]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/crypto/ccp/ccp-crypto-main.c
2636f044789dc4ebb9c725a8bf9d6d629eea5ad7
[karo-tx-linux.git] / drivers / crypto / ccp / ccp-crypto-main.c
1 /*
2  * AMD Cryptographic Coprocessor (CCP) crypto API support
3  *
4  * Copyright (C) 2013 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/ccp.h>
17 #include <linux/scatterlist.h>
18 #include <crypto/internal/hash.h>
19
20 #include "ccp-crypto.h"
21
22 MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
23 MODULE_LICENSE("GPL");
24 MODULE_VERSION("1.0.0");
25 MODULE_DESCRIPTION("AMD Cryptographic Coprocessor crypto API support");
26
27
28 /* List heads for the supported algorithms */
29 static LIST_HEAD(hash_algs);
30 static LIST_HEAD(cipher_algs);
31
32 /* For any tfm, requests for that tfm on the same CPU must be returned
33  * in the order received.  With multiple queues available, the CCP can
34  * process more than one cmd at a time.  Therefore we must maintain
35  * a cmd list to insure the proper ordering of requests on a given tfm/cpu
36  * combination.
37  */
38 struct ccp_crypto_cpu_queue {
39         struct list_head cmds;
40         struct list_head *backlog;
41         unsigned int cmd_count;
42 };
43 #define CCP_CRYPTO_MAX_QLEN     50
44
45 struct ccp_crypto_percpu_queue {
46         struct ccp_crypto_cpu_queue __percpu *cpu_queue;
47 };
48 static struct ccp_crypto_percpu_queue req_queue;
49
50 struct ccp_crypto_cmd {
51         struct list_head entry;
52
53         struct ccp_cmd *cmd;
54
55         /* Save the crypto_tfm and crypto_async_request addresses
56          * separately to avoid any reference to a possibly invalid
57          * crypto_async_request structure after invoking the request
58          * callback
59          */
60         struct crypto_async_request *req;
61         struct crypto_tfm *tfm;
62
63         /* Used for held command processing to determine state */
64         int ret;
65
66         int cpu;
67 };
68
69 struct ccp_crypto_cpu {
70         struct work_struct work;
71         struct completion completion;
72         struct ccp_crypto_cmd *crypto_cmd;
73         int err;
74 };
75
76
77 static inline bool ccp_crypto_success(int err)
78 {
79         if (err && (err != -EINPROGRESS) && (err != -EBUSY))
80                 return false;
81
82         return true;
83 }
84
85 /*
86  * ccp_crypto_cmd_complete must be called while running on the appropriate
87  * cpu and the caller must have done a get_cpu to disable preemption
88  */
89 static struct ccp_crypto_cmd *ccp_crypto_cmd_complete(
90         struct ccp_crypto_cmd *crypto_cmd, struct ccp_crypto_cmd **backlog)
91 {
92         struct ccp_crypto_cpu_queue *cpu_queue;
93         struct ccp_crypto_cmd *held = NULL, *tmp;
94
95         *backlog = NULL;
96
97         cpu_queue = this_cpu_ptr(req_queue.cpu_queue);
98
99         /* Held cmds will be after the current cmd in the queue so start
100          * searching for a cmd with a matching tfm for submission.
101          */
102         tmp = crypto_cmd;
103         list_for_each_entry_continue(tmp, &cpu_queue->cmds, entry) {
104                 if (crypto_cmd->tfm != tmp->tfm)
105                         continue;
106                 held = tmp;
107                 break;
108         }
109
110         /* Process the backlog:
111          *   Because cmds can be executed from any point in the cmd list
112          *   special precautions have to be taken when handling the backlog.
113          */
114         if (cpu_queue->backlog != &cpu_queue->cmds) {
115                 /* Skip over this cmd if it is the next backlog cmd */
116                 if (cpu_queue->backlog == &crypto_cmd->entry)
117                         cpu_queue->backlog = crypto_cmd->entry.next;
118
119                 *backlog = container_of(cpu_queue->backlog,
120                                         struct ccp_crypto_cmd, entry);
121                 cpu_queue->backlog = cpu_queue->backlog->next;
122
123                 /* Skip over this cmd if it is now the next backlog cmd */
124                 if (cpu_queue->backlog == &crypto_cmd->entry)
125                         cpu_queue->backlog = crypto_cmd->entry.next;
126         }
127
128         /* Remove the cmd entry from the list of cmds */
129         cpu_queue->cmd_count--;
130         list_del(&crypto_cmd->entry);
131
132         return held;
133 }
134
135 static void ccp_crypto_complete_on_cpu(struct work_struct *work)
136 {
137         struct ccp_crypto_cpu *cpu_work =
138                 container_of(work, struct ccp_crypto_cpu, work);
139         struct ccp_crypto_cmd *crypto_cmd = cpu_work->crypto_cmd;
140         struct ccp_crypto_cmd *held, *next, *backlog;
141         struct crypto_async_request *req = crypto_cmd->req;
142         struct ccp_ctx *ctx = crypto_tfm_ctx(req->tfm);
143         int cpu, ret;
144
145         cpu = get_cpu();
146
147         if (cpu_work->err == -EINPROGRESS) {
148                 /* Only propogate the -EINPROGRESS if necessary */
149                 if (crypto_cmd->ret == -EBUSY) {
150                         crypto_cmd->ret = -EINPROGRESS;
151                         req->complete(req, -EINPROGRESS);
152                 }
153
154                 goto e_cpu;
155         }
156
157         /* Operation has completed - update the queue before invoking
158          * the completion callbacks and retrieve the next cmd (cmd with
159          * a matching tfm) that can be submitted to the CCP.
