]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/crypto/ixp4xx_crypto.c
Merge remote-tracking branch 'usb-chipidea-next/ci-for-usb-next'
[karo-tx-linux.git] / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/algapi.h>
28 #include <crypto/internal/aead.h>
29 #include <crypto/authenc.h>
30 #include <crypto/scatterwalk.h>
31
32 #include <mach/npe.h>
33 #include <mach/qmgr.h>
34
35 #define MAX_KEYLEN 32
36
37 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
38 #define NPE_CTX_LEN 80
39 #define AES_BLOCK128 16
40
41 #define NPE_OP_HASH_VERIFY   0x01
42 #define NPE_OP_CCM_ENABLE    0x04
43 #define NPE_OP_CRYPT_ENABLE  0x08
44 #define NPE_OP_HASH_ENABLE   0x10
45 #define NPE_OP_NOT_IN_PLACE  0x20
46 #define NPE_OP_HMAC_DISABLE  0x40
47 #define NPE_OP_CRYPT_ENCRYPT 0x80
48
49 #define NPE_OP_CCM_GEN_MIC   0xcc
50 #define NPE_OP_HASH_GEN_ICV  0x50
51 #define NPE_OP_ENC_GEN_KEY   0xc9
52
53 #define MOD_ECB     0x0000
54 #define MOD_CTR     0x1000
55 #define MOD_CBC_ENC 0x2000
56 #define MOD_CBC_DEC 0x3000
57 #define MOD_CCM_ENC 0x4000
58 #define MOD_CCM_DEC 0x5000
59
60 #define KEYLEN_128  4
61 #define KEYLEN_192  6
62 #define KEYLEN_256  8
63
64 #define CIPH_DECR   0x0000
65 #define CIPH_ENCR   0x0400
66
67 #define MOD_DES     0x0000
68 #define MOD_TDEA2   0x0100
69 #define MOD_3DES   0x0200
70 #define MOD_AES     0x0800
71 #define MOD_AES128  (0x0800 | KEYLEN_128)
72 #define MOD_AES192  (0x0900 | KEYLEN_192)
73 #define MOD_AES256  (0x0a00 | KEYLEN_256)
74
75 #define MAX_IVLEN   16
76 #define NPE_ID      2  /* NPE C */
77 #define NPE_QLEN    16
78 /* Space for registering when the first
79  * NPE_QLEN crypt_ctl are busy */
80 #define NPE_QLEN_TOTAL 64
81
82 #define SEND_QID    29
83 #define RECV_QID    30
84
85 #define CTL_FLAG_UNUSED         0x0000
86 #define CTL_FLAG_USED           0x1000
87 #define CTL_FLAG_PERFORM_ABLK   0x0001
88 #define CTL_FLAG_GEN_ICV        0x0002
89 #define CTL_FLAG_GEN_REVAES     0x0004
90 #define CTL_FLAG_PERFORM_AEAD   0x0008
91 #define CTL_FLAG_MASK           0x000f
92
93 #define HMAC_IPAD_VALUE   0x36
94 #define HMAC_OPAD_VALUE   0x5C
95 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96
97 #define MD5_DIGEST_SIZE   16
98
99 struct buffer_desc {
100         u32 phys_next;
101 #ifdef __ARMEB__
102         u16 buf_len;
103         u16 pkt_len;
104 #else
105         u16 pkt_len;
106         u16 buf_len;
107 #endif
108         u32 phys_addr;
109         u32 __reserved[4];
110         struct buffer_desc *next;
111         enum dma_data_direction dir;
112 };
113
114 struct crypt_ctl {
115 #ifdef __ARMEB__
116         u8 mode;                /* NPE_OP_*  operation mode */
117         u8 init_len;
118         u16 reserved;
119 #else
120         u16 reserved;
121         u8 init_len;
122         u8 mode;                /* NPE_OP_*  operation mode */
123 #endif
124         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
125         u32 icv_rev_aes;        /* icv or rev aes */
126         u32 src_buf;
127         u32 dst_buf;
128 #ifdef __ARMEB__
129         u16 auth_offs;          /* Authentication start offset */
130         u16 auth_len;           /* Authentication data length */
131         u16 crypt_offs;         /* Cryption start offset */
132         u16 crypt_len;          /* Cryption data length */
133 #else
134         u16 auth_len;           /* Authentication data length */
135         u16 auth_offs;          /* Authentication start offset */
136         u16 crypt_len;          /* Cryption data length */
137         u16 crypt_offs;         /* Cryption start offset */
138 #endif
139         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
140         u32 crypto_ctx;         /* NPE Crypto Param structure address */
141
142         /* Used by Host: 4*4 bytes*/
143         unsigned ctl_flags;
144         union {
145                 struct ablkcipher_request *ablk_req;
146                 struct aead_request *aead_req;
147                 struct crypto_tfm *tfm;
148         } data;
149         struct buffer_desc *regist_buf;
150         u8 *regist_ptr;
151 };
152
153 struct ablk_ctx {
154         struct buffer_desc *src;
155         struct buffer_desc *dst;
156 };
157
158 struct aead_ctx {
159         struct buffer_desc *src;
160         struct buffer_desc *dst;
161         struct scatterlist ivlist;
162         /* used when the hmac is not on one sg entry */
163         u8 *hmac_virt;
164         int encrypt;
165 };
166
167 struct ix_hash_algo {
168         u32 cfgword;
169         unsigned char *icv;
170 };
171
172 struct ix_sa_dir {
173         unsigned char *npe_ctx;
174         dma_addr_t npe_ctx_phys;
175         int npe_ctx_idx;
176         u8 npe_mode;
177 };
178
179 struct ixp_ctx {
180         struct ix_sa_dir encrypt;
181         struct ix_sa_dir decrypt;
182         int authkey_len;
183         u8 authkey[MAX_KEYLEN];
184         int enckey_len;
185         u8 enckey[MAX_KEYLEN];
186         u8 salt[MAX_IVLEN];
187         u8 nonce[CTR_RFC3686_NONCE_SIZE];
188         unsigned salted;
189         atomic_t configuring;
190         struct completion completion;
191 };
192
193 struct ixp_alg {
194         struct crypto_alg crypto;
195         const struct ix_hash_algo *hash;
196         u32 cfg_enc;
197         u32 cfg_dec;
198
199         int registered;
200 };
201
202 struct ixp_aead_alg {
203         struct aead_alg crypto;
204         const struct ix_hash_algo *hash;
205         u32 cfg_enc;
206         u32 cfg_dec;
207
208         int registered;
209 };
210
211 static const struct ix_hash_algo hash_alg_md5 = {
212         .cfgword        = 0xAA010004,
213         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
214                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
215 };
216 static const struct ix_hash_algo hash_alg_sha1 = {
217         .cfgword        = 0x00000005,
218         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
219                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
220 };
221
222 static struct npe *npe_c;
223 static struct dma_pool *buffer_pool = NULL;
224 static struct dma_pool *ctx_pool = NULL;
225
226 static struct crypt_ctl *crypt_virt = NULL;
227 static dma_addr_t crypt_phys;
228
229 static int support_aes = 1;
230
231 #define DRIVER_NAME "ixp4xx_crypto"
232
233 static struct platform_device *pdev;
234
235 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
236 {
237         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
238 }
239
240 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
241 {
242         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
243 }
244
245 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
246 {
247         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
248 }
249
250 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
251 {
