1785
1786         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1787         pstate = clamp_t(int, pstate, min_perf, max_perf);
1788         return pstate;
1789 }
1790
1791 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1792 {
1793         if (pstate == cpu->pstate.current_pstate)
1794                 return;
1795
1796         cpu->pstate.current_pstate = pstate;
1797         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1798 }
1799
1800 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1801 {
1802         int from, target_pstate;
1803         struct sample *sample;
1804
1805         from = cpu->pstate.current_pstate;
1806
1807         target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1808                 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1809
1810         update_turbo_state();
1811
1812         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1813         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1814         intel_pstate_update_pstate(cpu, target_pstate);
1815
1816         sample = &cpu->sample;
1817         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1818                 fp_toint(sample->busy_scaled),
1819                 from,
1820                 cpu->pstate.current_pstate,
1821                 sample->mperf,
1822                 sample->aperf,
1823                 sample->tsc,
1824                 get_avg_frequency(cpu),
1825                 fp_toint(cpu->iowait_boost * 100));
1826 }
1827
1828 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1829                                      unsigned int flags)
1830 {
1831         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1832         u64 delta_ns;
1833
1834         if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1835                 if (flags & SCHED_CPUFREQ_IOWAIT) {
1836                         cpu->iowait_boost = int_tofp(1);
1837                 } else if (cpu->iowait_boost) {
1838                         /* Clear iowait_boost if the CPU may have been idle. */
1839                         delta_ns = time - cpu->last_update;
1840                         if (delta_ns > TICK_NSEC)
1841                                 cpu->iowait_boost = 0;
1842                 }
1843                 cpu->last_update = time;
1844         }
1845
1846         delta_ns = time - cpu->sample.time;
1847         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1848                 bool sample_taken = intel_pstate_sample(cpu, time);
1849
1850                 if (sample_taken) {
1851                         intel_pstate_calc_avg_perf(cpu);
1852                         if (!hwp_active)
1853                                 intel_pstate_adjust_busy_pstate(cpu);
1854                 }
1855         }
1856 }
1857
1858 #define ICPU(model, policy) \
1859         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1860                         (unsigned long)&policy }
1861
1862 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1863         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1864         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1865         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1866         ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1867         ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1868         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1869         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1870         ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1871         ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1872         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1873         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1874         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1875         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1876         ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1877         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1878         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1879         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1880         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_params),
1881         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_params),
1882         {}
1883 };
1884 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1885
1886 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1887         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1888         ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1889         ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1890         {}
1891 };
1892
1893 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1894         ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1895         {}
1896 };
1897
1898 static int intel_pstate_init_cpu(unsigned int cpunum)
1899 {
1900         struct cpudata *cpu;
1901
1902         cpu = all_cpu_data[cpunum];
1903
1904         if (!cpu) {
1905                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1906                 if (!cpu)
1907                         return -ENOMEM;
1908
1909                 all_cpu_data[cpunum] = cpu;
1910
1911                 cpu->epp_default = -EINVAL;
1912                 cpu->epp_powersave = -EINVAL;
1913                 cpu->epp_saved = -EINVAL;
1914         }
1915
1916         cpu = all_cpu_data[cpunum];
1917
1918         cpu->cpu = cpunum;
1919
1920         if (hwp_active) {
1921                 const struct x86_cpu_id *id;
1922
1923                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1924                 if (id)
1925                         intel_pstate_disable_ee(cpunum);
1926
1927                 intel_pstate_hwp_enable(cpu);
1928                 pid_params.sample_rate_ms = 50;
1929                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1930         }
1931
1932         intel_pstate_get_cpu_pstates(cpu);
1933
1934         intel_pstate_busy_pid_reset(cpu);
1935
1936         pr_debug("controlling: cpu %d\n", cpunum);
1937
1938         return 0;
1939 }
1940
1941 static unsigned int intel_pstate_get(unsigned int cpu_num)
1942 {
1943         struct cpudata *cpu = all_cpu_data[cpu_num];
1944
1945         return cpu ? get_avg_frequency(cpu) : 0;
1946 }
1947
1948 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1949 {
1950         struct cpudata *cpu = all_cpu_data[cpu_num];
1951
1952         if (cpu->update_util_set)
1953                 return;
1954
1955         /* Prevent intel_pstate_update_util() from using stale data. */
1956         cpu->sample.time = 0;
1957         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1958                                      intel_pstate_update_util);
1959         cpu->update_util_set = true;
1960 }
1961
1962 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1963 {
1964         struct cpudata *cpu_data = all_cpu_data[cpu];
1965
1966         if (!cpu_data->update_util_set)
1967                 return;
1968
1969         cpufreq_remove_update_util_hook(cpu);
1970         cpu_data->update_util_set = false;
1971         synchronize_sched();
1972 }
1973
1974 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1975 {
1976         return global.turbo_disabled || global.no_turbo ?
