]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/crypto/ccp/ccp-dev-v3.c
8d2dbacc6161fd071a5ef64f063f49ccba7e5c36
[karo-tx-linux.git] / drivers / crypto / ccp / ccp-dev-v3.c
1 /*
2  * AMD Cryptographic Coprocessor (CCP) driver
3  *
4  * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
5  *
6  * Author: Tom Lendacky <thomas.lendacky@amd.com>
7  * Author: Gary R Hook <gary.hook@amd.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/kthread.h>
18 #include <linux/interrupt.h>
19 #include <linux/ccp.h>
20
21 #include "ccp-dev.h"
22
23 static u32 ccp_alloc_ksb(struct ccp_cmd_queue *cmd_q, unsigned int count)
24 {
25         int start;
26         struct ccp_device *ccp = cmd_q->ccp;
27
28         for (;;) {
29                 mutex_lock(&ccp->sb_mutex);
30
31                 start = (u32)bitmap_find_next_zero_area(ccp->sb,
32                                                         ccp->sb_count,
33                                                         ccp->sb_start,
34                                                         count, 0);
35                 if (start <= ccp->sb_count) {
36                         bitmap_set(ccp->sb, start, count);
37
38                         mutex_unlock(&ccp->sb_mutex);
39                         break;
40                 }
41
42                 ccp->sb_avail = 0;
43
44                 mutex_unlock(&ccp->sb_mutex);
45
46                 /* Wait for KSB entries to become available */
47                 if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
48                         return 0;
49         }
50
51         return KSB_START + start;
52 }
53
54 static void ccp_free_ksb(struct ccp_cmd_queue *cmd_q, unsigned int start,
55                          unsigned int count)
56 {
57         struct ccp_device *ccp = cmd_q->ccp;
58
59         if (!start)
60                 return;
61
62         mutex_lock(&ccp->sb_mutex);
63
64         bitmap_clear(ccp->sb, start - KSB_START, count);
65
66         ccp->sb_avail = 1;
67
68         mutex_unlock(&ccp->sb_mutex);
69
70         wake_up_interruptible_all(&ccp->sb_queue);
71 }
72
73 static unsigned int ccp_get_free_slots(struct ccp_cmd_queue *cmd_q)
74 {
75         return CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
76 }
77
78 static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
79 {
80         struct ccp_cmd_queue *cmd_q = op->cmd_q;
81         struct ccp_device *ccp = cmd_q->ccp;
82         void __iomem *cr_addr;
83         u32 cr0, cmd;
84         unsigned int i;
85         int ret = 0;
86
87         /* We could read a status register to see how many free slots
88          * are actually available, but reading that register resets it
89          * and you could lose some error information.
90          */
91         cmd_q->free_slots--;
92
93         cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
94               | (op->jobid << REQ0_JOBID_SHIFT)
95               | REQ0_WAIT_FOR_WRITE;
96
97         if (op->soc)
98                 cr0 |= REQ0_STOP_ON_COMPLETE
99                        | REQ0_INT_ON_COMPLETE;
100
101         if (op->ioc || !cmd_q->free_slots)
102                 cr0 |= REQ0_INT_ON_COMPLETE;
103
104         /* Start at CMD_REQ1 */
105         cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
106
107         mutex_lock(&ccp->req_mutex);
108
109         /* Write CMD_REQ1 through CMD_REQx first */
110         for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
111                 iowrite32(*(cr + i), cr_addr);
112
113         /* Tell the CCP to start */
114         wmb();
115         iowrite32(cr0, ccp->io_regs + CMD_REQ0);
116
117         mutex_unlock(&ccp->req_mutex);
118
119         if (cr0 & REQ0_INT_ON_COMPLETE) {
120                 /* Wait for the job to complete */
121                 ret = wait_event_interruptible(cmd_q->int_queue,
122                                                cmd_q->int_rcvd);
123                 if (ret || cmd_q->cmd_error) {
124                         /* On error delete all related jobs from the queue */
125                         cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
126                               | op->jobid;
127                         if (cmd_q->cmd_error)
128                                 ccp_log_error(cmd_q->ccp,
129                                               cmd_q->cmd_error);
130
131                         iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
132
133                         if (!ret)
134                                 ret = -EIO;
135                 } else if (op->soc) {
136                         /* Delete just head job from the queue on SoC */
137                         cmd = DEL_Q_ACTIVE
138                               | (cmd_q->id << DEL_Q_ID_SHIFT)
139                               | op->jobid;
140
141                         iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
142                 }
143
144                 cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
145
146                 cmd_q->int_rcvd = 0;
147         }
148
149         return ret;
150 }
151
152 static int ccp_perform_aes(struct ccp_op *op)
153 {
154         u32 cr[6];
155
156         /* Fill out the register contents for REQ1 through REQ6 */
157         cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
158                 | (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
159                 | (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
