]> git.karo-electronics.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up of delay_for_n_mem_clocks() part 2
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34
35 static struct socfpga_data_mgr *data_mgr =
36         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40
41 #define DELTA_D         1
42
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60         STATIC_SKIP_DELAY_LOOPS)
61
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73
74 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
75
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77         ((non_skip_value) & skip_delay_mask)
78
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82
83 static void set_failing_group_stage(uint32_t group, uint32_t stage,
84         uint32_t substage)
85 {
86         /*
87          * Only set the global stage if there was not been any other
88          * failing group
89          */
90         if (gbl->error_stage == CAL_STAGE_NIL)  {
91                 gbl->error_substage = substage;
92                 gbl->error_stage = stage;
93                 gbl->error_group = group;
94         }
95 }
96
97 static void reg_file_set_group(u16 set_group)
98 {
99         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
100 }
101
102 static void reg_file_set_stage(u8 set_stage)
103 {
104         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
105 }
106
107 static void reg_file_set_sub_stage(u8 set_sub_stage)
108 {
109         set_sub_stage &= 0xff;
110         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
111 }
112
113 /**
114  * phy_mgr_initialize() - Initialize PHY Manager
115  *
116  * Initialize PHY Manager.
117  */
118 static void phy_mgr_initialize(void)
119 {
120         u32 ratio;
121
122         debug("%s:%d\n", __func__, __LINE__);
123         /* Calibration has control over path to memory */
124         /*
125          * In Hard PHY this is a 2-bit control:
126          * 0: AFI Mux Select
127          * 1: DDIO Mux Select
128          */
129         writel(0x3, &phy_mgr_cfg->mux_sel);
130
131         /* USER memory clock is not stable we begin initialization  */
132         writel(0, &phy_mgr_cfg->reset_mem_stbl);
133
134         /* USER calibration status all set to zero */
135         writel(0, &phy_mgr_cfg->cal_status);
136
137         writel(0, &phy_mgr_cfg->cal_debug_info);
138
139         /* Init params only if we do NOT skip calibration. */
140         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
141                 return;
142
143         ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
144                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
145         param->read_correct_mask_vg = (1 << ratio) - 1;
146         param->write_correct_mask_vg = (1 << ratio) - 1;
147         param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
148         param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
149         ratio = RW_MGR_MEM_DATA_WIDTH /
150                 RW_MGR_MEM_DATA_MASK_WIDTH;
151         param->dm_correct_mask = (1 << ratio) - 1;
152 }
153
154 /**
155  * set_rank_and_odt_mask() - Set Rank and ODT mask
156  * @rank:       Rank mask
157  * @odt_mode:   ODT mode, OFF or READ_WRITE
158  *
159  * Set Rank and ODT mask (On-Die Termination).
160  */
161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
162 {
163         u32 odt_mask_0 = 0;
164         u32 odt_mask_1 = 0;
165         u32 cs_and_odt_mask;
166
167         if (odt_mode == RW_MGR_ODT_MODE_OFF) {
168                 odt_mask_0 = 0x0;
169                 odt_mask_1 = 0x0;
170         } else {        /* RW_MGR_ODT_MODE_READ_WRITE */
171                 switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
172                 case 1: /* 1 Rank */
173                         /* Read: ODT = 0 ; Write: ODT = 1 */
174                         odt_mask_0 = 0x0;
175                         odt_mask_1 = 0x1;
176                         break;
177                 case 2: /* 2 Ranks */
178                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
179                                 /*
180                                  * - Dual-Slot , Single-Rank (1 CS per DIMM)
181                                  *   OR
182                                  * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
183                                  *
184                                  * Since MEM_NUMBER_OF_RANKS is 2, they
185                                  * are both single rank with 2 CS each
186                                  * (special for RDIMM).
187                                  *
188                                  * Read: Turn on ODT on the opposite rank
189                                  * Write: Turn on ODT on all ranks
190                                  */
191                                 odt_mask_0 = 0x3 & ~(1 << rank);
192                                 odt_mask_1 = 0x3;
193                         } else {
194                                 /*
195                                  * - Single-Slot , Dual-Rank (2 CS per DIMM)
196                                  *
197                                  * Read: Turn on ODT off on all ranks
198                                  * Write: Turn on ODT on active rank
199                                  */
200                                 odt_mask_0 = 0x0;
201                                 odt_mask_1 = 0x3 & (1 << rank);
202                         }
203                         break;
204                 case 4: /* 4 Ranks */
205                         /* Read:
206                          * ----------+-----------------------+
207                          *           |         ODT           |
208                          * Read From +-----------------------+
209                          *   Rank    |  3  |  2  |  1  |  0  |
210                          * ----------+-----+-----+-----+-----+
211                          *     0     |  0  |  1  |  0  |  0  |
212                          *     1     |  1  |  0  |  0  |  0  |
213                          *     2     |  0  |  0  |  0  |  1  |
214                          *     3     |  0  |  0  |  1  |  0  |
215                          * ----------+-----+-----+-----+-----+
216                          *
217                          * Write:
218                          * ----------+-----------------------+
219                          *           |         ODT           |
220                          * Write To  +-----------------------+
221                          *   Rank    |  3  |  2  |  1  |  0  |
222                          * ----------+-----+-----+-----+-----+
223                          *     0     |  0  |  1  |  0  |  1  |
224                          *     1     |  1  |  0  |  1  |  0  |
225                          *     2     |  0  |  1  |  0  |  1  |
226                          *     3     |  1  |  0  |  1  |  0  |
227                          * ----------+-----+-----+-----+-----+
228                          */
229                         switch (rank) {
230                         case 0:
231                                 odt_mask_0 = 0x4;
232                                 odt_mask_1 = 0x5;
233                                 break;
234                         case 1:
235                                 odt_mask_0 = 0x8;
236                                 odt_mask_1 = 0xA;
237                                 break;
238                         case 2:
239                                 odt_mask_0 = 0x1;
240                                 odt_mask_1 = 0x5;
241                                 break;
242                         case 3:
243                                 odt_mask_0 = 0x2;
244                                 odt_mask_1 = 0xA;
245                                 break;
246                         }
247                         break;
248                 }
249         }
250
251         cs_and_odt_mask = (0xFF & ~(1 << rank)) |
252                           ((0xFF & odt_mask_0) << 8) |
253                           ((0xFF & odt_mask_1) << 16);
254         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:        Base offset in SCC Manager space
261  * @grp:        Read/Write group
262  * @val:        Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278         /*
279          * Clear register file for HPS. 16 (2^4) is the size of the
280          * full register file in the scc mgr:
281          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282          *                             MEM_IF_READ_DQS_WIDTH - 1);
283          */
284         int i;
285
286         for (i = 0; i < 16; i++) {
287                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288                            __func__, __LINE__, i);
289                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290         }
291 }
292
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316                     delay);
317 }
318
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332                     delay);
333 }
334
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339                     delay);
340 }
341
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345         writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351         writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363         writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:        Base offset in SCC Manager space
369  * @grp:        Read/Write group
370  * @val:        Value to be set
371  * @update:     If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377                                   const int update)
378 {
379         u32 r;
380
381         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382              r += NUM_RANKS_PER_SHADOW_REG) {
383                 scc_mgr_set(off, grp, val);
384
385                 if (update || (r == 0)) {
386                         writel(grp, &sdr_scc_mgr->dqs_ena);
387                         writel(0, &sdr_scc_mgr->update);
388                 }
389         }
390 }
391
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394         /*
395          * USER although the h/w doesn't support different phases per
396          * shadow register, for simplicity our scc manager modeling
397          * keeps different phase settings per shadow reg, and it's
398          * important for us to keep them in sync to match h/w.
399          * for efficiency, the scan chain update should occur only
400          * once to sr0.
401          */
402         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403                               read_group, phase, 0);
404 }
405
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407                                                      uint32_t phase)
408 {
409         /*
410          * USER although the h/w doesn't support different phases per
411          * shadow register, for simplicity our scc manager modeling
412          * keeps different phase settings per shadow reg, and it's
413          * important for us to keep them in sync to match h/w.
414          * for efficiency, the scan chain update should occur only
415          * once to sr0.
416          */
417         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418                               write_group, phase, 0);
419 }
420
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422                                                uint32_t delay)
423 {
424         /*
425          * In shadow register mode, the T11 settings are stored in
426          * registers in the core, which are updated by the DQS_ENA
427          * signals. Not issuing the SCC_MGR_UPD command allows us to
428          * save lots of rank switching overhead, by calling
429          * select_shadow_regs_for_update with update_scan_chains
430          * set to 0.
431          */
432         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433                               read_group, delay, 1);
434         writel(0, &sdr_scc_mgr->update);
435 }
436
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:        Write group
440  * @delay:              Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448         const int base = write_group * ratio;
449         int i;
450         /*
451          * Load the setting in the SCC manager
452          * Although OCT affects only write data, the OCT delay is controlled
453          * by the DQS logic block which is instantiated once per read group.
454          * For protocols where a write group consists of multiple read groups,
455          * the setting must be set multiple times.
456          */
457         for (i = 0; i < ratio; i++)
458                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468         /*
469          * Load the fixed setting in the SCC manager
470          * bits: 0:0 = 1'b1     - DQS bypass
471          * bits: 1:1 = 1'b1     - DQ bypass
472          * bits: 4:2 = 3'b001   - rfifo_mode
473          * bits: 6:5 = 2'b01    - rfifo clock_select
474          * bits: 7:7 = 1'b0     - separate gating from ungating setting
475          * bits: 8:8 = 1'b0     - separate OE from Output delay setting
476          */
477         const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478                           (1 << 2) | (1 << 1) | (1 << 0);
479         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480                          SCC_MGR_HHP_GLOBALS_OFFSET |
481                          SCC_MGR_HHP_EXTRAS_OFFSET;
482
483         debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484                    __func__, __LINE__);
485         writel(value, addr);
486         debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487                    __func__, __LINE__);
488 }
489
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497         int i, r;
498
499         /*
500          * USER Zero all DQS config settings, across all groups and all
501          * shadow registers
502          */
503         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504              r += NUM_RANKS_PER_SHADOW_REG) {
505                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506                         /*
507                          * The phases actually don't exist on a per-rank basis,
508                          * but there's no harm updating them several times, so
509                          * let's keep the code simple.