1977                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1978 }
1979
1980 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1981                                             struct cpudata *cpu)
1982 {
1983         int max_freq = intel_pstate_get_max_freq(cpu);
1984         int32_t max_policy_perf, min_policy_perf;
1985
1986         max_policy_perf = div_ext_fp(policy->max, max_freq);
1987         max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1988         if (policy->max == policy->min) {
1989                 min_policy_perf = max_policy_perf;
1990         } else {
1991                 min_policy_perf = div_ext_fp(policy->min, max_freq);
1992                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
1993                                           0, max_policy_perf);
1994         }
1995
1996         /* Normalize user input to [min_perf, max_perf] */
1997         if (per_cpu_limits) {
1998                 cpu->min_perf = min_policy_perf;
1999                 cpu->max_perf = max_policy_perf;
2000         } else {
2001                 int32_t global_min, global_max;
2002
2003                 /* Global limits are in percent of the maximum turbo P-state. */
2004                 global_max = percent_ext_fp(global.max_perf_pct);
2005                 global_min = percent_ext_fp(global.min_perf_pct);
2006                 if (max_freq != cpu->pstate.turbo_freq) {
2007                         int32_t turbo_factor;
2008
2009                         turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
2010                                                   cpu->pstate.max_pstate);
2011                         global_min = mul_ext_fp(global_min, turbo_factor);
2012                         global_max = mul_ext_fp(global_max, turbo_factor);
2013                 }
2014                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2015
2016                 cpu->min_perf = max(min_policy_perf, global_min);
2017                 cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2018                 cpu->max_perf = min(max_policy_perf, global_max);
2019                 cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2020
2021                 /* Make sure min_perf <= max_perf */
2022                 cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2023         }
2024
2025         cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2026         cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2027
2028         pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2029                  fp_ext_toint(cpu->max_perf * 100),
2030                  fp_ext_toint(cpu->min_perf * 100));
2031 }
2032
2033 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2034 {
2035         struct cpudata *cpu;
2036
2037         if (!policy->cpuinfo.max_freq)
2038                 return -ENODEV;
2039
2040         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2041                  policy->cpuinfo.max_freq, policy->max);
2042
2043         cpu = all_cpu_data[policy->cpu];
2044         cpu->policy = policy->policy;
2045
2046         mutex_lock(&intel_pstate_limits_lock);
2047
2048         intel_pstate_update_perf_limits(policy, cpu);
2049
2050         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2051                 /*
2052                  * NOHZ_FULL CPUs need this as the governor callback may not
2053                  * be invoked on them.
2054                  */
2055                 intel_pstate_clear_update_util_hook(policy->cpu);
2056                 intel_pstate_max_within_limits(cpu);
2057         }
2058
2059         intel_pstate_set_update_util_hook(policy->cpu);
2060
2061         if (hwp_active)
2062                 intel_pstate_hwp_set(policy);
2063
2064         mutex_unlock(&intel_pstate_limits_lock);
2065
2066         return 0;
2067 }
2068
2069 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2070                                          struct cpudata *cpu)
2071 {
2072         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2073             policy->max < policy->cpuinfo.max_freq &&
2074             policy->max > cpu->pstate.max_freq) {
2075                 pr_debug("policy->max > max non turbo frequency\n");
2076                 policy->max = policy->cpuinfo.max_freq;
2077         }
2078 }
2079
2080 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2081 {
2082         struct cpudata *cpu = all_cpu_data[policy->cpu];
2083
2084         update_turbo_state();
2085         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2086                                      intel_pstate_get_max_freq(cpu));
2087
2088         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2089             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2090                 return -EINVAL;
2091
2092         intel_pstate_adjust_policy_max(policy, cpu);
2093
2094         return 0;
2095 }
2096
2097 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2098 {
2099         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2100 }
2101
2102 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2103 {
2104         pr_debug("CPU %d exiting\n", policy->cpu);
2105
2106         intel_pstate_clear_update_util_hook(policy->cpu);
2107         if (hwp_active)
2108                 intel_pstate_hwp_save_state(policy);
2109         else
2110                 intel_cpufreq_stop_cpu(policy);
2111 }
2112
2113 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2114 {
2115         intel_pstate_exit_perf_limits(policy);
2116
2117         policy->fast_switch_possible = false;
2118
2119         return 0;
2120 }
2121
2122 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2123 {
2124         struct cpudata *cpu;
2125         int rc;
2126
2127         rc = intel_pstate_init_cpu(policy->cpu);
2128         if (rc)
2129                 return rc;
2130
2131         cpu = all_cpu_data[policy->cpu];
2132
2133         cpu->max_perf = int_ext_tofp(1);
2134         cpu->min_perf = 0;
2135
2136         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2137         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2138
2139         /* cpuinfo and default policy values */
2140         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2141         update_turbo_state();
2142         policy->cpuinfo.max_freq = global.turbo_disabled ?