252         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
253 }
254
255 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
256 {
257         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
258 }
259
260 static int setup_crypt_desc(void)
261 {
262         struct device *dev = &pdev->dev;
263         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
264         crypt_virt = dma_alloc_coherent(dev,
265                         NPE_QLEN * sizeof(struct crypt_ctl),
266                         &crypt_phys, GFP_ATOMIC);
267         if (!crypt_virt)
268                 return -ENOMEM;
269         memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
270         return 0;
271 }
272
273 static spinlock_t desc_lock;
274 static struct crypt_ctl *get_crypt_desc(void)
275 {
276         int i;
277         static int idx = 0;
278         unsigned long flags;
279
280         spin_lock_irqsave(&desc_lock, flags);
281
282         if (unlikely(!crypt_virt))
283                 setup_crypt_desc();
284         if (unlikely(!crypt_virt)) {
285                 spin_unlock_irqrestore(&desc_lock, flags);
286                 return NULL;
287         }
288         i = idx;
289         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
290                 if (++idx >= NPE_QLEN)
291                         idx = 0;
292                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
293                 spin_unlock_irqrestore(&desc_lock, flags);
294                 return crypt_virt +i;
295         } else {
296                 spin_unlock_irqrestore(&desc_lock, flags);
297                 return NULL;
298         }
299 }
300
301 static spinlock_t emerg_lock;
302 static struct crypt_ctl *get_crypt_desc_emerg(void)
303 {
304         int i;
305         static int idx = NPE_QLEN;
306         struct crypt_ctl *desc;
307         unsigned long flags;
308
309         desc = get_crypt_desc();
310         if (desc)
311                 return desc;
312         if (unlikely(!crypt_virt))
313                 return NULL;
314
315         spin_lock_irqsave(&emerg_lock, flags);
316         i = idx;
317         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
318                 if (++idx >= NPE_QLEN_TOTAL)
319                         idx = NPE_QLEN;
320                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
321                 spin_unlock_irqrestore(&emerg_lock, flags);
322                 return crypt_virt +i;
323         } else {
324                 spin_unlock_irqrestore(&emerg_lock, flags);
325                 return NULL;
326         }
327 }
328
329 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
330 {
331         while (buf) {
332                 struct buffer_desc *buf1;
333                 u32 phys1;
334
335                 buf1 = buf->next;
336                 phys1 = buf->phys_next;
337                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
338                 dma_pool_free(buffer_pool, buf, phys);
339                 buf = buf1;
340                 phys = phys1;
341         }
342 }
343
344 static struct tasklet_struct crypto_done_tasklet;
345
346 static void finish_scattered_hmac(struct crypt_ctl *crypt)
347 {
348         struct aead_request *req = crypt->data.aead_req;
349         struct aead_ctx *req_ctx = aead_request_ctx(req);
350         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
351         int authsize = crypto_aead_authsize(tfm);
352         int decryptlen = req->assoclen + req->cryptlen - authsize;
353
354         if (req_ctx->encrypt) {
355                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
356                         req->dst, decryptlen, authsize, 1);
357         }
358         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
359 }
360
361 static void one_packet(dma_addr_t phys)
362 {
363         struct device *dev = &pdev->dev;
364         struct crypt_ctl *crypt;
365         struct ixp_ctx *ctx;
366         int failed;
367
368         failed = phys & 0x1 ? -EBADMSG : 0;
369         phys &= ~0x3;
370         crypt = crypt_phys2virt(phys);
371
372         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
373         case CTL_FLAG_PERFORM_AEAD: {
374                 struct aead_request *req = crypt->data.aead_req;
375                 struct aead_ctx *req_ctx = aead_request_ctx(req);
376
377                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
378                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
379                 if (req_ctx->hmac_virt) {
380                         finish_scattered_hmac(crypt);
381                 }
382                 req->base.complete(&req->base, failed);
383                 break;
384         }
385         case CTL_FLAG_PERFORM_ABLK: {
386                 struct ablkcipher_request *req = crypt->data.ablk_req;
387                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
388
389                 if (req_ctx->dst) {
390                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
391                 }
392                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
393                 req->base.complete(&req->base, failed);
394                 break;
395         }
396         case CTL_FLAG_GEN_ICV:
397                 ctx = crypto_tfm_ctx(crypt->data.tfm);
398                 dma_pool_free(ctx_pool, crypt->regist_ptr,
399                                 crypt->regist_buf->phys_addr);
400                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
401                 if (atomic_dec_and_test(&ctx->configuring))
402                         complete(&ctx->completion);
403                 break;
404         case CTL_FLAG_GEN_REVAES:
405                 ctx = crypto_tfm_ctx(crypt->data.tfm);
406                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
407                 if (atomic_dec_and_test(&ctx->configuring))
408                         complete(&ctx->completion);
409                 break;
410         default:
411                 BUG();
412         }
413         crypt->ctl_flags = CTL_FLAG_UNUSED;
414 }
415
416 static void irqhandler(void *_unused)
417 {
418         tasklet_schedule(&crypto_done_tasklet);
419 }
420
421 static void crypto_done_action(unsigned long arg)
422 {
423         int i;
424
425         for(i=0; i<4; i++) {
426                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
427                 if (!phys)
428                         return;
429                 one_packet(phys);
430         }
431         tasklet_schedule(&crypto_done_tasklet);
432 }
433
434 static int init_ixp_crypto(struct device *dev)
435 {
436         int ret = -ENODEV;
437         u32 msg[2] = { 0, 0 };
438
439         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
440                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
441                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