160                 | (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
161                 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
162         cr[1] = op->src.u.dma.length - 1;
163         cr[2] = ccp_addr_lo(&op->src.u.dma);
164         cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
165                 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
166                 | ccp_addr_hi(&op->src.u.dma);
167         cr[4] = ccp_addr_lo(&op->dst.u.dma);
168         cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
169                 | ccp_addr_hi(&op->dst.u.dma);
170
171         if (op->u.aes.mode == CCP_AES_MODE_CFB)
172                 cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
173
174         if (op->eom)
175                 cr[0] |= REQ1_EOM;
176
177         if (op->init)
178                 cr[0] |= REQ1_INIT;
179
180         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
181 }
182
183 static int ccp_perform_xts_aes(struct ccp_op *op)
184 {
185         u32 cr[6];
186
187         /* Fill out the register contents for REQ1 through REQ6 */
188         cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
189                 | (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
190                 | (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
191                 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
192         cr[1] = op->src.u.dma.length - 1;
193         cr[2] = ccp_addr_lo(&op->src.u.dma);
194         cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
195                 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
196                 | ccp_addr_hi(&op->src.u.dma);
197         cr[4] = ccp_addr_lo(&op->dst.u.dma);
198         cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
199                 | ccp_addr_hi(&op->dst.u.dma);
200
201         if (op->eom)
202                 cr[0] |= REQ1_EOM;
203
204         if (op->init)
205                 cr[0] |= REQ1_INIT;
206
207         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
208 }
209
210 static int ccp_perform_sha(struct ccp_op *op)
211 {
212         u32 cr[6];
213
214         /* Fill out the register contents for REQ1 through REQ6 */
215         cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
216                 | (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
217                 | REQ1_INIT;
218         cr[1] = op->src.u.dma.length - 1;
219         cr[2] = ccp_addr_lo(&op->src.u.dma);
220         cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
221                 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
222                 | ccp_addr_hi(&op->src.u.dma);
223
224         if (op->eom) {
225                 cr[0] |= REQ1_EOM;
226                 cr[4] = lower_32_bits(op->u.sha.msg_bits);
227                 cr[5] = upper_32_bits(op->u.sha.msg_bits);
228         } else {
229                 cr[4] = 0;
230                 cr[5] = 0;
231         }
232
233         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
234 }
235
236 static int ccp_perform_rsa(struct ccp_op *op)
237 {
238         u32 cr[6];
239
240         /* Fill out the register contents for REQ1 through REQ6 */
241         cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
242                 | (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
243                 | (op->sb_key << REQ1_KEY_KSB_SHIFT)
244                 | REQ1_EOM;
245         cr[1] = op->u.rsa.input_len - 1;
246         cr[2] = ccp_addr_lo(&op->src.u.dma);
247         cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
248                 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
249                 | ccp_addr_hi(&op->src.u.dma);
250         cr[4] = ccp_addr_lo(&op->dst.u.dma);
251         cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
252                 | ccp_addr_hi(&op->dst.u.dma);
253
254         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
255 }
256
257 static int ccp_perform_passthru(struct ccp_op *op)
258 {
259         u32 cr[6];
260
261         /* Fill out the register contents for REQ1 through REQ6 */
262         cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
263                 | (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
264                 | (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
265
266         if (op->src.type == CCP_MEMTYPE_SYSTEM)
267                 cr[1] = op->src.u.dma.length - 1;
268         else
269                 cr[1] = op->dst.u.dma.length - 1;
270
271         if (op->src.type == CCP_MEMTYPE_SYSTEM) {
272                 cr[2] = ccp_addr_lo(&op->src.u.dma);
273                 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
274                         | ccp_addr_hi(&op->src.u.dma);
275
276                 if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
277                         cr[3] |= (op->sb_key << REQ4_KSB_SHIFT);
278         } else {
279                 cr[2] = op->src.u.sb * CCP_SB_BYTES;
280                 cr[3] = (CCP_MEMTYPE_SB << REQ4_MEMTYPE_SHIFT);
281         }
282
283         if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
284                 cr[4] = ccp_addr_lo(&op->dst.u.dma);
285                 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
286                         | ccp_addr_hi(&op->dst.u.dma);
287         } else {
288                 cr[4] = op->dst.u.sb * CCP_SB_BYTES;
289                 cr[5] = (CCP_MEMTYPE_SB << REQ6_MEMTYPE_SHIFT);