2143                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2144         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2145
2146         intel_pstate_init_acpi_perf_limits(policy);
2147         cpumask_set_cpu(policy->cpu, policy->cpus);
2148
2149         policy->fast_switch_possible = true;
2150
2151         return 0;
2152 }
2153
2154 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2155 {
2156         int ret = __intel_pstate_cpu_init(policy);
2157
2158         if (ret)
2159                 return ret;
2160
2161         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2162         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2163                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2164         else
2165                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2166
2167         return 0;
2168 }
2169
2170 static struct cpufreq_driver intel_pstate = {
2171         .flags          = CPUFREQ_CONST_LOOPS,
2172         .verify         = intel_pstate_verify_policy,
2173         .setpolicy      = intel_pstate_set_policy,
2174         .suspend        = intel_pstate_hwp_save_state,
2175         .resume         = intel_pstate_resume,
2176         .get            = intel_pstate_get,
2177         .init           = intel_pstate_cpu_init,
2178         .exit           = intel_pstate_cpu_exit,
2179         .stop_cpu       = intel_pstate_stop_cpu,
2180         .name           = "intel_pstate",
2181 };
2182
2183 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2184 {
2185         struct cpudata *cpu = all_cpu_data[policy->cpu];
2186
2187         update_turbo_state();
2188         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2189                                      intel_pstate_get_max_freq(cpu));
2190
2191         intel_pstate_adjust_policy_max(policy, cpu);
2192
2193         intel_pstate_update_perf_limits(policy, cpu);
2194
2195         return 0;
2196 }
2197
2198 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2199                                 unsigned int target_freq,
2200                                 unsigned int relation)
2201 {
2202         struct cpudata *cpu = all_cpu_data[policy->cpu];
2203         struct cpufreq_freqs freqs;
2204         int target_pstate;
2205
2206         update_turbo_state();
2207
2208         freqs.old = policy->cur;
2209         freqs.new = target_freq;
2210
2211         cpufreq_freq_transition_begin(policy, &freqs);
2212         switch (relation) {
2213         case CPUFREQ_RELATION_L:
2214                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2215                 break;
2216         case CPUFREQ_RELATION_H:
2217                 target_pstate = freqs.new / cpu->pstate.scaling;
2218                 break;
2219         default:
2220                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2221                 break;
2222         }
2223         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2224         if (target_pstate != cpu->pstate.current_pstate) {
2225                 cpu->pstate.current_pstate = target_pstate;
2226                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2227                               pstate_funcs.get_val(cpu, target_pstate));
2228         }
2229         freqs.new = target_pstate * cpu->pstate.scaling;
2230         cpufreq_freq_transition_end(policy, &freqs, false);
2231
2232         return 0;
2233 }
2234
2235 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2236                                               unsigned int target_freq)
2237 {
2238         struct cpudata *cpu = all_cpu_data[policy->cpu];
2239         int target_pstate;
2240
2241         update_turbo_state();
2242
2243         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2244         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2245         intel_pstate_update_pstate(cpu, target_pstate);
2246         return target_pstate * cpu->pstate.scaling;
2247 }
2248
2249 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2250 {
2251         int ret = __intel_pstate_cpu_init(policy);
2252
2253         if (ret)
2254                 return ret;
2255
2256         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2257         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2258         policy->cur = policy->cpuinfo.min_freq;
2259
2260         return 0;
2261 }
2262
2263 static struct cpufreq_driver intel_cpufreq = {
2264         .flags          = CPUFREQ_CONST_LOOPS,
2265         .verify         = intel_cpufreq_verify_policy,
2266         .target         = intel_cpufreq_target,
2267         .fast_switch    = intel_cpufreq_fast_switch,
2268         .init           = intel_cpufreq_cpu_init,
2269         .exit           = intel_pstate_cpu_exit,