442                 return ret;
443         }
444         npe_c = npe_request(NPE_ID);
445         if (!npe_c)
446                 return ret;
447
448         if (!npe_running(npe_c)) {
449                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
450                 if (ret) {
451                         return ret;
452                 }
453                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
454                         goto npe_error;
455         } else {
456                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
457                         goto npe_error;
458
459                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
460                         goto npe_error;
461         }
462
463         switch ((msg[1]>>16) & 0xff) {
464         case 3:
465                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
466                                 npe_name(npe_c));
467                 support_aes = 0;
468                 break;
469         case 4:
470         case 5:
471                 support_aes = 1;
472                 break;
473         default:
474                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
475                         npe_name(npe_c));
476                 return -ENODEV;
477         }
478         /* buffer_pool will also be used to sometimes store the hmac,
479          * so assure it is large enough
480          */
481         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
482         buffer_pool = dma_pool_create("buffer", dev,
483                         sizeof(struct buffer_desc), 32, 0);
484         ret = -ENOMEM;
485         if (!buffer_pool) {
486                 goto err;
487         }
488         ctx_pool = dma_pool_create("context", dev,
489                         NPE_CTX_LEN, 16, 0);
490         if (!ctx_pool) {
491                 goto err;
492         }
493         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
494                                  "ixp_crypto:out", NULL);
495         if (ret)
496                 goto err;
497         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
498                                  "ixp_crypto:in", NULL);
499         if (ret) {
500                 qmgr_release_queue(SEND_QID);
501                 goto err;
502         }
503         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
504         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
505
506         qmgr_enable_irq(RECV_QID);
507         return 0;
508
509 npe_error:
510         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
511         ret = -EIO;
512 err:
513         dma_pool_destroy(ctx_pool);
514         dma_pool_destroy(buffer_pool);
515         npe_release(npe_c);
516         return ret;
517 }
518
519 static void release_ixp_crypto(struct device *dev)
520 {
521         qmgr_disable_irq(RECV_QID);
522         tasklet_kill(&crypto_done_tasklet);
523
524         qmgr_release_queue(SEND_QID);
525         qmgr_release_queue(RECV_QID);
526
527         dma_pool_destroy(ctx_pool);
528         dma_pool_destroy(buffer_pool);
529
530         npe_release(npe_c);
531
532         if (crypt_virt) {
533                 dma_free_coherent(dev,
534                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
535                         crypt_virt, crypt_phys);
536         }
537         return;
538 }
539
540 static void reset_sa_dir(struct ix_sa_dir *dir)
541 {
542         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
543         dir->npe_ctx_idx = 0;
544         dir->npe_mode = 0;
545 }
546
547 static int init_sa_dir(struct ix_sa_dir *dir)
548 {
549         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
550         if (!dir->npe_ctx) {
551                 return -ENOMEM;
552         }
553         reset_sa_dir(dir);
554         return 0;
555 }
556
557 static void free_sa_dir(struct ix_sa_dir *dir)
558 {
559         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
560         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
561 }
562
563 static int init_tfm(struct crypto_tfm *tfm)
564 {
565         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
566         int ret;
567
568         atomic_set(&ctx->configuring, 0);
569         ret = init_sa_dir(&ctx->encrypt);
570         if (ret)
571                 return ret;
572         ret = init_sa_dir(&ctx->decrypt);
573         if (ret) {
574                 free_sa_dir(&ctx->encrypt);
575         }
576         return ret;
577 }
578
579 static int init_tfm_ablk(struct crypto_tfm *tfm)
580 {
581         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
582         return init_tfm(tfm);
583 }
584
585 static int init_tfm_aead(struct crypto_aead *tfm)
586 {
587         crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
588         return init_tfm(crypto_aead_tfm(tfm));
589 }
590
591 static void exit_tfm(struct crypto_tfm *tfm)
592 {
593         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
594         free_sa_dir(&ctx->encrypt);
595         free_sa_dir(&ctx->decrypt);
596 }
597
598 static void exit_tfm_aead(struct crypto_aead *tfm)
599 {
600         exit_tfm(crypto_aead_tfm(tfm));
601 }
602
603 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
604                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
605 {
606         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
607         struct crypt_ctl *crypt;
608         struct buffer_desc *buf;
609         int i;
610         u8 *pad;
611         u32 pad_phys, buf_phys;
612
613         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
614         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
615         if (!pad)
616                 return -ENOMEM;
617         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
618         if (!buf) {
619                 dma_pool_free(ctx_pool, pad, pad_phys);
620                 return -ENOMEM;
621         }
622         crypt = get_crypt_desc_emerg();
623         if (!crypt) {
624                 dma_pool_free(ctx_pool, pad, pad_phys);
625                 dma_pool_free(buffer_pool, buf, buf_phys);
626                 return -EAGAIN;
627         }
628
629         memcpy(pad, key, key_len);
630         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
631         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
632                 pad[i] ^= xpad;
633         }
634
635         crypt->data.tfm = tfm;
636         crypt->regist_ptr = pad;
637         crypt->regist_buf = buf;
638
639         crypt->auth_offs = 0;
640         crypt->auth_len = HMAC_PAD_BLOCKLEN;
641         crypt->crypto_ctx = ctx_addr;
642         crypt->src_buf = buf_phys;
643         crypt->icv_rev_aes = target;
644         crypt->mode = NPE_OP_HASH_GEN_ICV;
645         crypt->init_len = init_len;