510                          */
511                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512                         scc_mgr_set_dqs_en_phase(i, 0);
513                         scc_mgr_set_dqs_en_delay(i, 0);
514                 }
515
516                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517                         scc_mgr_set_dqdqs_output_phase(i, 0);
518                         /* Arria V/Cyclone V don't have out2. */
519                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520                 }
521         }
522
523         /* Multicast to all DQS group enables. */
524         writel(0xff, &sdr_scc_mgr->dqs_ena);
525         writel(0, &sdr_scc_mgr->update);
526 }
527
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:        Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536         /* Multicast to all DQ enables. */
537         writel(0xff, &sdr_scc_mgr->dq_ena);
538         writel(0xff, &sdr_scc_mgr->dm_ena);
539
540         /* Update current DQS IO enable. */
541         writel(0, &sdr_scc_mgr->dqs_io_ena);
542
543         /* Update the DQS logic. */
544         writel(write_group, &sdr_scc_mgr->dqs_ena);
545
546         /* Hit update. */
547         writel(0, &sdr_scc_mgr->update);
548 }
549
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:        Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560         const int base = write_group * ratio;
561         int i;
562         /*
563          * Load the setting in the SCC manager
564          * Although OCT affects only write data, the OCT delay is controlled
565          * by the DQS logic block which is instantiated once per read group.
566          * For protocols where a write group consists of multiple read groups,
567          * the setting must be set multiple times.
568          */
569         for (i = 0; i < ratio; i++)
570                 writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580         int i, r;
581
582         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583              r += NUM_RANKS_PER_SHADOW_REG) {
584                 /* Zero all DQ config settings. */
585                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586                         scc_mgr_set_dq_out1_delay(i, 0);
587                         if (!out_only)
588                                 scc_mgr_set_dq_in_delay(i, 0);
589                 }
590
591                 /* Multicast to all DQ enables. */
592                 writel(0xff, &sdr_scc_mgr->dq_ena);
593
594                 /* Zero all DM config settings. */
595                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596                         scc_mgr_set_dm_out1_delay(i, 0);
597
598                 /* Multicast to all DM enables. */
599                 writel(0xff, &sdr_scc_mgr->dm_ena);
600
601                 /* Zero all DQS IO settings. */
602                 if (!out_only)
603                         scc_mgr_set_dqs_io_in_delay(0);
604
605                 /* Arria V/Cyclone V don't have out2. */
606                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608                 scc_mgr_load_dqs_for_write_group(write_group);
609
610                 /* Multicast to all DQS IO enables (only 1 in total). */
611                 writel(0, &sdr_scc_mgr->dqs_io_ena);
612
613                 /* Hit update to zero everything. */
614                 writel(0, &sdr_scc_mgr->update);
615         }
616 }
617
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624         uint32_t i, p;
625
626         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627                 scc_mgr_set_dq_in_delay(p, delay);
628                 scc_mgr_load_dq(p);
629         }
630 }
631
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:              Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640         int i;
641
642         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643                 scc_mgr_set_dq_out1_delay(i, delay);
644                 scc_mgr_load_dq(i);
645         }
646 }
647
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651         uint32_t i;
652
653         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654                 scc_mgr_set_dm_out1_delay(i, delay1);
655                 scc_mgr_load_dm(i);
656         }
657 }
658
659
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662                                                     uint32_t delay)
663 {
664         scc_mgr_set_dqs_out1_delay(delay);
665         scc_mgr_load_dqs_io();
666
667         scc_mgr_set_oct_out1_delay(write_group, delay);
668         scc_mgr_load_dqs_for_write_group(write_group);
669 }
670
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:        Write group
674  * @delay:              Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679                                                   const u32 delay)
680 {
681         u32 i, new_delay;
682
683         /* DQ shift */
684         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685                 scc_mgr_load_dq(i);
686
687         /* DM shift */
688         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689                 scc_mgr_load_dm(i);
690
691         /* DQS shift */
692         new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694                 debug_cond(DLEVEL == 1,
695                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696                            __func__, __LINE__, write_group, delay, new_delay,
697                            IO_IO_OUT2_DELAY_MAX,
698                            new_delay - IO_IO_OUT2_DELAY_MAX);
699                 new_delay -= IO_IO_OUT2_DELAY_MAX;
700                 scc_mgr_set_dqs_out1_delay(new_delay);
701         }
702
703         scc_mgr_load_dqs_io();
704
705         /* OCT shift */
706         new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708                 debug_cond(DLEVEL == 1,
709                            "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710                            __func__, __LINE__, write_group, delay,
711                            new_delay, IO_IO_OUT2_DELAY_MAX,
712                            new_delay - IO_IO_OUT2_DELAY_MAX);
713                 new_delay -= IO_IO_OUT2_DELAY_MAX;
714                 scc_mgr_set_oct_out1_delay(write_group, new_delay);
715         }
716
717         scc_mgr_load_dqs_for_write_group(write_group);
718 }
719
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:        Write group
723  * @delay:              Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729                                                 const u32 delay)
730 {
731         int r;
732
733         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734              r += NUM_RANKS_PER_SHADOW_REG) {
735                 scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736                 writel(0, &sdr_scc_mgr->update);
737         }
738 }
739
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748         /*
749          * To save space, we replace return with jump to special shared
750          * RETURN instruction so we set the counter to large value so that
751          * we always jump.
752          */
753         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756
757 /*
758  * should always use constants as argument to ensure all computations are
759  * performed at compile time
760  */
761 static void delay_for_n_mem_clocks(const u32 clocks)
762 {
763         u32 afi_clocks;
764         u16 c_loop = 0;
765         u8 inner = 0;
766         u8 outer = 0;
767
768         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
769
770         /* Scale (rounding up) to get afi clocks. */
771         afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
772         if (afi_clocks) /* Temporary underflow protection */
773                 afi_clocks--;
774
775         /*
776          * Note, we don't bother accounting for being off a little
777          * bit because of a few extra instructions in outer loops.
778          * Note, the loops have a test at the end, and do the test
779          * before the decrement, and so always perform the loop
780          * 1 time more than the counter value
781          */
782         if (afi_clocks == 0) {
783                 ;
784         } else if (afi_clocks < 0x100) {
785                 inner = afi_clocks;
786                 outer = 0;
787                 c_loop = 0;
788         } else if (afi_clocks < 0x10000) {
789                 inner = 0xff;
790                 outer = afi_clocks >> 8;
791                 c_loop = 0;
792         } else {        /* >= 0x10000 */
793                 inner = 0xff;
794                 outer = 0xff;
795                 c_loop = afi_clocks >> 16;
796         }
797
798         /*
799          * rom instructions are structured as follows:
800          *
801          *    IDLE_LOOP2: jnz cntr0, TARGET_A
802          *    IDLE_LOOP1: jnz cntr1, TARGET_B
803          *                return
804          *
805          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
806          * TARGET_B is set to IDLE_LOOP2 as well
807          *
808          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
809          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
810          *
811          * a little confusing, but it helps save precious space in the inst_rom
812          * and sequencer rom and keeps the delays more accurate and reduces
813          * overhead
814          */
815         if (afi_clocks < 0x100) {
816                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
817                         &sdr_rw_load_mgr_regs->load_cntr1);
818
819                 writel(RW_MGR_IDLE_LOOP1,
820                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
821
822                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
823                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
824         } else {
825                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
826                         &sdr_rw_load_mgr_regs->load_cntr0);
827
828                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
829                         &sdr_rw_load_mgr_regs->load_cntr1);
830
831                 writel(RW_MGR_IDLE_LOOP2,
832                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
833
834                 writel(RW_MGR_IDLE_LOOP2,
835                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
836
837                 /* hack to get around compiler not being smart enough */
838                 if (afi_clocks <= 0x10000) {
839                         /* only need to run once */
840                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
841                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
842                 } else {
843                         do {
844                                 writel(RW_MGR_IDLE_LOOP2,
845                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
846                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
847                         } while (c_loop-- != 0);
848                 }
849         }
850         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
851 }
852
853 /**
854  * rw_mgr_mem_init_load_regs() - Load instruction registers
855  * @cntr0:      Counter 0 value
856  * @cntr1:      Counter 1 value
857  * @cntr2:      Counter 2 value
858  * @jump:       Jump instruction value
859  *
860  * Load instruction registers.
861  */
862 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
863 {
864         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
865                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
866
867         /* Load counters */
868         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
869                &sdr_rw_load_mgr_regs->load_cntr0);
870         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
871                &sdr_rw_load_mgr_regs->load_cntr1);
872         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
873                &sdr_rw_load_mgr_regs->load_cntr2);
874
875         /* Load jump address */
876         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
877         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
878         writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
879
880         /* Execute count instruction */
881         writel(jump, grpaddr);
882 }
883
884 /**
885  * rw_mgr_mem_load_user() - Load user calibration values
886  * @fin1:       Final instruction 1
887  * @fin2:       Final instruction 2
888  * @precharge:  If 1, precharge the banks at the end
889  *
890  * Load user calibration values and optionally precharge the banks.
891  */
892 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
893                                  const int precharge)
894 {
895         u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
896                       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
897         u32 r;
898
899         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
900                 if (param->skip_ranks[r]) {
901                         /* request to skip the rank */
902                         continue;
903                 }
904
905                 /* set rank */
906                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
907
908                 /* precharge all banks ... */
909                 if (precharge)
910                         writel(RW_MGR_PRECHARGE_ALL, grpaddr);
911
912                 /*
913                  * USER Use Mirror-ed commands for odd ranks if address
914                  * mirrorring is on
915                  */
916                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
917                         set_jump_as_return();
918                         writel(RW_MGR_MRS2_MIRR, grpaddr);
919                         delay_for_n_mem_clocks(4);
920                         set_jump_as_return();
921                         writel(RW_MGR_MRS3_MIRR, grpaddr);
922                         delay_for_n_mem_clocks(4);
923                         set_jump_as_return();
924                         writel(RW_MGR_MRS1_MIRR, grpaddr);
925                         delay_for_n_mem_clocks(4);
926                         set_jump_as_return();
927                         writel(fin1, grpaddr);
928                 } else {
929                         set_jump_as_return();
930                         writel(RW_MGR_MRS2, grpaddr);
931                         delay_for_n_mem_clocks(4);
932                         set_jump_as_return();
933                         writel(RW_MGR_MRS3, grpaddr);
934                         delay_for_n_mem_clocks(4);
935                         set_jump_as_return();
936                         writel(RW_MGR_MRS1, grpaddr);
937                         set_jump_as_return();
938                         writel(fin2, grpaddr);
939                 }
940
941                 if (precharge)
942                         continue;
943
944                 set_jump_as_return();
945                 writel(RW_MGR_ZQCL, grpaddr);
946
947                 /* tZQinit = tDLLK = 512 ck cycles */
948                 delay_for_n_mem_clocks(512);
949         }
950 }
951
952 /**
953  * rw_mgr_mem_initialize() - Initialize RW Manager
954  *
955  * Initialize RW Manager.