2270         .stop_cpu       = intel_cpufreq_stop_cpu,
2271         .name           = "intel_cpufreq",
2272 };
2273
2274 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2275
2276 static void intel_pstate_driver_cleanup(void)
2277 {
2278         unsigned int cpu;
2279
2280         get_online_cpus();
2281         for_each_online_cpu(cpu) {
2282                 if (all_cpu_data[cpu]) {
2283                         if (intel_pstate_driver == &intel_pstate)
2284                                 intel_pstate_clear_update_util_hook(cpu);
2285
2286                         kfree(all_cpu_data[cpu]);
2287                         all_cpu_data[cpu] = NULL;
2288                 }
2289         }
2290         put_online_cpus();
2291 }
2292
2293 static int intel_pstate_register_driver(void)
2294 {
2295         int ret;
2296
2297         memset(&global, 0, sizeof(global));
2298         global.max_perf_pct = 100;
2299
2300         ret = cpufreq_register_driver(intel_pstate_driver);
2301         if (ret) {
2302                 intel_pstate_driver_cleanup();
2303                 return ret;
2304         }
2305
2306         global.min_perf_pct = min_perf_pct_min();
2307
2308         mutex_lock(&intel_pstate_limits_lock);
2309         driver_registered = true;
2310         mutex_unlock(&intel_pstate_limits_lock);
2311
2312         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2313             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2314                 intel_pstate_debug_expose_params();
2315
2316         return 0;
2317 }
2318
2319 static int intel_pstate_unregister_driver(void)
2320 {
2321         if (hwp_active)
2322                 return -EBUSY;
2323
2324         if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2325             pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2326                 intel_pstate_debug_hide_params();
2327
2328         mutex_lock(&intel_pstate_limits_lock);
2329         driver_registered = false;
2330         mutex_unlock(&intel_pstate_limits_lock);
2331
2332         cpufreq_unregister_driver(intel_pstate_driver);
2333         intel_pstate_driver_cleanup();
2334
2335         return 0;
2336 }
2337
2338 static ssize_t intel_pstate_show_status(char *buf)
2339 {
2340         if (!driver_registered)
2341                 return sprintf(buf, "off\n");
2342
2343         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2344                                         "active" : "passive");
2345 }
2346
2347 static int intel_pstate_update_status(const char *buf, size_t size)
2348 {
2349         int ret;
2350
2351         if (size == 3 && !strncmp(buf, "off", size))
2352                 return driver_registered ?
2353                         intel_pstate_unregister_driver() : -EINVAL;
2354
2355         if (size == 6 && !strncmp(buf, "active", size)) {
2356                 if (driver_registered) {
2357                         if (intel_pstate_driver == &intel_pstate)
2358                                 return 0;
2359
2360                         ret = intel_pstate_unregister_driver();
2361                         if (ret)
2362                                 return ret;
2363                 }
2364
2365                 intel_pstate_driver = &intel_pstate;
2366                 return intel_pstate_register_driver();
2367         }
2368
2369         if (size == 7 && !strncmp(buf, "passive", size)) {
2370                 if (driver_registered) {
2371                         if (intel_pstate_driver != &intel_pstate)
2372                                 return 0;
2373
2374                         ret = intel_pstate_unregister_driver();
2375                         if (ret)
2376                                 return ret;
2377                 }
2378
2379                 intel_pstate_driver = &intel_cpufreq;
2380                 return intel_pstate_register_driver();
2381         }
2382
2383         return -EINVAL;
2384 }
2385
2386 static int no_load __initdata;
2387 static int no_hwp __initdata;
2388 static int hwp_only __initdata;
2389 static unsigned int force_load __initdata;
2390
2391 static int __init intel_pstate_msrs_not_valid(void)
2392 {
2393         if (!pstate_funcs.get_max() ||
2394             !pstate_funcs.get_min() ||
2395             !pstate_funcs.get_turbo())
2396                 return -ENODEV;
2397
2398         return 0;
2399 }
2400
2401 #ifdef CONFIG_ACPI
2402 static void intel_pstate_use_acpi_profile(void)
2403 {
2404         switch (acpi_gbl_FADT.preferred_profile) {
2405         case PM_MOBILE:
2406         case PM_TABLET:
2407         case PM_APPLIANCE_PC:
2408         case PM_DESKTOP:
2409         case PM_WORKSTATION:
2410                 pstate_funcs.get_target_pstate =
2411                                 get_target_pstate_use_cpu_load;
2412         }