646         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
647
648         buf->next = 0;
649         buf->buf_len = HMAC_PAD_BLOCKLEN;
650         buf->pkt_len = 0;
651         buf->phys_addr = pad_phys;
652
653         atomic_inc(&ctx->configuring);
654         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
655         BUG_ON(qmgr_stat_overflow(SEND_QID));
656         return 0;
657 }
658
659 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
660                 const u8 *key, int key_len, unsigned digest_len)
661 {
662         u32 itarget, otarget, npe_ctx_addr;
663         unsigned char *cinfo;
664         int init_len, ret = 0;
665         u32 cfgword;
666         struct ix_sa_dir *dir;
667         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
668         const struct ix_hash_algo *algo;
669
670         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
671         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
672         algo = ix_hash(tfm);
673
674         /* write cfg word to cryptinfo */
675         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
676 #ifndef __ARMEB__
677         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
678 #endif
679         *(u32*)cinfo = cpu_to_be32(cfgword);
680         cinfo += sizeof(cfgword);
681
682         /* write ICV to cryptinfo */
683         memcpy(cinfo, algo->icv, digest_len);
684         cinfo += digest_len;
685
686         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
687                                 + sizeof(algo->cfgword);
688         otarget = itarget + digest_len;
689         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
690         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
691
692         dir->npe_ctx_idx += init_len;
693         dir->npe_mode |= NPE_OP_HASH_ENABLE;
694
695         if (!encrypt)
696                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
697
698         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
699                         init_len, npe_ctx_addr, key, key_len);
700         if (ret)
701                 return ret;
702         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
703                         init_len, npe_ctx_addr, key, key_len);
704 }
705
706 static int gen_rev_aes_key(struct crypto_tfm *tfm)
707 {
708         struct crypt_ctl *crypt;
709         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
710         struct ix_sa_dir *dir = &ctx->decrypt;
711
712         crypt = get_crypt_desc_emerg();
713         if (!crypt) {
714                 return -EAGAIN;
715         }
716         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
717
718         crypt->data.tfm = tfm;
719         crypt->crypt_offs = 0;
720         crypt->crypt_len = AES_BLOCK128;
721         crypt->src_buf = 0;
722         crypt->crypto_ctx = dir->npe_ctx_phys;
723         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
724         crypt->mode = NPE_OP_ENC_GEN_KEY;
725         crypt->init_len = dir->npe_ctx_idx;
726         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
727
728         atomic_inc(&ctx->configuring);
729         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
730         BUG_ON(qmgr_stat_overflow(SEND_QID));
731         return 0;
732 }
733
734 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
735                 const u8 *key, int key_len)
736 {
737         u8 *cinfo;
738         u32 cipher_cfg;
739         u32 keylen_cfg = 0;
740         struct ix_sa_dir *dir;
741         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
742         u32 *flags = &tfm->crt_flags;
743
744         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
745         cinfo = dir->npe_ctx;
746
747         if (encrypt) {
748                 cipher_cfg = cipher_cfg_enc(tfm);
749                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
750         } else {
751                 cipher_cfg = cipher_cfg_dec(tfm);
752         }
753         if (cipher_cfg & MOD_AES) {
754                 switch (key_len) {
755                 case 16: keylen_cfg = MOD_AES128; break;
756                 case 24: keylen_cfg = MOD_AES192; break;
757                 case 32: keylen_cfg = MOD_AES256; break;
758                 default:
759                         *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
760                         return -EINVAL;
761                 }
762                 cipher_cfg |= keylen_cfg;
763         } else if (cipher_cfg & MOD_3DES) {
764                 const u32 *K = (const u32 *)key;
765                 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
766                              !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
767                 {
768                         *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
769                         return -EINVAL;
770                 }
771         } else {
772                 u32 tmp[DES_EXPKEY_WORDS];
773                 if (des_ekey(tmp, key) == 0) {
774                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
775                 }
776         }
777         /* write cfg word to cryptinfo */
778         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
779         cinfo += sizeof(cipher_cfg);
780
781         /* write cipher key to cryptinfo */
782         memcpy(cinfo, key, key_len);
783         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
784         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
785                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
786                 key_len = DES3_EDE_KEY_SIZE;
787         }
788         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
789         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
790         if ((cipher_cfg & MOD_AES) && !encrypt) {
791                 return gen_rev_aes_key(tfm);
792         }
793         return 0;
794 }
795
796 static struct buffer_desc *chainup_buffers(struct device *dev,
797                 struct scatterlist *sg, unsigned nbytes,
798                 struct buffer_desc *buf, gfp_t flags,
799                 enum dma_data_direction dir)
800 {
801         for (; nbytes > 0; sg = sg_next(sg)) {
802                 unsigned len = min(nbytes, sg->length);
803                 struct buffer_desc *next_buf;
804                 u32 next_buf_phys;
805                 void *ptr;
806
807                 nbytes -= len;
808                 ptr = page_address(sg_page(sg)) + sg->offset;
809                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
810                 if (!next_buf) {
811                         buf = NULL;
812                         break;
813                 }
814                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
815                 buf->next = next_buf;
816                 buf->phys_next = next_buf_phys;