956  */
957 static void rw_mgr_mem_initialize(void)
958 {
959         debug("%s:%d\n", __func__, __LINE__);
960
961         /* The reset / cke part of initialization is broadcasted to all ranks */
962         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
963                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
964
965         /*
966          * Here's how you load register for a loop
967          * Counters are located @ 0x800
968          * Jump address are located @ 0xC00
969          * For both, registers 0 to 3 are selected using bits 3 and 2, like
970          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
971          * I know this ain't pretty, but Avalon bus throws away the 2 least
972          * significant bits
973          */
974
975         /* Start with memory RESET activated */
976
977         /* tINIT = 200us */
978
979         /*
980          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
981          * If a and b are the number of iteration in 2 nested loops
982          * it takes the following number of cycles to complete the operation:
983          * number_of_cycles = ((2 + n) * a + 2) * b
984          * where n is the number of instruction in the inner loop
985          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
986          * b = 6A
987          */
988         rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
989                                   SEQ_TINIT_CNTR2_VAL,
990                                   RW_MGR_INIT_RESET_0_CKE_0);
991
992         /* Indicate that memory is stable. */
993         writel(1, &phy_mgr_cfg->reset_mem_stbl);
994
995         /*
996          * transition the RESET to high
997          * Wait for 500us
998          */
999
1000         /*
1001          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1002          * If a and b are the number of iteration in 2 nested loops
1003          * it takes the following number of cycles to complete the operation
1004          * number_of_cycles = ((2 + n) * a + 2) * b
1005          * where n is the number of instruction in the inner loop
1006          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1007          * b = FF
1008          */
1009         rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1010                                   SEQ_TRESET_CNTR2_VAL,
1011                                   RW_MGR_INIT_RESET_1_CKE_0);
1012
1013         /* Bring up clock enable. */
1014
1015         /* tXRP < 250 ck cycles */
1016         delay_for_n_mem_clocks(250);
1017
1018         rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1019                              0);
1020 }
1021
1022 /**
1023  * rw_mgr_mem_handoff() - Hand off the memory to user
1024  *
1025  * At the end of calibration we have to program the user settings in
1026  * and hand off the memory to the user.
1027  */
1028 static void rw_mgr_mem_handoff(void)
1029 {
1030         rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1031         /*
1032          * Need to wait tMOD (12CK or 15ns) time before issuing other
1033          * commands, but we will have plenty of NIOS cycles before actual
1034          * handoff so its okay.
1035          */
1036 }
1037
1038 /**
1039  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1040  * @group:      Write Group
1041  * @use_dm:     Use DM
1042  *
1043  * Issue write test command. Two variants are provided, one that just tests
1044  * a write pattern and another that tests datamask functionality.
1045  */
1046 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1047                                                   u32 test_dm)
1048 {
1049         const u32 quick_write_mode =
1050                 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1051                 ENABLE_SUPER_QUICK_CALIBRATION;
1052         u32 mcc_instruction;
1053         u32 rw_wl_nop_cycles;
1054
1055         /*
1056          * Set counter and jump addresses for the right
1057          * number of NOP cycles.
1058          * The number of supported NOP cycles can range from -1 to infinity
1059          * Three different cases are handled:
1060          *
1061          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1062          *    mechanism will be used to insert the right number of NOPs
1063          *
1064          * 2. For a number of NOP cycles equals to 0, the micro-instruction
1065          *    issuing the write command will jump straight to the
1066          *    micro-instruction that turns on DQS (for DDRx), or outputs write
1067          *    data (for RLD), skipping
1068          *    the NOP micro-instruction all together
1069          *
1070          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1071          *    turned on in the same micro-instruction that issues the write
1072          *    command. Then we need
1073          *    to directly jump to the micro-instruction that sends out the data
1074          *
1075          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1076          *       (2 and 3). One jump-counter (0) is used to perform multiple
1077          *       write-read operations.
1078          *       one counter left to issue this command in "multiple-group" mode
1079          */
1080
1081         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1082
1083         if (rw_wl_nop_cycles == -1) {
1084                 /*
1085                  * CNTR 2 - We want to execute the special write operation that
1086                  * turns on DQS right away and then skip directly to the
1087                  * instruction that sends out the data. We set the counter to a
1088                  * large number so that the jump is always taken.
1089                  */
1090                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1091
1092                 /* CNTR 3 - Not used */
1093                 if (test_dm) {
1094                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1095                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1096                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1097                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1098                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1099                 } else {
1100                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1101                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1102                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1103                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1104                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1105                 }
1106         } else if (rw_wl_nop_cycles == 0) {
1107                 /*
1108                  * CNTR 2 - We want to skip the NOP operation and go straight
1109                  * to the DQS enable instruction. We set the counter to a large
1110                  * number so that the jump is always taken.
1111                  */
1112                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1113
1114                 /* CNTR 3 - Not used */
1115                 if (test_dm) {
1116                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1117                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1118                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1119                 } else {
1120                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1121                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1122                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1123                 }
1124         } else {
1125                 /*
1126                  * CNTR 2 - In this case we want to execute the next instruction
1127                  * and NOT take the jump. So we set the counter to 0. The jump
1128                  * address doesn't count.
1129                  */
1130                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1131                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1132
1133                 /*
1134                  * CNTR 3 - Set the nop counter to the number of cycles we
1135                  * need to loop for, minus 1.
1136                  */
1137                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1138                 if (test_dm) {
1139                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1140                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1141                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1142                 } else {
1143                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1144                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1145                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1146                 }
1147         }
1148
1149         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1150                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1151
1152         if (quick_write_mode)
1153                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1154         else
1155                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1156
1157         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1158
1159         /*
1160          * CNTR 1 - This is used to ensure enough time elapses
1161          * for read data to come back.
1162          */
1163         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1164
1165         if (test_dm) {
1166                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1167                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1168         } else {
1169                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1170                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1171         }
1172
1173         writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1174                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1175                                 (group << 2));
1176 }
1177
1178 /**
1179  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1180  * @rank_bgn:           Rank number
1181  * @write_group:        Write Group
1182  * @use_dm:             Use DM
1183  * @all_correct:        All bits must be correct in the mask
1184  * @bit_chk:            Resulting bit mask after the test
1185  * @all_ranks:          Test all ranks
1186  *
1187  * Test writes, can check for a single bit pass or multiple bit pass.
1188  */
1189 static int
1190 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1191                                 const u32 use_dm, const u32 all_correct,
1192                                 u32 *bit_chk, const u32 all_ranks)
1193 {
1194         const u32 rank_end = all_ranks ?
1195                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1196                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1197         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1198                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1199         const u32 correct_mask_vg = param->write_correct_mask_vg;
1200
1201         u32 tmp_bit_chk, base_rw_mgr;
1202         int vg, r;
1203
1204         *bit_chk = param->write_correct_mask;
1205
1206         for (r = rank_bgn; r < rank_end; r++) {
1207                 /* Request to skip the rank */
1208                 if (param->skip_ranks[r])
1209                         continue;
1210
1211                 /* Set rank */
1212                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1213
1214                 tmp_bit_chk = 0;
1215                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1216                      vg >= 0; vg--) {
1217                         /* Reset the FIFOs to get pointers to known state. */
1218                         writel(0, &phy_mgr_cmd->fifo_reset);
1219
1220                         rw_mgr_mem_calibrate_write_test_issue(
1221                                 write_group *
1222                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1223                                 use_dm);
1224
1225                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1226                         tmp_bit_chk <<= shift_ratio;
1227                         tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1228                 }
1229
1230                 *bit_chk &= tmp_bit_chk;
1231         }
1232
1233         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1234         if (all_correct) {
1235                 debug_cond(DLEVEL == 2,
1236                            "write_test(%u,%u,ALL) : %u == %u => %i\n",
1237                            write_group, use_dm, *bit_chk,
1238                            param->write_correct_mask,
1239                            *bit_chk == param->write_correct_mask);
1240                 return *bit_chk == param->write_correct_mask;
1241         } else {
1242                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1243                 debug_cond(DLEVEL == 2,
1244                            "write_test(%u,%u,ONE) : %u != %i => %i\n",
1245                            write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1246                 return *bit_chk != 0x00;
1247         }
1248 }
1249
1250 /**
1251  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1252  * @rank_bgn:   Rank number
1253  * @group:      Read/Write Group
1254  * @all_ranks:  Test all ranks
1255  *
1256  * Performs a guaranteed read on the patterns we are going to use during a
1257  * read test to ensure memory works.
1258  */
1259 static int
1260 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1261                                         const u32 all_ranks)
1262 {
1263         const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1264                          RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1265         const u32 addr_offset =
1266                          (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1267         const u32 rank_end = all_ranks ?
1268                                 RW_MGR_MEM_NUMBER_OF_RANKS :
1269                                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1270         const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1271                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1272         const u32 correct_mask_vg = param->read_correct_mask_vg;
1273
1274         u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1275         int vg, r;
1276         int ret = 0;
1277
1278         bit_chk = param->read_correct_mask;
1279
1280         for (r = rank_bgn; r < rank_end; r++) {
1281                 /* Request to skip the rank */
1282                 if (param->skip_ranks[r])
1283                         continue;
1284
1285                 /* Set rank */
1286                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1287
1288                 /* Load up a constant bursts of read commands */
1289                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1290                 writel(RW_MGR_GUARANTEED_READ,
1291                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1292
1293                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1294                 writel(RW_MGR_GUARANTEED_READ_CONT,
1295                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1296
1297                 tmp_bit_chk = 0;
1298                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1299                      vg >= 0; vg--) {
1300                         /* Reset the FIFOs to get pointers to known state. */
1301                         writel(0, &phy_mgr_cmd->fifo_reset);
1302                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1303                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1304                         writel(RW_MGR_GUARANTEED_READ,
1305                                addr + addr_offset + (vg << 2));
1306
1307                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1308                         tmp_bit_chk <<= shift_ratio;
1309                         tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1310                 }
1311
1312                 bit_chk &= tmp_bit_chk;
1313         }
1314
1315         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1316
1317         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1318
1319         if (bit_chk != param->read_correct_mask)
1320                 ret = -EIO;
1321
1322         debug_cond(DLEVEL == 1,
1323                    "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1324                    __func__, __LINE__, group, bit_chk,
1325                    param->read_correct_mask, ret);
1326
1327         return ret;
1328 }
1329
1330 /**
1331  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1332  * @rank_bgn:   Rank number
1333  * @all_ranks:  Test all ranks
1334  *
1335  * Load up the patterns we are going to use during a read test.
1336  */
1337 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1338                                                     const int all_ranks)
1339 {
1340         const u32 rank_end = all_ranks ?