2413 }
2414 #else
2415 static void intel_pstate_use_acpi_profile(void)
2416 {
2417 }
2418 #endif
2419
2420 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2421 {
2422         pstate_funcs.get_max   = funcs->get_max;
2423         pstate_funcs.get_max_physical = funcs->get_max_physical;
2424         pstate_funcs.get_min   = funcs->get_min;
2425         pstate_funcs.get_turbo = funcs->get_turbo;
2426         pstate_funcs.get_scaling = funcs->get_scaling;
2427         pstate_funcs.get_val   = funcs->get_val;
2428         pstate_funcs.get_vid   = funcs->get_vid;
2429         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2430
2431         intel_pstate_use_acpi_profile();
2432 }
2433
2434 #ifdef CONFIG_ACPI
2435
2436 static bool __init intel_pstate_no_acpi_pss(void)
2437 {
2438         int i;
2439
2440         for_each_possible_cpu(i) {
2441                 acpi_status status;
2442                 union acpi_object *pss;
2443                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2444                 struct acpi_processor *pr = per_cpu(processors, i);
2445
2446                 if (!pr)
2447                         continue;
2448
2449                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2450                 if (ACPI_FAILURE(status))
2451                         continue;
2452
2453                 pss = buffer.pointer;
2454                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2455                         kfree(pss);
2456                         return false;
2457                 }
2458
2459                 kfree(pss);
2460         }
2461
2462         return true;
2463 }
2464
2465 static bool __init intel_pstate_has_acpi_ppc(void)
2466 {
2467         int i;
2468
2469         for_each_possible_cpu(i) {
2470                 struct acpi_processor *pr = per_cpu(processors, i);
2471
2472                 if (!pr)
2473                         continue;
2474                 if (acpi_has_method(pr->handle, "_PPC"))
2475                         return true;
2476         }
2477         return false;
2478 }
2479
2480 enum {
2481         PSS,
2482         PPC,
2483 };
2484
2485 struct hw_vendor_info {
2486         u16  valid;
2487         char oem_id[ACPI_OEM_ID_SIZE];
2488         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2489         int  oem_pwr_table;
2490 };
2491
2492 /* Hardware vendor-specific info that has its own power management modes */
2493 static struct hw_vendor_info vendor_info[] __initdata = {
2494         {1, "HP    ", "ProLiant", PSS},
2495         {1, "ORACLE", "X4-2    ", PPC},
2496         {1, "ORACLE", "X4-2L   ", PPC},
2497         {1, "ORACLE", "X4-2B   ", PPC},
2498         {1, "ORACLE", "X3-2    ", PPC},
2499         {1, "ORACLE", "X3-2L   ", PPC},
2500         {1, "ORACLE", "X3-2B   ", PPC},
2501         {1, "ORACLE", "X4470M2 ", PPC},
2502         {1, "ORACLE", "X4270M3 ", PPC},
2503         {1, "ORACLE", "X4270M2 ", PPC},
2504         {1, "ORACLE", "X4170M2 ", PPC},
2505         {1, "ORACLE", "X4170 M3", PPC},
2506         {1, "ORACLE", "X4275 M3", PPC},
2507         {1, "ORACLE", "X6-2    ", PPC},
2508         {1, "ORACLE", "Sudbury ", PPC},
2509         {0, "", ""},
2510 };
2511
2512 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2513 {
2514         struct acpi_table_header hdr;
2515         struct hw_vendor_info *v_info;
2516         const struct x86_cpu_id *id;
2517         u64 misc_pwr;
2518
2519         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2520         if (id) {
2521                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2522                 if ( misc_pwr & (1 << 8))
2523                         return true;
2524         }
2525
2526         if (acpi_disabled ||
2527             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2528                 return false;
2529
2530         for (v_info = vendor_info; v_info->valid; v_info++) {
2531                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2532                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2533                                                 ACPI_OEM_TABLE_ID_SIZE))
2534                         switch (v_info->oem_pwr_table) {
2535                         case PSS:
2536                                 return intel_pstate_no_acpi_pss();
2537                         case PPC:
2538                                 return intel_pstate_has_acpi_ppc() &&
2539                                         (!force_load);
2540                         }
2541         }
2542
2543         return false;
2544 }
2545
2546 static void intel_pstate_request_control_from_smm(void)
2547 {
2548         /*
2549          * It may be unsafe to request P-states control from SMM if _PPC support
2550          * has not been enabled.