817                 buf = next_buf;
818
819                 buf->phys_addr = sg_dma_address(sg);
820                 buf->buf_len = len;
821                 buf->dir = dir;
822         }
823         buf->next = NULL;
824         buf->phys_next = 0;
825         return buf;
826 }
827
828 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
829                         unsigned int key_len)
830 {
831         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
832         u32 *flags = &tfm->base.crt_flags;
833         int ret;
834
835         init_completion(&ctx->completion);
836         atomic_inc(&ctx->configuring);
837
838         reset_sa_dir(&ctx->encrypt);
839         reset_sa_dir(&ctx->decrypt);
840
841         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
842         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
843
844         ret = setup_cipher(&tfm->base, 0, key, key_len);
845         if (ret)
846                 goto out;
847         ret = setup_cipher(&tfm->base, 1, key, key_len);
848         if (ret)
849                 goto out;
850
851         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
852                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
853                         ret = -EINVAL;
854                 } else {
855                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
856                 }
857         }
858 out:
859         if (!atomic_dec_and_test(&ctx->configuring))
860                 wait_for_completion(&ctx->completion);
861         return ret;
862 }
863
864 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
865                 unsigned int key_len)
866 {
867         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
868
869         /* the nonce is stored in bytes at end of key */
870         if (key_len < CTR_RFC3686_NONCE_SIZE)
871                 return -EINVAL;
872
873         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
874                         CTR_RFC3686_NONCE_SIZE);
875
876         key_len -= CTR_RFC3686_NONCE_SIZE;
877         return ablk_setkey(tfm, key, key_len);
878 }
879
880 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
881 {
882         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
883         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
884         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
885         struct ix_sa_dir *dir;
886         struct crypt_ctl *crypt;
887         unsigned int nbytes = req->nbytes;
888         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
889         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
890         struct buffer_desc src_hook;
891         struct device *dev = &pdev->dev;
892         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
893                                 GFP_KERNEL : GFP_ATOMIC;
894
895         if (qmgr_stat_full(SEND_QID))
896                 return -EAGAIN;
897         if (atomic_read(&ctx->configuring))
898                 return -EAGAIN;
899
900         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
901
902         crypt = get_crypt_desc();
903         if (!crypt)
904                 return -ENOMEM;
905
906         crypt->data.ablk_req = req;
907         crypt->crypto_ctx = dir->npe_ctx_phys;
908         crypt->mode = dir->npe_mode;
909         crypt->init_len = dir->npe_ctx_idx;
910
911         crypt->crypt_offs = 0;
912         crypt->crypt_len = nbytes;
913
914         BUG_ON(ivsize && !req->info);
915         memcpy(crypt->iv, req->info, ivsize);
916         if (req->src != req->dst) {
917                 struct buffer_desc dst_hook;
918                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
919                 /* This was never tested by Intel
920                  * for more than one dst buffer, I think. */
921                 req_ctx->dst = NULL;
922                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
923                                         flags, DMA_FROM_DEVICE))
924                         goto free_buf_dest;
925                 src_direction = DMA_TO_DEVICE;
926                 req_ctx->dst = dst_hook.next;
927                 crypt->dst_buf = dst_hook.phys_next;
928         } else {
929                 req_ctx->dst = NULL;
930         }
931         req_ctx->src = NULL;
932         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
933                                 flags, src_direction))
934                 goto free_buf_src;
935
936         req_ctx->src = src_hook.next;
937         crypt->src_buf = src_hook.phys_next;
938         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
939         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
940         BUG_ON(qmgr_stat_overflow(SEND_QID));
941         return -EINPROGRESS;
942
943 free_buf_src:
944         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
945 free_buf_dest:
946         if (req->src != req->dst) {
947                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
948         }
949         crypt->ctl_flags = CTL_FLAG_UNUSED;
950         return -ENOMEM;
951 }
952
953 static int ablk_encrypt(struct ablkcipher_request *req)
954 {
955         return ablk_perform(req, 1);
956 }
957
958 static int ablk_decrypt(struct ablkcipher_request *req)
959 {
960         return ablk_perform(req, 0);
961 }
962
963 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
964 {
965         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
966         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
967         u8 iv[CTR_RFC3686_BLOCK_SIZE];
968         u8 *info = req->info;
969         int ret;
970
971         /* set up counter block */
972         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
973         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
974
975         /* initialize counter portion of counter block */
976         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
977                 cpu_to_be32(1);
978
979         req->info = iv;
980         ret = ablk_perform(req, 1);
981         req->info = info;
982         return ret;
983 }
984
985 static int aead_perform(struct aead_request *req, int encrypt,
986                 int cryptoffset, int eff_cryptlen, u8 *iv)
987 {
988         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
989         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
990         unsigned ivsize = crypto_aead_ivsize(tfm);
991         unsigned authsize = crypto_aead_authsize(tfm);
992         struct ix_sa_dir *dir;
993         struct crypt_ctl *crypt;
994         unsigned int cryptlen;
995         struct buffer_desc *buf, src_hook;
996         struct aead_ctx *req_ctx = aead_request_ctx(req);
997         struct device *dev = &pdev->dev;
998         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
999                                 GFP_KERNEL : GFP_ATOMIC;