1341                         RW_MGR_MEM_NUMBER_OF_RANKS :
1342                         (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1343         u32 r;
1344
1345         debug("%s:%d\n", __func__, __LINE__);
1346
1347         for (r = rank_bgn; r < rank_end; r++) {
1348                 if (param->skip_ranks[r])
1349                         /* request to skip the rank */
1350                         continue;
1351
1352                 /* set rank */
1353                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1354
1355                 /* Load up a constant bursts */
1356                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1357
1358                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1359                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1360
1361                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1362
1363                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1364                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1365
1366                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1367
1368                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1369                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1370
1371                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1372
1373                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1374                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1375
1376                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1377                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1378         }
1379
1380         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1381 }
1382
1383 /**
1384  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1385  * @rank_bgn:           Rank number
1386  * @group:              Read/Write group
1387  * @num_tries:          Number of retries of the test
1388  * @all_correct:        All bits must be correct in the mask
1389  * @bit_chk:            Resulting bit mask after the test
1390  * @all_groups:         Test all R/W groups
1391  * @all_ranks:          Test all ranks
1392  *
1393  * Try a read and see if it returns correct data back. Test has dummy reads
1394  * inserted into the mix used to align DQS enable. Test has more thorough
1395  * checks than the regular read test.
1396  */
1397 static int
1398 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1399                                const u32 num_tries, const u32 all_correct,
1400                                u32 *bit_chk,
1401                                const u32 all_groups, const u32 all_ranks)
1402 {
1403         const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1404                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1405         const u32 quick_read_mode =
1406                 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1407                  ENABLE_SUPER_QUICK_CALIBRATION);
1408         u32 correct_mask_vg = param->read_correct_mask_vg;
1409         u32 tmp_bit_chk;
1410         u32 base_rw_mgr;
1411         u32 addr;
1412
1413         int r, vg, ret;
1414
1415         *bit_chk = param->read_correct_mask;
1416
1417         for (r = rank_bgn; r < rank_end; r++) {
1418                 if (param->skip_ranks[r])
1419                         /* request to skip the rank */
1420                         continue;
1421
1422                 /* set rank */
1423                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1424
1425                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1426
1427                 writel(RW_MGR_READ_B2B_WAIT1,
1428                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1429
1430                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1431                 writel(RW_MGR_READ_B2B_WAIT2,
1432                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1433
1434                 if (quick_read_mode)
1435                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1436                         /* need at least two (1+1) reads to capture failures */
1437                 else if (all_groups)
1438                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1439                 else
1440                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1441
1442                 writel(RW_MGR_READ_B2B,
1443                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1444                 if (all_groups)
1445                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1446                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1447                                &sdr_rw_load_mgr_regs->load_cntr3);
1448                 else
1449                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1450
1451                 writel(RW_MGR_READ_B2B,
1452                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1453
1454                 tmp_bit_chk = 0;
1455                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1456                      vg--) {
1457                         /* Reset the FIFOs to get pointers to known state. */
1458                         writel(0, &phy_mgr_cmd->fifo_reset);
1459                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1460                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1461
1462                         if (all_groups) {
1463                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1464                                        RW_MGR_RUN_ALL_GROUPS_OFFSET;
1465                         } else {
1466                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1467                                        RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1468                         }
1469
1470                         writel(RW_MGR_READ_B2B, addr +
1471                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1472                                vg) << 2));
1473
1474                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1475                         tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1476                                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1477                         tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1478                 }
1479
1480                 *bit_chk &= tmp_bit_chk;
1481         }
1482
1483         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1484         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1485
1486         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1487
1488         if (all_correct) {
1489                 ret = (*bit_chk == param->read_correct_mask);
1490                 debug_cond(DLEVEL == 2,
1491                            "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1492                            __func__, __LINE__, group, all_groups, *bit_chk,
1493                            param->read_correct_mask, ret);
1494         } else  {
1495                 ret = (*bit_chk != 0x00);
1496                 debug_cond(DLEVEL == 2,
1497                            "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1498                            __func__, __LINE__, group, all_groups, *bit_chk,
1499                            0, ret);
1500         }
1501
1502         return ret;
1503 }
1504
1505 /**
1506  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1507  * @grp:                Read/Write group
1508  * @num_tries:          Number of retries of the test
1509  * @all_correct:        All bits must be correct in the mask
1510  * @all_groups:         Test all R/W groups
1511  *
1512  * Perform a READ test across all memory ranks.
1513  */
1514 static int
1515 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1516                                          const u32 all_correct,
1517                                          const u32 all_groups)
1518 {
1519         u32 bit_chk;
1520         return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1521                                               &bit_chk, all_groups, 1);
1522 }
1523
1524 /**
1525  * rw_mgr_incr_vfifo() - Increase VFIFO value
1526  * @grp:        Read/Write group
1527  *
1528  * Increase VFIFO value.
1529  */
1530 static void rw_mgr_incr_vfifo(const u32 grp)
1531 {
1532         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1533 }
1534
1535 /**
1536  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1537  * @grp:        Read/Write group
1538  *
1539  * Decrease VFIFO value.
1540  */
1541 static void rw_mgr_decr_vfifo(const u32 grp)
1542 {
1543         u32 i;
1544
1545         for (i = 0; i < VFIFO_SIZE - 1; i++)
1546                 rw_mgr_incr_vfifo(grp);
1547 }
1548
1549 /**
1550  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1551  * @grp:        Read/Write group
1552  *
1553  * Push VFIFO until a failing read happens.
1554  */
1555 static int find_vfifo_failing_read(const u32 grp)
1556 {
1557         u32 v, ret, fail_cnt = 0;
1558
1559         for (v = 0; v < VFIFO_SIZE; v++) {
1560                 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1561                            __func__, __LINE__, v);
1562                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1563                                                 PASS_ONE_BIT, 0);
1564                 if (!ret) {
1565                         fail_cnt++;
1566
1567                         if (fail_cnt == 2)
1568                                 return v;
1569                 }
1570
1571                 /* Fiddle with FIFO. */
1572                 rw_mgr_incr_vfifo(grp);
1573         }
1574
1575         /* No failing read found! Something must have gone wrong. */
1576         debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1577         return 0;
1578 }
1579
1580 /**
1581  * sdr_find_phase_delay() - Find DQS enable phase or delay
1582  * @working:    If 1, look for working phase/delay, if 0, look for non-working
1583  * @delay:      If 1, look for delay, if 0, look for phase
1584  * @grp:        Read/Write group
1585  * @work:       Working window position
1586  * @work_inc:   Working window increment
1587  * @pd:         DQS Phase/Delay Iterator
1588  *
1589  * Find working or non-working DQS enable phase setting.
1590  */
1591 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1592                                 u32 *work, const u32 work_inc, u32 *pd)
1593 {
1594         const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1595         u32 ret;
1596
1597         for (; *pd <= max; (*pd)++) {
1598                 if (delay)
1599                         scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1600                 else
1601                         scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1602
1603                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1604                                         PASS_ONE_BIT, 0);
1605                 if (!working)
1606                         ret = !ret;
1607
1608                 if (ret)
1609                         return 0;
1610
1611                 if (work)
1612                         *work += work_inc;
1613         }
1614
1615         return -EINVAL;
1616 }
1617 /**
1618  * sdr_find_phase() - Find DQS enable phase
1619  * @working:    If 1, look for working phase, if 0, look for non-working phase
1620  * @grp:        Read/Write group
1621  * @work:       Working window position
1622  * @i:          Iterator
1623  * @p:          DQS Phase Iterator
1624  *
1625  * Find working or non-working DQS enable phase setting.
1626  */
1627 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1628                           u32 *i, u32 *p)
1629 {
1630         const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1631         int ret;
1632
1633         for (; *i < end; (*i)++) {
1634                 if (working)
1635                         *p = 0;
1636
1637                 ret = sdr_find_phase_delay(working, 0, grp, work,
1638                                            IO_DELAY_PER_OPA_TAP, p);
1639                 if (!ret)
1640                         return 0;
1641
1642                 if (*p > IO_DQS_EN_PHASE_MAX) {
1643                         /* Fiddle with FIFO. */
1644                         rw_mgr_incr_vfifo(grp);
1645                         if (!working)
1646                                 *p = 0;
1647                 }
1648         }
1649
1650         return -EINVAL;
1651 }
1652
1653 /**
1654  * sdr_working_phase() - Find working DQS enable phase
1655  * @grp:        Read/Write group
1656  * @work_bgn:   Working window start position
1657  * @d:          dtaps output value
1658  * @p:          DQS Phase Iterator
1659  * @i:          Iterator
1660  *
1661  * Find working DQS enable phase setting.
1662  */
1663 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1664                              u32 *p, u32 *i)
1665 {
1666         const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1667                                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1668         int ret;
1669
1670         *work_bgn = 0;
1671
1672         for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1673                 *i = 0;
1674                 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1675                 ret = sdr_find_phase(1, grp, work_bgn, i, p);
1676                 if (!ret)
1677                         return 0;
1678                 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1679         }
1680
1681         /* Cannot find working solution */
1682         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1683                    __func__, __LINE__);
1684         return -EINVAL;
1685 }
1686
1687 /**
1688  * sdr_backup_phase() - Find DQS enable backup phase
1689  * @grp:        Read/Write group
1690  * @work_bgn:   Working window start position
1691  * @p:          DQS Phase Iterator
1692  *
1693  * Find DQS enable backup phase setting.
1694  */
1695 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1696 {
1697         u32 tmp_delay, d;
1698         int ret;
1699
1700         /* Special case code for backing up a phase */
1701         if (*p == 0) {
1702                 *p = IO_DQS_EN_PHASE_MAX;
1703                 rw_mgr_decr_vfifo(grp);
1704         } else {
1705                 (*p)--;
1706         }
1707         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1708         scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1709
1710         for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1711                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1712
1713                 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1714                                         PASS_ONE_BIT, 0);
1715                 if (ret) {
1716                         *work_bgn = tmp_delay;
1717                         break;
1718                 }
1719
1720                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1721         }
1722
1723         /* Restore VFIFO to old state before we decremented it (if needed). */
1724         (*p)++;
1725         if (*p > IO_DQS_EN_PHASE_MAX) {
1726                 *p = 0;
1727                 rw_mgr_incr_vfifo(grp);
1728         }
1729
1730         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1731 }
1732
1733 /**
1734  * sdr_nonworking_phase() - Find non-working DQS enable phase
1735  * @grp:        Read/Write group
1736  * @work_end:   Working window end position
1737  * @p:          DQS Phase Iterator
1738  * @i:          Iterator
1739  *
1740  * Find non-working DQS enable phase setting.