290         }
291
292         if (op->eom)
293                 cr[0] |= REQ1_EOM;
294
295         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
296 }
297
298 static int ccp_perform_ecc(struct ccp_op *op)
299 {
300         u32 cr[6];
301
302         /* Fill out the register contents for REQ1 through REQ6 */
303         cr[0] = REQ1_ECC_AFFINE_CONVERT
304                 | (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
305                 | (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
306                 | REQ1_EOM;
307         cr[1] = op->src.u.dma.length - 1;
308         cr[2] = ccp_addr_lo(&op->src.u.dma);
309         cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
310                 | ccp_addr_hi(&op->src.u.dma);
311         cr[4] = ccp_addr_lo(&op->dst.u.dma);
312         cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
313                 | ccp_addr_hi(&op->dst.u.dma);
314
315         return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
316 }
317
318 static int ccp_init(struct ccp_device *ccp)
319 {
320         struct device *dev = ccp->dev;
321         struct ccp_cmd_queue *cmd_q;
322         struct dma_pool *dma_pool;
323         char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
324         unsigned int qmr, qim, i;
325         int ret;
326
327         /* Find available queues */
328         qim = 0;
329         qmr = ioread32(ccp->io_regs + Q_MASK_REG);
330         for (i = 0; i < MAX_HW_QUEUES; i++) {
331                 if (!(qmr & (1 << i)))
332                         continue;
333
334                 /* Allocate a dma pool for this queue */
335                 snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
336                          ccp->name, i);
337                 dma_pool = dma_pool_create(dma_pool_name, dev,
338                                            CCP_DMAPOOL_MAX_SIZE,
339                                            CCP_DMAPOOL_ALIGN, 0);
340                 if (!dma_pool) {
341                         dev_err(dev, "unable to allocate dma pool\n");
342                         ret = -ENOMEM;
343                         goto e_pool;
344                 }
345
346                 cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
347                 ccp->cmd_q_count++;
348
349                 cmd_q->ccp = ccp;
350                 cmd_q->id = i;
351                 cmd_q->dma_pool = dma_pool;
352
353                 /* Reserve 2 KSB regions for the queue */
354                 cmd_q->sb_key = KSB_START + ccp->sb_start++;
355                 cmd_q->sb_ctx = KSB_START + ccp->sb_start++;
356                 ccp->sb_count -= 2;
357
358                 /* Preset some register values and masks that are queue
359                  * number dependent
360                  */
361                 cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
362                                     (CMD_Q_STATUS_INCR * i);
363                 cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
364                                         (CMD_Q_STATUS_INCR * i);
365                 cmd_q->int_ok = 1 << (i * 2);
366                 cmd_q->int_err = 1 << ((i * 2) + 1);
367
368                 cmd_q->free_slots = ccp_get_free_slots(cmd_q);
369
370                 init_waitqueue_head(&cmd_q->int_queue);
371
372                 /* Build queue interrupt mask (two interrupts per queue) */
373                 qim |= cmd_q->int_ok | cmd_q->int_err;
374
375 #ifdef CONFIG_ARM64
376                 /* For arm64 set the recommended queue cache settings */
377                 iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
378                           (CMD_Q_CACHE_INC * i));
379 #endif
380
381                 dev_dbg(dev, "queue #%u available\n", i);
382         }
383         if (ccp->cmd_q_count == 0) {
384                 dev_notice(dev, "no command queues available\n");
385                 ret = -EIO;
386                 goto e_pool;
387         }
388         dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
389
390         /* Disable and clear interrupts until ready */
391         iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
392         for (i = 0; i < ccp->cmd_q_count; i++) {
393                 cmd_q = &ccp->cmd_q[i];
394
395                 ioread32(cmd_q->reg_int_status);
396                 ioread32(cmd_q->reg_status);
397         }
398         iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
399
400         /* Request an irq */
401         ret = ccp->get_irq(ccp);
402         if (ret) {
403                 dev_err(dev, "unable to allocate an IRQ\n");
404                 goto e_pool;
405         }
406
407         /* Initialize the queues used to wait for KSB space and suspend */
408         init_waitqueue_head(&ccp->sb_queue);
409         init_waitqueue_head(&ccp->suspend_queue);
410
411         dev_dbg(dev, "Starting threads...\n");
412         /* Create a kthread for each queue */
413         for (i = 0; i < ccp->cmd_q_count; i++) {
414                 struct task_struct *kthread;
415
416                 cmd_q = &ccp->cmd_q[i];
417
418                 kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
419                                          "%s-q%u", ccp->name, cmd_q->id);
420                 if (IS_ERR(kthread)) {
421                         dev_err(dev, "error creating queue thread (%ld)\n",
422                                 PTR_ERR(kthread));