1000         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1001         unsigned int lastlen;
1002
1003         if (qmgr_stat_full(SEND_QID))
1004                 return -EAGAIN;
1005         if (atomic_read(&ctx->configuring))
1006                 return -EAGAIN;
1007
1008         if (encrypt) {
1009                 dir = &ctx->encrypt;
1010                 cryptlen = req->cryptlen;
1011         } else {
1012                 dir = &ctx->decrypt;
1013                 /* req->cryptlen includes the authsize when decrypting */
1014                 cryptlen = req->cryptlen -authsize;
1015                 eff_cryptlen -= authsize;
1016         }
1017         crypt = get_crypt_desc();
1018         if (!crypt)
1019                 return -ENOMEM;
1020
1021         crypt->data.aead_req = req;
1022         crypt->crypto_ctx = dir->npe_ctx_phys;
1023         crypt->mode = dir->npe_mode;
1024         crypt->init_len = dir->npe_ctx_idx;
1025
1026         crypt->crypt_offs = cryptoffset;
1027         crypt->crypt_len = eff_cryptlen;
1028
1029         crypt->auth_offs = 0;
1030         crypt->auth_len = req->assoclen + cryptlen;
1031         BUG_ON(ivsize && !req->iv);
1032         memcpy(crypt->iv, req->iv, ivsize);
1033
1034         buf = chainup_buffers(dev, req->src, crypt->auth_len,
1035                               &src_hook, flags, src_direction);
1036         req_ctx->src = src_hook.next;
1037         crypt->src_buf = src_hook.phys_next;
1038         if (!buf)
1039                 goto free_buf_src;
1040
1041         lastlen = buf->buf_len;
1042         if (lastlen >= authsize)
1043                 crypt->icv_rev_aes = buf->phys_addr +
1044                                      buf->buf_len - authsize;
1045
1046         req_ctx->dst = NULL;
1047
1048         if (req->src != req->dst) {
1049                 struct buffer_desc dst_hook;
1050
1051                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1052                 src_direction = DMA_TO_DEVICE;
1053
1054                 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1055                                       &dst_hook, flags, DMA_FROM_DEVICE);
1056                 req_ctx->dst = dst_hook.next;
1057                 crypt->dst_buf = dst_hook.phys_next;
1058
1059                 if (!buf)
1060                         goto free_buf_dst;
1061
1062                 if (encrypt) {
1063                         lastlen = buf->buf_len;
1064                         if (lastlen >= authsize)
1065                                 crypt->icv_rev_aes = buf->phys_addr +
1066                                                      buf->buf_len - authsize;
1067                 }
1068         }
1069
1070         if (unlikely(lastlen < authsize)) {
1071                 /* The 12 hmac bytes are scattered,
1072                  * we need to copy them into a safe buffer */
1073                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1074                                 &crypt->icv_rev_aes);
1075                 if (unlikely(!req_ctx->hmac_virt))
1076                         goto free_buf_src;
1077                 if (!encrypt) {
1078                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1079                                 req->src, cryptlen, authsize, 0);
1080                 }
1081                 req_ctx->encrypt = encrypt;
1082         } else {
1083                 req_ctx->hmac_virt = NULL;
1084         }
1085
1086         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1087         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1088         BUG_ON(qmgr_stat_overflow(SEND_QID));
1089         return -EINPROGRESS;
1090
1091 free_buf_src:
1092         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1093 free_buf_dst:
1094         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1095         crypt->ctl_flags = CTL_FLAG_UNUSED;
1096         return -ENOMEM;
1097 }
1098
1099 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1100 {
1101         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1102         u32 *flags = &tfm->base.crt_flags;
1103         unsigned digest_len = crypto_aead_maxauthsize(tfm);
1104         int ret;
1105
1106         if (!ctx->enckey_len && !ctx->authkey_len)
1107                 return 0;
1108         init_completion(&ctx->completion);
1109         atomic_inc(&ctx->configuring);
1110
1111         reset_sa_dir(&ctx->encrypt);
1112         reset_sa_dir(&ctx->decrypt);
1113
1114         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1115         if (ret)
1116                 goto out;
1117         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1118         if (ret)
1119                 goto out;
1120         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1121                         ctx->authkey_len, digest_len);
1122         if (ret)
1123                 goto out;
1124         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1125                         ctx->authkey_len, digest_len);
1126         if (ret)
1127                 goto out;
1128
1129         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1130                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1131                         ret = -EINVAL;
1132                         goto out;
1133                 } else {
1134                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1135                 }
1136         }
1137 out:
1138         if (!atomic_dec_and_test(&ctx->configuring))
1139                 wait_for_completion(&ctx->completion);
1140         return ret;
1141 }
1142
1143 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1144 {
1145         int max = crypto_aead_maxauthsize(tfm) >> 2;
1146
1147         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1148                 return -EINVAL;
1149         return aead_setup(tfm, authsize);
1150 }
1151
1152 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1153                         unsigned int keylen)
1154 {
1155         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1156         struct crypto_authenc_keys keys;
1157
1158         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1159                 goto badkey;
1160
1161         if (keys.authkeylen > sizeof(ctx->authkey))
1162                 goto badkey;
1163
1164         if (keys.enckeylen > sizeof(ctx->enckey))
1165                 goto badkey;
1166
1167         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1168         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1169         ctx->authkey_len = keys.authkeylen;
1170         ctx->enckey_len = keys.enckeylen;
1171
1172         return aead_setup(tfm, crypto_aead_authsize(tfm));
1173 badkey:
1174         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1175         return -EINVAL;
1176 }
1177