1741  */
1742 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1743 {
1744         int ret;
1745
1746         (*p)++;
1747         *work_end += IO_DELAY_PER_OPA_TAP;
1748         if (*p > IO_DQS_EN_PHASE_MAX) {
1749                 /* Fiddle with FIFO. */
1750                 *p = 0;
1751                 rw_mgr_incr_vfifo(grp);
1752         }
1753
1754         ret = sdr_find_phase(0, grp, work_end, i, p);
1755         if (ret) {
1756                 /* Cannot see edge of failing read. */
1757                 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1758                            __func__, __LINE__);
1759         }
1760
1761         return ret;
1762 }
1763
1764 /**
1765  * sdr_find_window_center() - Find center of the working DQS window.
1766  * @grp:        Read/Write group
1767  * @work_bgn:   First working settings
1768  * @work_end:   Last working settings
1769  *
1770  * Find center of the working DQS enable window.
1771  */
1772 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1773                                   const u32 work_end)
1774 {
1775         u32 work_mid;
1776         int tmp_delay = 0;
1777         int i, p, d;
1778
1779         work_mid = (work_bgn + work_end) / 2;
1780
1781         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1782                    work_bgn, work_end, work_mid);
1783         /* Get the middle delay to be less than a VFIFO delay */
1784         tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1785
1786         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1787         work_mid %= tmp_delay;
1788         debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1789
1790         tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1791         if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1792                 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1793         p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1794
1795         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1796
1797         d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1798         if (d > IO_DQS_EN_DELAY_MAX)
1799                 d = IO_DQS_EN_DELAY_MAX;
1800         tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1801
1802         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1803
1804         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1805         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1806
1807         /*
1808          * push vfifo until we can successfully calibrate. We can do this
1809          * because the largest possible margin in 1 VFIFO cycle.
1810          */
1811         for (i = 0; i < VFIFO_SIZE; i++) {
1812                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1813                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1814                                                              PASS_ONE_BIT,
1815                                                              0)) {
1816                         debug_cond(DLEVEL == 2,
1817                                    "%s:%d center: found: ptap=%u dtap=%u\n",
1818                                    __func__, __LINE__, p, d);
1819                         return 0;
1820                 }
1821
1822                 /* Fiddle with FIFO. */
1823                 rw_mgr_incr_vfifo(grp);
1824         }
1825
1826         debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1827                    __func__, __LINE__);
1828         return -EINVAL;
1829 }
1830
1831 /**
1832  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1833  * @grp:        Read/Write Group
1834  *
1835  * Find a good DQS enable to use.
1836  */
1837 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1838 {
1839         u32 d, p, i;
1840         u32 dtaps_per_ptap;
1841         u32 work_bgn, work_end;
1842         u32 found_passing_read, found_failing_read, initial_failing_dtap;
1843         int ret;
1844
1845         debug("%s:%d %u\n", __func__, __LINE__, grp);
1846
1847         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1848
1849         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1850         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1851
1852         /* Step 0: Determine number of delay taps for each phase tap. */
1853         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1854
1855         /* Step 1: First push vfifo until we get a failing read. */
1856         find_vfifo_failing_read(grp);
1857
1858         /* Step 2: Find first working phase, increment in ptaps. */
1859         work_bgn = 0;
1860         ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1861         if (ret)
1862                 return ret;
1863
1864         work_end = work_bgn;
1865
1866         /*
1867          * If d is 0 then the working window covers a phase tap and we can
1868          * follow the old procedure. Otherwise, we've found the beginning
1869          * and we need to increment the dtaps until we find the end.
1870          */
1871         if (d == 0) {
1872                 /*
1873                  * Step 3a: If we have room, back off by one and
1874                  *          increment in dtaps.
1875                  */
1876                 sdr_backup_phase(grp, &work_bgn, &p);
1877
1878                 /*
1879                  * Step 4a: go forward from working phase to non working
1880                  * phase, increment in ptaps.
1881                  */
1882                 ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1883                 if (ret)
1884                         return ret;
1885
1886                 /* Step 5a: Back off one from last, increment in dtaps. */
1887
1888                 /* Special case code for backing up a phase */
1889                 if (p == 0) {
1890                         p = IO_DQS_EN_PHASE_MAX;
1891                         rw_mgr_decr_vfifo(grp);
1892                 } else {
1893                         p = p - 1;
1894                 }
1895
1896                 work_end -= IO_DELAY_PER_OPA_TAP;
1897                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1898
1899                 d = 0;
1900
1901                 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1902                            __func__, __LINE__, p);
1903         }
1904
1905         /* The dtap increment to find the failing edge is done here. */
1906         sdr_find_phase_delay(0, 1, grp, &work_end,
1907                              IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1908
1909         /* Go back to working dtap */
1910         if (d != 0)
1911                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1912
1913         debug_cond(DLEVEL == 2,
1914                    "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1915                    __func__, __LINE__, p, d - 1, work_end);
1916
1917         if (work_end < work_bgn) {
1918                 /* nil range */
1919                 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1920                            __func__, __LINE__);
1921                 return -EINVAL;
1922         }
1923
1924         debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1925                    __func__, __LINE__, work_bgn, work_end);
1926
1927         /*
1928          * We need to calculate the number of dtaps that equal a ptap.
1929          * To do that we'll back up a ptap and re-find the edge of the
1930          * window using dtaps
1931          */
1932         debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1933                    __func__, __LINE__);
1934
1935         /* Special case code for backing up a phase */
1936         if (p == 0) {
1937                 p = IO_DQS_EN_PHASE_MAX;
1938                 rw_mgr_decr_vfifo(grp);
1939                 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1940                            __func__, __LINE__, p);
1941         } else {
1942                 p = p - 1;
1943                 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1944                            __func__, __LINE__, p);
1945         }
1946
1947         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1948
1949         /*
1950          * Increase dtap until we first see a passing read (in case the
1951          * window is smaller than a ptap), and then a failing read to
1952          * mark the edge of the window again.
1953          */
1954
1955         /* Find a passing read. */
1956         debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1957                    __func__, __LINE__);
1958
1959         initial_failing_dtap = d;
1960
1961         found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1962         if (found_passing_read) {
1963                 /* Find a failing read. */
1964                 debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1965                            __func__, __LINE__);
1966                 d++;
1967                 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1968                                                            &d);
1969         } else {
1970                 debug_cond(DLEVEL == 1,
1971                            "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1972                            __func__, __LINE__);
1973         }
1974
1975         /*
1976          * The dynamically calculated dtaps_per_ptap is only valid if we
1977          * found a passing/failing read. If we didn't, it means d hit the max
1978          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1979          * statically calculated value.
1980          */
1981         if (found_passing_read && found_failing_read)
1982                 dtaps_per_ptap = d - initial_failing_dtap;
1983
1984         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1985         debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1986                    __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1987
1988         /* Step 6: Find the centre of the window. */
1989         ret = sdr_find_window_center(grp, work_bgn, work_end);
1990
1991         return ret;
1992 }
1993
1994 /**
1995  * search_stop_check() - Check if the detected edge is valid
1996  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
1997  * @d:                  DQS delay
1998  * @rank_bgn:           Rank number
1999  * @write_group:        Write Group
2000  * @read_group:         Read Group
2001  * @bit_chk:            Resulting bit mask after the test
2002  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2003  * @use_read_test:      Perform read test
2004  *
2005  * Test if the found edge is valid.
2006  */
2007 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
2008                              const u32 write_group, const u32 read_group,
2009                              u32 *bit_chk, u32 *sticky_bit_chk,
2010                              const u32 use_read_test)
2011 {
2012         const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
2013                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
2014         const u32 correct_mask = write ? param->write_correct_mask :
2015                                          param->read_correct_mask;
2016         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2017                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2018         u32 ret;
2019         /*
2020          * Stop searching when the read test doesn't pass AND when
2021          * we've seen a passing read on every bit.
2022          */
2023         if (write) {                    /* WRITE-ONLY */
2024                 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2025                                                          0, PASS_ONE_BIT,
2026                                                          bit_chk, 0);
2027         } else if (use_read_test) {     /* READ-ONLY */
2028                 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2029                                                         NUM_READ_PB_TESTS,
2030                                                         PASS_ONE_BIT, bit_chk,
2031                                                         0, 0);
2032         } else {                        /* READ-ONLY */
2033                 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2034                                                 PASS_ONE_BIT, bit_chk, 0);
2035                 *bit_chk = *bit_chk >> (per_dqs *
2036                         (read_group - (write_group * ratio)));
2037                 ret = (*bit_chk == 0);
2038         }
2039         *sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2040         ret = ret && (*sticky_bit_chk == correct_mask);
2041         debug_cond(DLEVEL == 2,
2042                    "%s:%d center(left): dtap=%u => %u == %u && %u",
2043                    __func__, __LINE__, d,
2044                    *sticky_bit_chk, correct_mask, ret);
2045         return ret;
2046 }
2047
2048 /**
2049  * search_left_edge() - Find left edge of DQ/DQS working phase
2050  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2051  * @rank_bgn:           Rank number
2052  * @write_group:        Write Group
2053  * @read_group:         Read Group
2054  * @test_bgn:           Rank number to begin the test
2055  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2056  * @left_edge:          Left edge of the DQ/DQS phase
2057  * @right_edge:         Right edge of the DQ/DQS phase
2058  * @use_read_test:      Perform read test
2059  *
2060  * Find left edge of DQ/DQS working phase.
2061  */
2062 static void search_left_edge(const int write, const int rank_bgn,
2063         const u32 write_group, const u32 read_group, const u32 test_bgn,
2064         u32 *sticky_bit_chk,
2065         int *left_edge, int *right_edge, const u32 use_read_test)
2066 {
2067         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2068         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2069         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2070                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2071         u32 stop, bit_chk;
2072         int i, d;
2073
2074         for (d = 0; d <= dqs_max; d++) {
2075                 if (write)
2076                         scc_mgr_apply_group_dq_out1_delay(d);
2077                 else
2078                         scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2079
2080                 writel(0, &sdr_scc_mgr->update);
2081
2082                 stop = search_stop_check(write, d, rank_bgn, write_group,
2083                                          read_group, &bit_chk, sticky_bit_chk,
2084                                          use_read_test);
2085                 if (stop == 1)
2086                         break;
2087
2088                 /* stop != 1 */
2089                 for (i = 0; i < per_dqs; i++) {
2090                         if (bit_chk & 1) {
2091                                 /*
2092                                  * Remember a passing test as
2093                                  * the left_edge.
2094                                  */
2095                                 left_edge[i] = d;
2096                         } else {
2097                                 /*
2098                                  * If a left edge has not been seen
2099                                  * yet, then a future passing test
2100                                  * will mark this edge as the right
2101                                  * edge.
