]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/crypto/nx/nx-sha256.c
Merge tag 'jfs-3.12' of git://github.com/kleikamp/linux-shaggy
[karo-tx-linux.git] / drivers / crypto / nx / nx-sha256.c
1 /**
2  * SHA-256 routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21
22 #include <crypto/internal/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/module.h>
25 #include <asm/vio.h>
26
27 #include "nx_csbcpb.h"
28 #include "nx.h"
29
30
31 static int nx_sha256_init(struct shash_desc *desc)
32 {
33         struct sha256_state *sctx = shash_desc_ctx(desc);
34         struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
35         struct nx_sg *out_sg;
36
37         nx_ctx_init(nx_ctx, HCOP_FC_SHA);
38
39         memset(sctx, 0, sizeof *sctx);
40
41         nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
42
43         NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
44         out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
45                                   SHA256_DIGEST_SIZE, nx_ctx->ap->sglen);
46         nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
47
48         return 0;
49 }
50
51 static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
52                             unsigned int len)
53 {
54         struct sha256_state *sctx = shash_desc_ctx(desc);
55         struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
56         struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
57         struct nx_sg *in_sg;
58         u64 to_process, leftover, total;
59         u32 max_sg_len;
60         unsigned long irq_flags;
61         int rc = 0;
62
63         spin_lock_irqsave(&nx_ctx->lock, irq_flags);
64
65         /* 2 cases for total data len:
66          *  1: < SHA256_BLOCK_SIZE: copy into state, return 0
67          *  2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
68          */
69         total = sctx->count + len;
70         if (total < SHA256_BLOCK_SIZE) {
71                 memcpy(sctx->buf + sctx->count, data, len);
72                 sctx->count += len;
73                 goto out;
74         }
75
76         in_sg = nx_ctx->in_sg;
77         max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
78                            nx_ctx->ap->sglen);
79
80         do {
81                 /*
82                  * to_process: the SHA256_BLOCK_SIZE data chunk to process in
83                  * this update. This value is also restricted by the sg list
84                  * limits.
85                  */
86                 to_process = min_t(u64, total, nx_ctx->ap->databytelen);
87                 to_process = min_t(u64, to_process,
88                                    NX_PAGE_SIZE * (max_sg_len - 1));
89                 to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
90                 leftover = total - to_process;
91
92                 if (sctx->count) {
93                         in_sg = nx_build_sg_list(nx_ctx->in_sg,
94                                                  (u8 *) sctx->buf,
95                                                  sctx->count, max_sg_len);
96                 }
97                 in_sg = nx_build_sg_list(in_sg, (u8 *) data,
98                                          to_process - sctx->count,
99                                          max_sg_len);
100                 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
101                                         sizeof(struct nx_sg);
102
103                 if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
104                         /*
105                          * we've hit the nx chip previously and we're updating
106                          * again, so copy over the partial digest.
107                          */
108                         memcpy(csbcpb->cpb.sha256.input_partial_digest,
109                                csbcpb->cpb.sha256.message_digest,
110                                SHA256_DIGEST_SIZE);
111                 }
112
113                 NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
114                 if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
115                         rc = -EINVAL;
116                         goto out;
117                 }
118
119                 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
120                                    desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
121                 if (rc)
122                         goto out;
123
124                 atomic_inc(&(nx_ctx->stats->sha256_ops));
125                 csbcpb->cpb.sha256.message_bit_length += (u64)
126                         (csbcpb->cpb.sha256.spbc * 8);
127
128                 /* everything after the first update is continuation */
129                 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
130
131                 total -= to_process;
132                 data += to_process - sctx->count;
133                 sctx->count = 0;
134                 in_sg = nx_ctx->in_sg;
135         } while (leftover >= SHA256_BLOCK_SIZE);
136
137         /* copy the leftover back into the state struct */
138         if (leftover)
139                 memcpy(sctx->buf, data, leftover);
140         sctx->count = leftover;
141 out:
142         spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
143         return rc;
144 }
145
146 static int nx_sha256_final(struct shash_desc *desc, u8 *out)
147 {
148         struct sha256_state *sctx = shash_desc_ctx(desc);
149         struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
150         struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