1178 static int aead_encrypt(struct aead_request *req)
1179 {
1180         return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1181 }
1182
1183 static int aead_decrypt(struct aead_request *req)
1184 {
1185         return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1186 }
1187
1188 static struct ixp_alg ixp4xx_algos[] = {
1189 {
1190         .crypto = {
1191                 .cra_name       = "cbc(des)",
1192                 .cra_blocksize  = DES_BLOCK_SIZE,
1193                 .cra_u          = { .ablkcipher = {
1194                         .min_keysize    = DES_KEY_SIZE,
1195                         .max_keysize    = DES_KEY_SIZE,
1196                         .ivsize         = DES_BLOCK_SIZE,
1197                         .geniv          = "eseqiv",
1198                         }
1199                 }
1200         },
1201         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1202         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1203
1204 }, {
1205         .crypto = {
1206                 .cra_name       = "ecb(des)",
1207                 .cra_blocksize  = DES_BLOCK_SIZE,
1208                 .cra_u          = { .ablkcipher = {
1209                         .min_keysize    = DES_KEY_SIZE,
1210                         .max_keysize    = DES_KEY_SIZE,
1211                         }
1212                 }
1213         },
1214         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1215         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1216 }, {
1217         .crypto = {
1218                 .cra_name       = "cbc(des3_ede)",
1219                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1220                 .cra_u          = { .ablkcipher = {
1221                         .min_keysize    = DES3_EDE_KEY_SIZE,
1222                         .max_keysize    = DES3_EDE_KEY_SIZE,
1223                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1224                         .geniv          = "eseqiv",
1225                         }
1226                 }
1227         },
1228         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1229         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1230 }, {
1231         .crypto = {
1232                 .cra_name       = "ecb(des3_ede)",
1233                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1234                 .cra_u          = { .ablkcipher = {
1235                         .min_keysize    = DES3_EDE_KEY_SIZE,
1236                         .max_keysize    = DES3_EDE_KEY_SIZE,
1237                         }
1238                 }
1239         },
1240         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1241         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1242 }, {
1243         .crypto = {
1244                 .cra_name       = "cbc(aes)",
1245                 .cra_blocksize  = AES_BLOCK_SIZE,
1246                 .cra_u          = { .ablkcipher = {
1247                         .min_keysize    = AES_MIN_KEY_SIZE,
1248                         .max_keysize    = AES_MAX_KEY_SIZE,
1249                         .ivsize         = AES_BLOCK_SIZE,
1250                         .geniv          = "eseqiv",
1251                         }
1252                 }
1253         },
1254         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1255         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1256 }, {
1257         .crypto = {
1258                 .cra_name       = "ecb(aes)",
1259                 .cra_blocksize  = AES_BLOCK_SIZE,
1260                 .cra_u          = { .ablkcipher = {
1261                         .min_keysize    = AES_MIN_KEY_SIZE,
1262                         .max_keysize    = AES_MAX_KEY_SIZE,
1263                         }
1264                 }
1265         },
1266         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1267         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1268 }, {
1269         .crypto = {
1270                 .cra_name       = "ctr(aes)",
1271                 .cra_blocksize  = AES_BLOCK_SIZE,
1272                 .cra_u          = { .ablkcipher = {
1273                         .min_keysize    = AES_MIN_KEY_SIZE,
1274                         .max_keysize    = AES_MAX_KEY_SIZE,
1275                         .ivsize         = AES_BLOCK_SIZE,
1276                         .geniv          = "eseqiv",
1277                         }
1278                 }
1279         },
1280         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1281         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1282 }, {
1283         .crypto = {
1284                 .cra_name       = "rfc3686(ctr(aes))",
1285                 .cra_blocksize  = AES_BLOCK_SIZE,
1286                 .cra_u          = { .ablkcipher = {
1287                         .min_keysize    = AES_MIN_KEY_SIZE,
1288                         .max_keysize    = AES_MAX_KEY_SIZE,
1289                         .ivsize         = AES_BLOCK_SIZE,
1290                         .geniv          = "eseqiv",
1291                         .setkey         = ablk_rfc3686_setkey,
1292                         .encrypt        = ablk_rfc3686_crypt,
1293                         .decrypt        = ablk_rfc3686_crypt }
1294                 }
1295         },
1296         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1297         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1298 } };
1299
1300 static struct ixp_aead_alg ixp4xx_aeads[] = {
1301 {
1302         .crypto = {
1303                 .base = {
1304                         .cra_name       = "authenc(hmac(md5),cbc(des))",
1305                         .cra_blocksize  = DES_BLOCK_SIZE,
1306                 },
1307                 .ivsize         = DES_BLOCK_SIZE,
1308                 .maxauthsize    = MD5_DIGEST_SIZE,
1309         },
1310         .hash = &hash_alg_md5,
1311         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1312         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1313 }, {
1314         .crypto = {
1315                 .base = {
1316                         .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1317                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1318                 },
1319                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1320                 .maxauthsize    = MD5_DIGEST_SIZE,
1321         },
1322         .hash = &hash_alg_md5,
1323         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1324         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1325 }, {
1326         .crypto = {
1327                 .base = {
1328                         .cra_name       = "authenc(hmac(sha1),cbc(des))",
1329                         .cra_blocksize  = DES_BLOCK_SIZE,
1330                 },
1331                         .ivsize         = DES_BLOCK_SIZE,