2551          */
2552         if (acpi_ppc)
2553                 acpi_processor_pstate_control();
2554 }
2555 #else /* CONFIG_ACPI not enabled */
2556 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2557 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2558 static inline void intel_pstate_request_control_from_smm(void) {}
2559 #endif /* CONFIG_ACPI */
2560
2561 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2562         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2563         {}
2564 };
2565
2566 static int __init intel_pstate_init(void)
2567 {
2568         int rc;
2569
2570         if (no_load)
2571                 return -ENODEV;
2572
2573         if (x86_match_cpu(hwp_support_ids)) {
2574                 copy_cpu_funcs(&core_params.funcs);
2575                 if (no_hwp) {
2576                         pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
2577                 } else {
2578                         hwp_active++;
2579                         intel_pstate.attr = hwp_cpufreq_attrs;
2580                         goto hwp_cpu_matched;
2581                 }
2582         } else {
2583                 const struct x86_cpu_id *id;
2584                 struct cpu_defaults *cpu_def;
2585
2586                 id = x86_match_cpu(intel_pstate_cpu_ids);
2587                 if (!id)
2588                         return -ENODEV;
2589
2590                 cpu_def = (struct cpu_defaults *)id->driver_data;
2591                 copy_cpu_funcs(&cpu_def->funcs);
2592         }
2593
2594         if (intel_pstate_msrs_not_valid())
2595                 return -ENODEV;
2596
2597 hwp_cpu_matched:
2598         /*
2599          * The Intel pstate driver will be ignored if the platform
2600          * firmware has its own power management modes.
2601          */
2602         if (intel_pstate_platform_pwr_mgmt_exists())
2603                 return -ENODEV;
2604
2605         if (!hwp_active && hwp_only)
2606                 return -ENOTSUPP;
2607
2608         pr_info("Intel P-state driver initializing\n");
2609
2610         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2611         if (!all_cpu_data)
2612                 return -ENOMEM;
2613
2614         intel_pstate_request_control_from_smm();
2615
2616         intel_pstate_sysfs_expose_params();
2617
2618         mutex_lock(&intel_pstate_driver_lock);
2619         rc = intel_pstate_register_driver();
2620         mutex_unlock(&intel_pstate_driver_lock);
2621         if (rc)
2622                 return rc;
2623
2624         if (hwp_active)
2625                 pr_info("HWP enabled\n");
2626
2627         return 0;
2628 }
2629 device_initcall(intel_pstate_init);
2630
2631 static int __init intel_pstate_setup(char *str)
2632 {
2633         if (!str)
2634                 return -EINVAL;
2635
2636         if (!strcmp(str, "disable")) {
2637                 no_load = 1;
2638         } else if (!strcmp(str, "passive")) {
2639                 pr_info("Passive mode enabled\n");
2640                 intel_pstate_driver = &intel_cpufreq;
2641                 no_hwp = 1;
2642         }
2643         if (!strcmp(str, "no_hwp")) {
2644                 pr_info("HWP disabled\n");
2645                 no_hwp = 1;
2646         }
2647         if (!strcmp(str, "force"))
2648                 force_load = 1;
2649         if (!strcmp(str, "hwp_only"))
2650                 hwp_only = 1;
2651         if (!strcmp(str, "per_cpu_perf_limits"))
2652                 per_cpu_limits = true;
2653
2654 #ifdef CONFIG_ACPI
2655         if (!strcmp(str, "support_acpi_ppc"))
2656                 acpi_ppc = true;
2657 #endif
2658
2659         return 0;
2660 }
2661 early_param("intel_pstate", intel_pstate_setup);
2662
2663 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2664 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2665 MODULE_LICENSE("GPL");