151         struct nx_sg *in_sg, *out_sg;
152         u32 max_sg_len;
153         unsigned long irq_flags;
154         int rc;
155
156         spin_lock_irqsave(&nx_ctx->lock, irq_flags);
157
158         max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen);
159
160         if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
161                 /* we've hit the nx chip previously, now we're finalizing,
162                  * so copy over the partial digest */
163                 memcpy(csbcpb->cpb.sha256.input_partial_digest,
164                        csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
165         }
166
167         /* final is represented by continuing the operation and indicating that
168          * this is not an intermediate operation */
169         NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
170
171         csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8);
172
173         in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf,
174                                  sctx->count, max_sg_len);
175         out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE,
176                                   max_sg_len);
177         nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
178         nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
179
180         if (!nx_ctx->op.outlen) {
181                 rc = -EINVAL;
182                 goto out;
183         }
184
185         rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
186                            desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
187         if (rc)
188                 goto out;
189
190         atomic_inc(&(nx_ctx->stats->sha256_ops));
191
192         atomic64_add(csbcpb->cpb.sha256.message_bit_length / 8,
193                      &(nx_ctx->stats->sha256_bytes));
194         memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
195 out:
196         spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
197         return rc;
198 }
199
200 static int nx_sha256_export(struct shash_desc *desc, void *out)
201 {
202         struct sha256_state *sctx = shash_desc_ctx(desc);
203         struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
204         struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
205         struct sha256_state *octx = out;
206         unsigned long irq_flags;
207
208         spin_lock_irqsave(&nx_ctx->lock, irq_flags);
209
210         octx->count = sctx->count +
211                       (csbcpb->cpb.sha256.message_bit_length / 8);
212         memcpy(octx->buf, sctx->buf, sizeof(octx->buf));
213
214         /* if no data has been processed yet, we need to export SHA256's
215          * initial data, in case this context gets imported into a software
216          * context */
217         if (csbcpb->cpb.sha256.message_bit_length)
218                 memcpy(octx->state, csbcpb->cpb.sha256.message_digest,
219                        SHA256_DIGEST_SIZE);
220         else {
221                 octx->state[0] = SHA256_H0;
222                 octx->state[1] = SHA256_H1;
223                 octx->state[2] = SHA256_H2;
224                 octx->state[3] = SHA256_H3;
225                 octx->state[4] = SHA256_H4;
226                 octx->state[5] = SHA256_H5;
227                 octx->state[6] = SHA256_H6;
228                 octx->state[7] = SHA256_H7;
229         }
230
231         spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
232         return 0;
233 }
234
235 static int nx_sha256_import(struct shash_desc *desc, const void *in)
236 {
237         struct sha256_state *sctx = shash_desc_ctx(desc);
238         struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
239         struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
240         const struct sha256_state *ictx = in;
241         unsigned long irq_flags;
242
243         spin_lock_irqsave(&nx_ctx->lock, irq_flags);
244
245         memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
246
247         sctx->count = ictx->count & 0x3f;
248         csbcpb->cpb.sha256.message_bit_length = (ictx->count & ~0x3f) * 8;
249
250         if (csbcpb->cpb.sha256.message_bit_length) {
251                 memcpy(csbcpb->cpb.sha256.message_digest, ictx->state,
252                        SHA256_DIGEST_SIZE);
253
254                 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
255                 NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
256         }
257
258         spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
259         return 0;
260 }
261
262 struct shash_alg nx_shash_sha256_alg = {
263         .digestsize = SHA256_DIGEST_SIZE,
264         .init       = nx_sha256_init,
265         .update     = nx_sha256_update,
266         .final      = nx_sha256_final,
267         .export     = nx_sha256_export,
268         .import     = nx_sha256_import,
269         .descsize   = sizeof(struct sha256_state),
270         .statesize  = sizeof(struct sha256_state),
271         .base       = {
272                 .cra_name        = "sha256",
273                 .cra_driver_name = "sha256-nx",
274                 .cra_priority    = 300,
275                 .cra_flags       = CRYPTO_ALG_TYPE_SHASH,
276                 .cra_blocksize   = SHA256_BLOCK_SIZE,
277                 .cra_module      = THIS_MODULE,
278                 .cra_ctxsize     = sizeof(struct nx_crypto_ctx),
279                 .cra_init        = nx_crypto_ctx_sha_init,
280                 .cra_exit        = nx_crypto_ctx_exit,
281         }
282 };