1332                         .maxauthsize    = SHA1_DIGEST_SIZE,
1333         },
1334         .hash = &hash_alg_sha1,
1335         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1336         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1337 }, {
1338         .crypto = {
1339                 .base = {
1340                         .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1341                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1342                 },
1343                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1344                 .maxauthsize    = SHA1_DIGEST_SIZE,
1345         },
1346         .hash = &hash_alg_sha1,
1347         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1348         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1349 }, {
1350         .crypto = {
1351                 .base = {
1352                         .cra_name       = "authenc(hmac(md5),cbc(aes))",
1353                         .cra_blocksize  = AES_BLOCK_SIZE,
1354                 },
1355                 .ivsize         = AES_BLOCK_SIZE,
1356                 .maxauthsize    = MD5_DIGEST_SIZE,
1357         },
1358         .hash = &hash_alg_md5,
1359         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1360         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1361 }, {
1362         .crypto = {
1363                 .base = {
1364                         .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1365                         .cra_blocksize  = AES_BLOCK_SIZE,
1366                 },
1367                 .ivsize         = AES_BLOCK_SIZE,
1368                 .maxauthsize    = SHA1_DIGEST_SIZE,
1369         },
1370         .hash = &hash_alg_sha1,
1371         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1372         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1373 } };
1374
1375 #define IXP_POSTFIX "-ixp4xx"
1376
1377 static const struct platform_device_info ixp_dev_info __initdata = {
1378         .name           = DRIVER_NAME,
1379         .id             = 0,
1380         .dma_mask       = DMA_BIT_MASK(32),
1381 };
1382
1383 static int __init ixp_module_init(void)
1384 {
1385         int num = ARRAY_SIZE(ixp4xx_algos);
1386         int i, err;
1387
1388         pdev = platform_device_register_full(&ixp_dev_info);
1389         if (IS_ERR(pdev))
1390                 return PTR_ERR(pdev);
1391
1392         spin_lock_init(&desc_lock);
1393         spin_lock_init(&emerg_lock);
1394
1395         err = init_ixp_crypto(&pdev->dev);
1396         if (err) {
1397                 platform_device_unregister(pdev);
1398                 return err;
1399         }
1400         for (i=0; i< num; i++) {
1401                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1402
1403                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1404                         "%s"IXP_POSTFIX, cra->cra_name) >=
1405                         CRYPTO_MAX_ALG_NAME)
1406                 {
1407                         continue;
1408                 }
1409                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1410                         continue;
1411                 }
1412
1413                 /* block ciphers */
1414                 cra->cra_type = &crypto_ablkcipher_type;
1415                 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1416                                  CRYPTO_ALG_KERN_DRIVER_ONLY |
1417                                  CRYPTO_ALG_ASYNC;
1418                 if (!cra->cra_ablkcipher.setkey)
1419                         cra->cra_ablkcipher.setkey = ablk_setkey;
1420                 if (!cra->cra_ablkcipher.encrypt)
1421                         cra->cra_ablkcipher.encrypt = ablk_encrypt;
1422                 if (!cra->cra_ablkcipher.decrypt)
1423                         cra->cra_ablkcipher.decrypt = ablk_decrypt;
1424                 cra->cra_init = init_tfm_ablk;
1425
1426                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1427                 cra->cra_module = THIS_MODULE;
1428                 cra->cra_alignmask = 3;
1429                 cra->cra_priority = 300;
1430                 cra->cra_exit = exit_tfm;
1431                 if (crypto_register_alg(cra))
1432                         printk(KERN_ERR "Failed to register '%s'\n",
1433                                 cra->cra_name);
1434                 else
1435                         ixp4xx_algos[i].registered = 1;
1436         }
1437
1438         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1439                 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1440
1441                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1442                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1443                     CRYPTO_MAX_ALG_NAME)
1444                         continue;
1445                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1446                         continue;
1447
1448                 /* authenc */
1449                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1450                                       CRYPTO_ALG_ASYNC;
1451                 cra->setkey = aead_setkey;
1452                 cra->setauthsize = aead_setauthsize;
1453                 cra->encrypt = aead_encrypt;
1454                 cra->decrypt = aead_decrypt;
1455                 cra->init = init_tfm_aead;
1456                 cra->exit = exit_tfm_aead;
1457
1458                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1459                 cra->base.cra_module = THIS_MODULE;
1460                 cra->base.cra_alignmask = 3;
1461                 cra->base.cra_priority = 300;
1462
1463                 if (crypto_register_aead(cra))
1464                         printk(KERN_ERR "Failed to register '%s'\n",
1465                                 cra->base.cra_driver_name);
1466                 else
1467                         ixp4xx_aeads[i].registered = 1;
1468         }
1469         return 0;
1470 }
1471
1472 static void __exit ixp_module_exit(void)
1473 {
1474         int num = ARRAY_SIZE(ixp4xx_algos);
1475         int i;
1476
1477         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1478                 if (ixp4xx_aeads[i].registered)
1479                         crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1480         }
1481
1482         for (i=0; i< num; i++) {
1483                 if (ixp4xx_algos[i].registered)
1484                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1485         }
1486         release_ixp_crypto(&pdev->dev);
1487         platform_device_unregister(pdev);
1488 }
1489
1490 module_init(ixp_module_init);
1491 module_exit(ixp_module_exit);
1492
1493 MODULE_LICENSE("GPL");
1494 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1495 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1496