160          */
161         held = ccp_crypto_cmd_complete(crypto_cmd, &backlog);
162         if (backlog) {
163                 backlog->ret = -EINPROGRESS;
164                 backlog->req->complete(backlog->req, -EINPROGRESS);
165         }
166
167         /* Transition the state from -EBUSY to -EINPROGRESS first */
168         if (crypto_cmd->ret == -EBUSY)
169                 req->complete(req, -EINPROGRESS);
170
171         /* Completion callbacks */
172         ret = cpu_work->err;
173         if (ctx->complete)
174                 ret = ctx->complete(req, ret);
175         req->complete(req, ret);
176
177         /* Submit the next cmd */
178         while (held) {
179                 ret = ccp_enqueue_cmd(held->cmd);
180                 if (ccp_crypto_success(ret))
181                         break;
182
183                 /* Error occurred, report it and get the next entry */
184                 held->req->complete(held->req, ret);
185
186                 next = ccp_crypto_cmd_complete(held, &backlog);
187                 if (backlog) {
188                         backlog->ret = -EINPROGRESS;
189                         backlog->req->complete(backlog->req, -EINPROGRESS);
190                 }
191
192                 kfree(held);
193                 held = next;
194         }
195
196         kfree(crypto_cmd);
197
198 e_cpu:
199         put_cpu();
200
201         complete(&cpu_work->completion);
202 }
203
204 static void ccp_crypto_complete(void *data, int err)
205 {
206         struct ccp_crypto_cmd *crypto_cmd = data;
207         struct ccp_crypto_cpu cpu_work;
208
209         INIT_WORK(&cpu_work.work, ccp_crypto_complete_on_cpu);
210         init_completion(&cpu_work.completion);
211         cpu_work.crypto_cmd = crypto_cmd;
212         cpu_work.err = err;
213
214         schedule_work_on(crypto_cmd->cpu, &cpu_work.work);
215
216         /* Keep the completion call synchronous */
217         wait_for_completion(&cpu_work.completion);
218 }
219
220 static int ccp_crypto_enqueue_cmd(struct ccp_crypto_cmd *crypto_cmd)
221 {
222         struct ccp_crypto_cpu_queue *cpu_queue;
223         struct ccp_crypto_cmd *active = NULL, *tmp;
224         int cpu, ret;
225
226         cpu = get_cpu();
227         crypto_cmd->cpu = cpu;
228
229         cpu_queue = this_cpu_ptr(req_queue.cpu_queue);
230
231         /* Check if the cmd can/should be queued */
232         if (cpu_queue->cmd_count >= CCP_CRYPTO_MAX_QLEN) {
233                 ret = -EBUSY;
234                 if (!(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG))
235                         goto e_cpu;
236         }
237
238         /* Look for an entry with the same tfm.  If there is a cmd
239          * with the same tfm in the list for this cpu then the current
240          * cmd cannot be submitted to the CCP yet.
241          */
242         list_for_each_entry(tmp, &cpu_queue->cmds, entry) {
243                 if (crypto_cmd->tfm != tmp->tfm)
244                         continue;
245                 active = tmp;
246                 break;
247         }
248
249         ret = -EINPROGRESS;
250         if (!active) {
251                 ret = ccp_enqueue_cmd(crypto_cmd->cmd);
252                 if (!ccp_crypto_success(ret))
253                         goto e_cpu;
254         }
255
256         if (cpu_queue->cmd_count >= CCP_CRYPTO_MAX_QLEN) {
257                 ret = -EBUSY;
258                 if (cpu_queue->backlog == &cpu_queue->cmds)
259                         cpu_queue->backlog = &crypto_cmd->entry;
260         }
261         crypto_cmd->ret = ret;
262
263         cpu_queue->cmd_count++;
264         list_add_tail(&crypto_cmd->entry, &cpu_queue->cmds);
265
266 e_cpu:
267         put_cpu();
268
269         return ret;
270 }
271
272 /**
273  * ccp_crypto_enqueue_request - queue an crypto async request for processing
274  *                              by the CCP
275  *
276  * @req: crypto_async_request struct to be processed
277  * @cmd: ccp_cmd struct to be sent to the CCP
278  */
279 int ccp_crypto_enqueue_request(struct crypto_async_request *req,
280                                struct ccp_cmd *cmd)
281 {
282         struct ccp_crypto_cmd *crypto_cmd;
283         gfp_t gfp;
284         int ret;
285
286         gfp = req->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
287
288         crypto_cmd = kzalloc(sizeof(*crypto_cmd), gfp);
289         if (!crypto_cmd)
290                 return -ENOMEM;
291
292         /* The tfm pointer must be saved and not referenced from the
293          * crypto_async_request (req) pointer because it is used after
294          * completion callback for the request and the req pointer
295          * might not be valid anymore.