2102                                  */
2103                                 if (left_edge[i] == delay_max + 1)
2104                                         right_edge[i] = -(d + 1);
2105                         }
2106                         bit_chk >>= 1;
2107                 }
2108         }
2109
2110         /* Reset DQ delay chains to 0 */
2111         if (write)
2112                 scc_mgr_apply_group_dq_out1_delay(0);
2113         else
2114                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2115
2116         *sticky_bit_chk = 0;
2117         for (i = per_dqs - 1; i >= 0; i--) {
2118                 debug_cond(DLEVEL == 2,
2119                            "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2120                            __func__, __LINE__, i, left_edge[i],
2121                            i, right_edge[i]);
2122
2123                 /*
2124                  * Check for cases where we haven't found the left edge,
2125                  * which makes our assignment of the the right edge invalid.
2126                  * Reset it to the illegal value.
2127                  */
2128                 if ((left_edge[i] == delay_max + 1) &&
2129                     (right_edge[i] != delay_max + 1)) {
2130                         right_edge[i] = delay_max + 1;
2131                         debug_cond(DLEVEL == 2,
2132                                    "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2133                                    __func__, __LINE__, i, right_edge[i]);
2134                 }
2135
2136                 /*
2137                  * Reset sticky bit
2138                  * READ: except for bits where we have seen both
2139                  *       the left and right edge.
2140                  * WRITE: except for bits where we have seen the
2141                  *        left edge.
2142                  */
2143                 *sticky_bit_chk <<= 1;
2144                 if (write) {
2145                         if (left_edge[i] != delay_max + 1)
2146                                 *sticky_bit_chk |= 1;
2147                 } else {
2148                         if ((left_edge[i] != delay_max + 1) &&
2149                             (right_edge[i] != delay_max + 1))
2150                                 *sticky_bit_chk |= 1;
2151                 }
2152         }
2153
2154
2155 }
2156
2157 /**
2158  * search_right_edge() - Find right edge of DQ/DQS working phase
2159  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2160  * @rank_bgn:           Rank number
2161  * @write_group:        Write Group
2162  * @read_group:         Read Group
2163  * @start_dqs:          DQS start phase
2164  * @start_dqs_en:       DQS enable start phase
2165  * @sticky_bit_chk:     Resulting sticky bit mask after the test
2166  * @left_edge:          Left edge of the DQ/DQS phase
2167  * @right_edge:         Right edge of the DQ/DQS phase
2168  * @use_read_test:      Perform read test
2169  *
2170  * Find right edge of DQ/DQS working phase.
2171  */
2172 static int search_right_edge(const int write, const int rank_bgn,
2173         const u32 write_group, const u32 read_group,
2174         const int start_dqs, const int start_dqs_en,
2175         u32 *sticky_bit_chk,
2176         int *left_edge, int *right_edge, const u32 use_read_test)
2177 {
2178         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2179         const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2180         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2181                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2182         u32 stop, bit_chk;
2183         int i, d;
2184
2185         for (d = 0; d <= dqs_max - start_dqs; d++) {
2186                 if (write) {    /* WRITE-ONLY */
2187                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2188                                                                 d + start_dqs);
2189                 } else {        /* READ-ONLY */
2190                         scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2191                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2192                                 uint32_t delay = d + start_dqs_en;
2193                                 if (delay > IO_DQS_EN_DELAY_MAX)
2194                                         delay = IO_DQS_EN_DELAY_MAX;
2195                                 scc_mgr_set_dqs_en_delay(read_group, delay);
2196                         }
2197                         scc_mgr_load_dqs(read_group);
2198                 }
2199
2200                 writel(0, &sdr_scc_mgr->update);
2201
2202                 stop = search_stop_check(write, d, rank_bgn, write_group,
2203                                          read_group, &bit_chk, sticky_bit_chk,
2204                                          use_read_test);
2205                 if (stop == 1) {
2206                         if (write && (d == 0)) {        /* WRITE-ONLY */
2207                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2208                                         /*
2209                                          * d = 0 failed, but it passed when
2210                                          * testing the left edge, so it must be
2211                                          * marginal, set it to -1
2212                                          */
2213                                         if (right_edge[i] == delay_max + 1 &&
2214                                             left_edge[i] != delay_max + 1)
2215                                                 right_edge[i] = -1;
2216                                 }
2217                         }
2218                         break;
2219                 }
2220
2221                 /* stop != 1 */
2222                 for (i = 0; i < per_dqs; i++) {
2223                         if (bit_chk & 1) {
2224                                 /*
2225                                  * Remember a passing test as
2226                                  * the right_edge.
2227                                  */
2228                                 right_edge[i] = d;
2229                         } else {
2230                                 if (d != 0) {
2231                                         /*
2232                                          * If a right edge has not
2233                                          * been seen yet, then a future
2234                                          * passing test will mark this
2235                                          * edge as the left edge.
2236                                          */
2237                                         if (right_edge[i] == delay_max + 1)
2238                                                 left_edge[i] = -(d + 1);
2239                                 } else {
2240                                         /*
2241                                          * d = 0 failed, but it passed
2242                                          * when testing the left edge,
2243                                          * so it must be marginal, set
2244                                          * it to -1
2245                                          */
2246                                         if (right_edge[i] == delay_max + 1 &&
2247                                             left_edge[i] != delay_max + 1)
2248                                                 right_edge[i] = -1;
2249                                         /*
2250                                          * If a right edge has not been
2251                                          * seen yet, then a future
2252                                          * passing test will mark this
2253                                          * edge as the left edge.
2254                                          */
2255                                         else if (right_edge[i] == delay_max + 1)
2256                                                 left_edge[i] = -(d + 1);
2257                                 }
2258                         }
2259
2260                         debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2261                                    __func__, __LINE__, d);
2262                         debug_cond(DLEVEL == 2,
2263                                    "bit_chk_test=%i left_edge[%u]: %d ",
2264                                    bit_chk & 1, i, left_edge[i]);
2265                         debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2266                                    right_edge[i]);
2267                         bit_chk >>= 1;
2268                 }
2269         }
2270
2271         /* Check that all bits have a window */
2272         for (i = 0; i < per_dqs; i++) {
2273                 debug_cond(DLEVEL == 2,
2274                            "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2275                            __func__, __LINE__, i, left_edge[i],
2276                            i, right_edge[i]);
2277                 if ((left_edge[i] == dqs_max + 1) ||
2278                     (right_edge[i] == dqs_max + 1))
2279                         return i + 1;   /* FIXME: If we fail, retval > 0 */
2280         }
2281
2282         return 0;
2283 }
2284
2285 /**
2286  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2287  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2288  * @left_edge:          Left edge of the DQ/DQS phase
2289  * @right_edge:         Right edge of the DQ/DQS phase
2290  * @mid_min:            Best DQ/DQS phase middle setting
2291  *
2292  * Find index and value of the middle of the DQ/DQS working phase.
2293  */
2294 static int get_window_mid_index(const int write, int *left_edge,
2295                                 int *right_edge, int *mid_min)
2296 {
2297         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2298                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2299         int i, mid, min_index;
2300
2301         /* Find middle of window for each DQ bit */
2302         *mid_min = left_edge[0] - right_edge[0];
2303         min_index = 0;
2304         for (i = 1; i < per_dqs; i++) {
2305                 mid = left_edge[i] - right_edge[i];
2306                 if (mid < *mid_min) {
2307                         *mid_min = mid;
2308                         min_index = i;
2309                 }
2310         }
2311
2312         /*
2313          * -mid_min/2 represents the amount that we need to move DQS.
2314          * If mid_min is odd and positive we'll need to add one to make
2315          * sure the rounding in further calculations is correct (always
2316          * bias to the right), so just add 1 for all positive values.
2317          */
2318         if (*mid_min > 0)
2319                 (*mid_min)++;
2320         *mid_min = *mid_min / 2;
2321
2322         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2323                    __func__, __LINE__, *mid_min, min_index);
2324         return min_index;
2325 }
2326
2327 /**
2328  * center_dq_windows() - Center the DQ/DQS windows
2329  * @write:              Perform read (Stage 2) or write (Stage 3) calibration
2330  * @left_edge:          Left edge of the DQ/DQS phase
2331  * @right_edge:         Right edge of the DQ/DQS phase
2332  * @mid_min:            Adjusted DQ/DQS phase middle setting
2333  * @orig_mid_min:       Original DQ/DQS phase middle setting
2334  * @min_index:          DQ/DQS phase middle setting index
2335  * @test_bgn:           Rank number to begin the test
2336  * @dq_margin:          Amount of shift for the DQ
2337  * @dqs_margin:         Amount of shift for the DQS
2338  *
2339  * Align the DQ/DQS windows in each group.
2340  */
2341 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2342                               const int mid_min, const int orig_mid_min,
2343                               const int min_index, const int test_bgn,
2344                               int *dq_margin, int *dqs_margin)
2345 {
2346         const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2347         const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2348                                     RW_MGR_MEM_DQ_PER_READ_DQS;
2349         const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2350                                       SCC_MGR_IO_IN_DELAY_OFFSET;
2351         const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2352
2353         u32 temp_dq_io_delay1, temp_dq_io_delay2;
2354         int shift_dq, i, p;
2355
2356         /* Initialize data for export structures */
2357         *dqs_margin = delay_max + 1;
2358         *dq_margin  = delay_max + 1;
2359
2360         /* add delay to bring centre of all DQ windows to the same "level" */
2361         for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2362                 /* Use values before divide by 2 to reduce round off error */
2363                 shift_dq = (left_edge[i] - right_edge[i] -
2364                         (left_edge[min_index] - right_edge[min_index]))/2  +
2365                         (orig_mid_min - mid_min);
2366
2367                 debug_cond(DLEVEL == 2,
2368                            "vfifo_center: before: shift_dq[%u]=%d\n",
2369                            i, shift_dq);
2370
2371                 temp_dq_io_delay1 = readl(addr + (p << 2));
2372                 temp_dq_io_delay2 = readl(addr + (i << 2));
2373
2374                 if (shift_dq + temp_dq_io_delay1 > delay_max)
2375                         shift_dq = delay_max - temp_dq_io_delay2;
2376                 else if (shift_dq + temp_dq_io_delay1 < 0)
2377                         shift_dq = -temp_dq_io_delay1;
2378
2379                 debug_cond(DLEVEL == 2,
2380                            "vfifo_center: after: shift_dq[%u]=%d\n",
2381                            i, shift_dq);
2382
2383                 if (write)
2384                         scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2385                 else
2386                         scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2387
2388                 scc_mgr_load_dq(p);
2389
2390                 debug_cond(DLEVEL == 2,
2391                            "vfifo_center: margin[%u]=[%d,%d]\n", i,
2392                            left_edge[i] - shift_dq + (-mid_min),
2393                            right_edge[i] + shift_dq - (-mid_min));
2394
2395                 /* To determine values for export structures */
2396                 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2397                         *dq_margin = left_edge[i] - shift_dq + (-mid_min);
2398
2399                 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2400                         *dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2401         }
2402
2403 }
2404
2405 /**
2406  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2407  * @rank_bgn:           Rank number
2408  * @rw_group:           Read/Write Group
2409  * @test_bgn:           Rank at which the test begins
2410  * @use_read_test:      Perform a read test
2411  * @update_fom:         Update FOM
2412  *
2413  * Per-bit deskew DQ and centering.