423                         ret = PTR_ERR(kthread);
424                         goto e_kthread;
425                 }
426
427                 cmd_q->kthread = kthread;
428                 wake_up_process(kthread);
429         }
430
431         dev_dbg(dev, "Enabling interrupts...\n");
432         /* Enable interrupts */
433         iowrite32(qim, ccp->io_regs + IRQ_MASK_REG);
434
435         dev_dbg(dev, "Registering device...\n");
436         ccp_add_device(ccp);
437
438         ret = ccp_register_rng(ccp);
439         if (ret)
440                 goto e_kthread;
441
442         /* Register the DMA engine support */
443         ret = ccp_dmaengine_register(ccp);
444         if (ret)
445                 goto e_hwrng;
446
447         return 0;
448
449 e_hwrng:
450         ccp_unregister_rng(ccp);
451
452 e_kthread:
453         for (i = 0; i < ccp->cmd_q_count; i++)
454                 if (ccp->cmd_q[i].kthread)
455                         kthread_stop(ccp->cmd_q[i].kthread);
456
457         ccp->free_irq(ccp);
458
459 e_pool:
460         for (i = 0; i < ccp->cmd_q_count; i++)
461                 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
462
463         return ret;
464 }
465
466 static void ccp_destroy(struct ccp_device *ccp)
467 {
468         struct ccp_cmd_queue *cmd_q;
469         struct ccp_cmd *cmd;
470         unsigned int qim, i;
471
472         /* Unregister the DMA engine */
473         ccp_dmaengine_unregister(ccp);
474
475         /* Unregister the RNG */
476         ccp_unregister_rng(ccp);
477
478         /* Remove this device from the list of available units */
479         ccp_del_device(ccp);
480
481         /* Build queue interrupt mask (two interrupt masks per queue) */
482         qim = 0;
483         for (i = 0; i < ccp->cmd_q_count; i++) {
484                 cmd_q = &ccp->cmd_q[i];
485                 qim |= cmd_q->int_ok | cmd_q->int_err;
486         }
487
488         /* Disable and clear interrupts */
489         iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
490         for (i = 0; i < ccp->cmd_q_count; i++) {
491                 cmd_q = &ccp->cmd_q[i];
492
493                 ioread32(cmd_q->reg_int_status);
494                 ioread32(cmd_q->reg_status);
495         }
496         iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
497
498         /* Stop the queue kthreads */
499         for (i = 0; i < ccp->cmd_q_count; i++)
500                 if (ccp->cmd_q[i].kthread)
501                         kthread_stop(ccp->cmd_q[i].kthread);
502
503         ccp->free_irq(ccp);
504
505         for (i = 0; i < ccp->cmd_q_count; i++)
506                 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
507
508         /* Flush the cmd and backlog queue */
509         while (!list_empty(&ccp->cmd)) {
510                 /* Invoke the callback directly with an error code */
511                 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
512                 list_del(&cmd->entry);
513                 cmd->callback(cmd->data, -ENODEV);
514         }
515         while (!list_empty(&ccp->backlog)) {
516                 /* Invoke the callback directly with an error code */
517                 cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
518                 list_del(&cmd->entry);
519                 cmd->callback(cmd->data, -ENODEV);
520         }
521 }
522
523 static irqreturn_t ccp_irq_handler(int irq, void *data)
524 {
525         struct device *dev = data;
526         struct ccp_device *ccp = dev_get_drvdata(dev);
527         struct ccp_cmd_queue *cmd_q;
528         u32 q_int, status;
529         unsigned int i;
530
531         status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
532
533         for (i = 0; i < ccp->cmd_q_count; i++) {
534                 cmd_q = &ccp->cmd_q[i];
535
536                 q_int = status & (cmd_q->int_ok | cmd_q->int_err);
537                 if (q_int) {
538                         cmd_q->int_status = status;
539                         cmd_q->q_status = ioread32(cmd_q->reg_status);
540                         cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
541
542                         /* On error, only save the first error value */
543                         if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
544                                 cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
545
546                         cmd_q->int_rcvd = 1;
547
548                         /* Acknowledge the interrupt and wake the kthread */
549                         iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
550                         wake_up_interruptible(&cmd_q->int_queue);
551                 }
552         }
553
554         return IRQ_HANDLED;
555 }
556
557 static const struct ccp_actions ccp3_actions = {
558         .aes = ccp_perform_aes,
559         .xts_aes = ccp_perform_xts_aes,
560         .sha = ccp_perform_sha,
561         .rsa = ccp_perform_rsa,
562         .passthru = ccp_perform_passthru,
563         .ecc = ccp_perform_ecc,
564         .sballoc = ccp_alloc_ksb,
565         .sbfree = ccp_free_ksb,
566         .init = ccp_init,
567         .destroy = ccp_destroy,
568         .get_free_slots = ccp_get_free_slots,
569         .irqhandler = ccp_irq_handler,
570 };
571
572 const struct ccp_vdata ccpv3 = {
573         .version = CCP_VERSION(3, 0),
574         .setup = NULL,
575         .perform = &ccp3_actions,
576         .bar = 2,
577         .offset = 0x20000,
578 };