296          */
297         crypto_cmd->cmd = cmd;
298         crypto_cmd->req = req;
299         crypto_cmd->tfm = req->tfm;
300
301         cmd->callback = ccp_crypto_complete;
302         cmd->data = crypto_cmd;
303
304         if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
305                 cmd->flags |= CCP_CMD_MAY_BACKLOG;
306         else
307                 cmd->flags &= ~CCP_CMD_MAY_BACKLOG;
308
309         ret = ccp_crypto_enqueue_cmd(crypto_cmd);
310         if (!ccp_crypto_success(ret))
311                 kfree(crypto_cmd);
312
313         return ret;
314 }
315
316 struct scatterlist *ccp_crypto_sg_table_add(struct sg_table *table,
317                                             struct scatterlist *sg_add)
318 {
319         struct scatterlist *sg, *sg_last = NULL;
320
321         for (sg = table->sgl; sg; sg = sg_next(sg))
322                 if (!sg_page(sg))
323                         break;
324         BUG_ON(!sg);
325
326         for (; sg && sg_add; sg = sg_next(sg), sg_add = sg_next(sg_add)) {
327                 sg_set_page(sg, sg_page(sg_add), sg_add->length,
328                             sg_add->offset);
329                 sg_last = sg;
330         }
331         BUG_ON(sg_add);
332
333         return sg_last;
334 }
335
336 static int ccp_register_algs(void)
337 {
338         int ret;
339
340         ret = ccp_register_aes_algs(&cipher_algs);
341         if (ret)
342                 return ret;
343
344         ret = ccp_register_aes_cmac_algs(&hash_algs);
345         if (ret)
346                 return ret;
347
348         ret = ccp_register_aes_xts_algs(&cipher_algs);
349         if (ret)
350                 return ret;
351
352         ret = ccp_register_sha_algs(&hash_algs);
353         if (ret)
354                 return ret;
355
356         return 0;
357 }
358
359 static void ccp_unregister_algs(void)
360 {
361         struct ccp_crypto_ahash_alg *ahash_alg, *ahash_tmp;
362         struct ccp_crypto_ablkcipher_alg *ablk_alg, *ablk_tmp;
363
364         list_for_each_entry_safe(ahash_alg, ahash_tmp, &hash_algs, entry) {
365                 crypto_unregister_ahash(&ahash_alg->alg);
366                 list_del(&ahash_alg->entry);
367                 kfree(ahash_alg);
368         }
369
370         list_for_each_entry_safe(ablk_alg, ablk_tmp, &cipher_algs, entry) {
371                 crypto_unregister_alg(&ablk_alg->alg);
372                 list_del(&ablk_alg->entry);
373                 kfree(ablk_alg);
374         }
375 }
376
377 static int ccp_init_queues(void)
378 {
379         struct ccp_crypto_cpu_queue *cpu_queue;
380         int cpu;
381
382         req_queue.cpu_queue = alloc_percpu(struct ccp_crypto_cpu_queue);
383         if (!req_queue.cpu_queue)
384                 return -ENOMEM;
385
386         for_each_possible_cpu(cpu) {
387                 cpu_queue = per_cpu_ptr(req_queue.cpu_queue, cpu);
388                 INIT_LIST_HEAD(&cpu_queue->cmds);
389                 cpu_queue->backlog = &cpu_queue->cmds;
390                 cpu_queue->cmd_count = 0;
391         }
392
393         return 0;
394 }
395
396 static void ccp_fini_queue(void)
397 {
398         struct ccp_crypto_cpu_queue *cpu_queue;
399         int cpu;
400
401         for_each_possible_cpu(cpu) {
402                 cpu_queue = per_cpu_ptr(req_queue.cpu_queue, cpu);
403                 BUG_ON(!list_empty(&cpu_queue->cmds));
404         }
405         free_percpu(req_queue.cpu_queue);
406 }
407
408 static int ccp_crypto_init(void)
409 {
410         int ret;
411
412         ret = ccp_init_queues();
413         if (ret)
414                 return ret;
415
416         ret = ccp_register_algs();
417         if (ret) {
418                 ccp_unregister_algs();
419                 ccp_fini_queue();
420         }
421
422         return ret;
423 }
424
425 static void ccp_crypto_exit(void)
426 {
427         ccp_unregister_algs();
428         ccp_fini_queue();
429 }
430
431 module_init(ccp_crypto_init);
432 module_exit(ccp_crypto_exit);