2414  */
2415 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2416                         const u32 rw_group, const u32 test_bgn,
2417                         const int use_read_test, const int update_fom)
2418 {
2419         const u32 addr =
2420                 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2421                 (rw_group << 2);
2422         /*
2423          * Store these as signed since there are comparisons with
2424          * signed numbers.
2425          */
2426         uint32_t sticky_bit_chk;
2427         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2428         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2429         int32_t orig_mid_min, mid_min;
2430         int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2431         int32_t dq_margin, dqs_margin;
2432         int i, min_index;
2433         int ret;
2434
2435         debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2436
2437         start_dqs = readl(addr);
2438         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2439                 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2440
2441         /* set the left and right edge of each bit to an illegal value */
2442         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2443         sticky_bit_chk = 0;
2444         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2445                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2446                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2447         }
2448
2449         /* Search for the left edge of the window for each bit */
2450         search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2451                          &sticky_bit_chk,
2452                          left_edge, right_edge, use_read_test);
2453
2454
2455         /* Search for the right edge of the window for each bit */
2456         ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2457                                 start_dqs, start_dqs_en,
2458                                 &sticky_bit_chk,
2459                                 left_edge, right_edge, use_read_test);
2460         if (ret) {
2461                 /*
2462                  * Restore delay chain settings before letting the loop
2463                  * in rw_mgr_mem_calibrate_vfifo to retry different
2464                  * dqs/ck relationships.
2465                  */
2466                 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2467                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2468                         scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2469
2470                 scc_mgr_load_dqs(rw_group);
2471                 writel(0, &sdr_scc_mgr->update);
2472
2473                 debug_cond(DLEVEL == 1,
2474                            "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2475                            __func__, __LINE__, i, left_edge[i], right_edge[i]);
2476                 if (use_read_test) {
2477                         set_failing_group_stage(rw_group *
2478                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2479                                 CAL_STAGE_VFIFO,
2480                                 CAL_SUBSTAGE_VFIFO_CENTER);
2481                 } else {
2482                         set_failing_group_stage(rw_group *
2483                                 RW_MGR_MEM_DQ_PER_READ_DQS + i,
2484                                 CAL_STAGE_VFIFO_AFTER_WRITES,
2485                                 CAL_SUBSTAGE_VFIFO_CENTER);
2486                 }
2487                 return -EIO;
2488         }
2489
2490         min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2491
2492         /* Determine the amount we can change DQS (which is -mid_min) */
2493         orig_mid_min = mid_min;
2494         new_dqs = start_dqs - mid_min;
2495         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2496                 new_dqs = IO_DQS_IN_DELAY_MAX;
2497         else if (new_dqs < 0)
2498                 new_dqs = 0;
2499
2500         mid_min = start_dqs - new_dqs;
2501         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2502                    mid_min, new_dqs);
2503
2504         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2505                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2506                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2507                 else if (start_dqs_en - mid_min < 0)
2508                         mid_min += start_dqs_en - mid_min;
2509         }
2510         new_dqs = start_dqs - mid_min;
2511
2512         debug_cond(DLEVEL == 1,
2513                    "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2514                    start_dqs,
2515                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2516                    new_dqs, mid_min);
2517
2518         /* Add delay to bring centre of all DQ windows to the same "level". */
2519         center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2520                           min_index, test_bgn, &dq_margin, &dqs_margin);
2521
2522         /* Move DQS-en */
2523         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2524                 final_dqs_en = start_dqs_en - mid_min;
2525                 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2526                 scc_mgr_load_dqs(rw_group);
2527         }
2528
2529         /* Move DQS */
2530         scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2531         scc_mgr_load_dqs(rw_group);
2532         debug_cond(DLEVEL == 2,
2533                    "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2534                    __func__, __LINE__, dq_margin, dqs_margin);
2535
2536         /*
2537          * Do not remove this line as it makes sure all of our decisions
2538          * have been applied. Apply the update bit.
2539          */
2540         writel(0, &sdr_scc_mgr->update);
2541
2542         if ((dq_margin < 0) || (dqs_margin < 0))
2543                 return -EINVAL;
2544
2545         return 0;
2546 }
2547
2548 /**
2549  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2550  * @rw_group:   Read/Write Group
2551  * @phase:      DQ/DQS phase
2552  *
2553  * Because initially no communication ca be reliably performed with the memory
2554  * device, the sequencer uses a guaranteed write mechanism to write data into
2555  * the memory device.
2556  */
2557 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2558                                                  const u32 phase)
2559 {
2560         int ret;
2561
2562         /* Set a particular DQ/DQS phase. */
2563         scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2564
2565         debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2566                    __func__, __LINE__, rw_group, phase);
2567
2568         /*
2569          * Altera EMI_RM 2015.05.04 :: Figure 1-25
2570          * Load up the patterns used by read calibration using the
2571          * current DQDQS phase.
2572          */
2573         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2574
2575         if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2576                 return 0;
2577
2578         /*
2579          * Altera EMI_RM 2015.05.04 :: Figure 1-26
2580          * Back-to-Back reads of the patterns used for calibration.
2581          */
2582         ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2583         if (ret)
2584                 debug_cond(DLEVEL == 1,
2585                            "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2586                            __func__, __LINE__, rw_group, phase);
2587         return ret;
2588 }
2589
2590 /**
2591  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2592  * @rw_group:   Read/Write Group
2593  * @test_bgn:   Rank at which the test begins
2594  *
2595  * DQS enable calibration ensures reliable capture of the DQ signal without
2596  * glitches on the DQS line.
2597  */
2598 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2599                                                        const u32 test_bgn)
2600 {
2601         /*
2602          * Altera EMI_RM 2015.05.04 :: Figure 1-27
2603          * DQS and DQS Eanble Signal Relationships.
2604          */
2605
2606         /* We start at zero, so have one less dq to devide among */
2607         const u32 delay_step = IO_IO_IN_DELAY_MAX /
2608                                (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2609         int ret;
2610         u32 i, p, d, r;
2611
2612         debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2613
2614         /* Try different dq_in_delays since the DQ path is shorter than DQS. */
2615         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2616              r += NUM_RANKS_PER_SHADOW_REG) {
2617                 for (i = 0, p = test_bgn, d = 0;
2618                      i < RW_MGR_MEM_DQ_PER_READ_DQS;
2619                      i++, p++, d += delay_step) {
2620                         debug_cond(DLEVEL == 1,
2621                                    "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2622                                    __func__, __LINE__, rw_group, r, i, p, d);
2623
2624                         scc_mgr_set_dq_in_delay(p, d);
2625                         scc_mgr_load_dq(p);
2626                 }
2627
2628                 writel(0, &sdr_scc_mgr->update);
2629         }
2630
2631         /*
2632          * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2633          * dq_in_delay values
2634          */
2635         ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2636
2637         debug_cond(DLEVEL == 1,
2638                    "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2639                    __func__, __LINE__, rw_group, !ret);
2640
2641         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2642              r += NUM_RANKS_PER_SHADOW_REG) {
2643                 scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2644                 writel(0, &sdr_scc_mgr->update);
2645         }
2646
2647         return ret;
2648 }
2649
2650 /**
2651  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2652  * @rw_group:           Read/Write Group
2653  * @test_bgn:           Rank at which the test begins
2654  * @use_read_test:      Perform a read test
2655  * @update_fom:         Update FOM
2656  *
2657  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2658  * within a group.
2659  */
2660 static int
2661 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2662                                       const int use_read_test,
2663                                       const int update_fom)
2664
2665 {
2666         int ret, grp_calibrated;
2667         u32 rank_bgn, sr;
2668
2669         /*
2670          * Altera EMI_RM 2015.05.04 :: Figure 1-28
2671          * Read per-bit deskew can be done on a per shadow register basis.
2672          */
2673         grp_calibrated = 1;
2674         for (rank_bgn = 0, sr = 0;
2675              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2676              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2677                 /* Check if this set of ranks should be skipped entirely. */
2678                 if (param->skip_shadow_regs[sr])
2679                         continue;
2680
2681                 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2682                                                         test_bgn,
2683                                                         use_read_test,
2684                                                         update_fom);
2685                 if (!ret)
2686                         continue;
2687
2688                 grp_calibrated = 0;
2689         }
2690
2691         if (!grp_calibrated)
2692                 return -EIO;
2693
2694         return 0;
2695 }
2696
2697 /**
2698  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2699  * @rw_group:           Read/Write Group
2700  * @test_bgn:           Rank at which the test begins
2701  *
2702  * Stage 1: Calibrate the read valid prediction FIFO.
2703  *
2704  * This function implements UniPHY calibration Stage 1, as explained in
2705  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2706  *
2707  * - read valid prediction will consist of finding:
2708  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2709  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2710  *  - we also do a per-bit deskew on the DQ lines.
2711  */
2712 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2713 {
2714         uint32_t p, d;
2715         uint32_t dtaps_per_ptap;
2716         uint32_t failed_substage;
2717
2718         int ret;
2719
2720         debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2721
2722         /* Update info for sims */
2723         reg_file_set_group(rw_group);
2724         reg_file_set_stage(CAL_STAGE_VFIFO);
2725         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2726
2727         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2728
2729         /* USER Determine number of delay taps for each phase tap. */
2730         dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2731                                       IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2732
2733         for (d = 0; d <= dtaps_per_ptap; d += 2) {
2734                 /*
2735                  * In RLDRAMX we may be messing the delay of pins in
2736                  * the same write rw_group but outside of the current read
2737                  * the rw_group, but that's ok because we haven't calibrated
2738                  * output side yet.
2739                  */
2740                 if (d > 0) {
2741                         scc_mgr_apply_group_all_out_delay_add_all_ranks(
2742                                                                 rw_group, d);
2743                 }
2744
2745                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2746                         /* 1) Guaranteed Write */
2747                         ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2748                         if (ret)
2749                                 break;
2750
2751                         /* 2) DQS Enable Calibration */
2752                         ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2753                                                                           test_bgn);
2754                         if (ret) {
2755                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2756                                 continue;
2757                         }
2758
2759                         /* 3) Centering DQ/DQS */
2760                         /*
2761                          * If doing read after write calibration, do not update
2762                          * FOM now. Do it then.
2763                          */
2764                         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2765                                                                 test_bgn, 1, 0);
2766                         if (ret) {
2767                                 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2768                                 continue;
2769                         }
2770
2771                         /* All done. */
2772                         goto cal_done_ok;
2773                 }
2774         }
2775
2776         /* Calibration Stage 1 failed. */
2777         set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2778         return 0;
2779
2780         /* Calibration Stage 1 completed OK. */
2781 cal_done_ok:
2782         /*
2783          * Reset the delay chains back to zero if they have moved > 1
2784          * (check for > 1 because loop will increase d even when pass in
2785          * first case).
2786          */
2787         if (d > 2)
2788                 scc_mgr_zero_group(rw_group, 1);
2789
2790         return 1;
2791 }
2792
2793 /**
2794  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2795  * @rw_group:           Read/Write Group
2796  * @test_bgn:           Rank at which the test begins
2797  *
2798  * Stage 3: DQ/DQS Centering.
2799  *
2800  * This function implements UniPHY calibration Stage 3, as explained in
2801  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2802  */
2803 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2804                                           const u32 test_bgn)
2805 {
2806         int ret;
2807
2808         debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2809
2810         /* Update info for sims. */
2811         reg_file_set_group(rw_group);
2812         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2813         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2814
2815         ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2816         if (ret)
2817                 set_failing_group_stage(rw_group,
2818                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2819                                         CAL_SUBSTAGE_VFIFO_CENTER);
2820         return ret;
2821 }
2822
2823 /**
2824  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2825  *
2826  * Stage 4: Minimize latency.
2827  *
2828  * This function implements UniPHY calibration Stage 4, as explained in
2829  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2830  * Calibrate LFIFO to find smallest read latency.
2831  */
2832 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2833 {
2834         int found_one = 0;
2835
2836         debug("%s:%d\n", __func__, __LINE__);
2837
2838         /* Update info for sims. */
2839         reg_file_set_stage(CAL_STAGE_LFIFO);
2840         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2841
2842         /* Load up the patterns used by read calibration for all ranks */
2843         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2844
2845         do {
2846                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2847                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2848                            __func__, __LINE__, gbl->curr_read_lat);
2849
2850                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2851                                                               PASS_ALL_BITS, 1))
2852                         break;
2853
2854                 found_one = 1;
2855                 /*
2856                  * Reduce read latency and see if things are
2857                  * working correctly.
2858                  */
2859                 gbl->curr_read_lat--;
2860         } while (gbl->curr_read_lat > 0);
2861
2862         /* Reset the fifos to get pointers to known state. */
2863         writel(0, &phy_mgr_cmd->fifo_reset);
2864
2865         if (found_one) {
2866                 /* Add a fudge factor to the read latency that was determined */
2867                 gbl->curr_read_lat += 2;
2868                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2869                 debug_cond(DLEVEL == 2,
2870                            "%s:%d lfifo: success: using read_lat=%u\n",
2871                            __func__, __LINE__, gbl->curr_read_lat);
2872         } else {
2873                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2874                                         CAL_SUBSTAGE_READ_LATENCY);
2875
2876                 debug_cond(DLEVEL == 2,
2877                            "%s:%d lfifo: failed at initial read_lat=%u\n",
2878                            __func__, __LINE__, gbl->curr_read_lat);
2879         }
2880
2881         return found_one;
2882 }
2883
2884 /**
2885  * search_window() - Search for the/part of the window with DM/DQS shift
2886  * @search_dm:          If 1, search for the DM shift, if 0, search for DQS shift
2887  * @rank_bgn:           Rank number
2888  * @write_group:        Write Group
2889  * @bgn_curr:           Current window begin
2890  * @end_curr:           Current window end
2891  * @bgn_best:           Current best window begin
2892  * @end_best:           Current best window end
2893  * @win_best:           Size of the best window
2894  * @new_dqs:            New DQS value (only applicable if search_dm = 0).
2895  *
2896  * Search for the/part of the window with DM/DQS shift.
2897  */
2898 static void search_window(const int search_dm,
2899                           const u32 rank_bgn, const u32 write_group,
2900                           int *bgn_curr, int *end_curr, int *bgn_best,
2901                           int *end_best, int *win_best, int new_dqs)
2902 {
2903         u32 bit_chk;
2904         const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2905         int d, di;
2906
2907         /* Search for the/part of the window with DM/DQS shift. */
2908         for (di = max; di >= 0; di -= DELTA_D) {
2909                 if (search_dm) {
2910                         d = di;
2911                         scc_mgr_apply_group_dm_out1_delay(d);
2912                 } else {
2913                         /* For DQS, we go from 0...max */
2914                         d = max - di;
2915                         /*
2916                          * Note: This only shifts DQS, so are we limiting ourselve to
2917                          * width of DQ unnecessarily.
2918                          */
2919                         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2920                                                                 d + new_dqs);
2921                 }
2922
2923                 writel(0, &sdr_scc_mgr->update);
2924
2925                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2926                                                     PASS_ALL_BITS, &bit_chk,
2927                                                     0)) {
2928                         /* Set current end of the window. */
2929                         *end_curr = search_dm ? -d : d;
2930
2931                         /*
2932                          * If a starting edge of our window has not been seen
2933                          * this is our current start of the DM window.
2934                          */
2935                         if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2936                                 *bgn_curr = search_dm ? -d : d;
2937
2938                         /*
2939                          * If current window is bigger than best seen.
2940                          * Set best seen to be current window.
2941                          */
2942                         if ((*end_curr - *bgn_curr + 1) > *win_best) {
2943                                 *win_best = *end_curr - *bgn_curr + 1;
2944                                 *bgn_best = *bgn_curr;
2945                                 *end_best = *end_curr;
2946                         }
2947                 } else {
2948                         /* We just saw a failing test. Reset temp edge. */
2949                         *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2950                         *end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2951
2952                         /* Early exit is only applicable to DQS. */
2953                         if (search_dm)
2954                                 continue;
2955
2956                         /*
2957                          * Early exit optimization: if the remaining delay
2958                          * chain space is less than already seen largest
2959                          * window we can exit.
2960                          */
2961                         if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2962                                 break;
2963                 }
2964         }
2965 }
2966
2967 /*
2968  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2969  * @rank_bgn:           Rank number
2970  * @write_group:        Write group
2971  * @test_bgn:           Rank at which the test begins
2972  *
2973  * Center all windows. Do per-bit-deskew to possibly increase size of
2974  * certain windows.
2975  */
2976 static int
2977 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2978                                    const u32 test_bgn)
2979 {
2980         int i;
2981         u32 sticky_bit_chk;
2982         u32 min_index;
2983         int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2984         int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2985         int mid;
2986         int mid_min, orig_mid_min;
2987         int new_dqs, start_dqs;
2988         int dq_margin, dqs_margin, dm_margin;
2989         int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2990         int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2991         int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2992         int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2993         int win_best = 0;
2994
2995         int ret;
2996
2997         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2998
2999         dm_margin = 0;
3000
3001         start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
3002                           SCC_MGR_IO_OUT1_DELAY_OFFSET) +
3003                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
3004
3005         /* Per-bit deskew. */
3006
3007         /*
3008          * Set the left and right edge of each bit to an illegal value.
3009          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3010          */
3011         sticky_bit_chk = 0;
3012         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3013                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
3014                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
3015         }
3016
3017         /* Search for the left edge of the window for each bit. */
3018         search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3019                          &sticky_bit_chk,
3020                          left_edge, right_edge, 0);
3021
3022         /* Search for the right edge of the window for each bit. */
3023         ret = search_right_edge(1, rank_bgn, write_group, 0,
3024                                 start_dqs, 0,
3025                                 &sticky_bit_chk,
3026                                 left_edge, right_edge, 0);
3027         if (ret) {
3028                 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3029                                         CAL_SUBSTAGE_WRITES_CENTER);
3030                 return -EINVAL;
3031         }
3032
3033         min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3034
3035         /* Determine the amount we can change DQS (which is -mid_min). */
3036         orig_mid_min = mid_min;
3037         new_dqs = start_dqs;
3038         mid_min = 0;
3039         debug_cond(DLEVEL == 1,
3040                    "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3041                    __func__, __LINE__, start_dqs, new_dqs, mid_min);
3042
3043         /* Add delay to bring centre of all DQ windows to the same "level". */
3044         center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3045                           min_index, 0, &dq_margin, &dqs_margin);
3046
3047         /* Move DQS */
3048         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3049         writel(0, &sdr_scc_mgr->update);
3050
3051         /* Centre DM */
3052         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3053
3054         /*
3055          * Set the left and right edge of each bit to an illegal value.
3056          * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3057          */
3058         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3059         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3060
3061         /* Search for the/part of the window with DM shift. */
3062         search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3063                       &bgn_best, &end_best, &win_best, 0);
3064
3065         /* Reset DM delay chains to 0. */
3066         scc_mgr_apply_group_dm_out1_delay(0);
3067
3068         /*
3069          * Check to see if the current window nudges up aganist 0 delay.
3070          * If so we need to continue the search by shifting DQS otherwise DQS
3071          * search begins as a new search.
3072          */
3073         if (end_curr != 0) {
3074                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3075                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3076         }
3077
3078         /* Search for the/part of the window with DQS shifts. */
3079         search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3080                       &bgn_best, &end_best, &win_best, new_dqs);
3081
3082         /* Assign left and right edge for cal and reporting. */
3083         left_edge[0] = -1 * bgn_best;
3084         right_edge[0] = end_best;
3085
3086         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3087                    __func__, __LINE__, left_edge[0], right_edge[0]);
3088
3089         /* Move DQS (back to orig). */
3090         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3091
3092         /* Move DM */
3093
3094         /* Find middle of window for the DM bit. */
3095         mid = (left_edge[0] - right_edge[0]) / 2;
3096
3097         /* Only move right, since we are not moving DQS/DQ. */
3098         if (mid < 0)
3099                 mid = 0;
3100
3101         /* dm_marign should fail if we never find a window. */
3102         if (win_best == 0)
3103                 dm_margin = -1;
3104         else
3105                 dm_margin = left_edge[0] - mid;
3106
3107         scc_mgr_apply_group_dm_out1_delay(mid);
3108         writel(0, &sdr_scc_mgr->update);
3109
3110         debug_cond(DLEVEL == 2,
3111                    "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3112                    __func__, __LINE__, left_edge[0], right_edge[0],
3113                    mid, dm_margin);
3114         /* Export values. */
3115         gbl->fom_out += dq_margin + dqs_margin;
3116
3117         debug_cond(DLEVEL == 2,
3118                    "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3119                    __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3120
3121         /*
3122          * Do not remove this line as it makes sure all of our
3123          * decisions have been applied.
3124          */
3125         writel(0, &sdr_scc_mgr->update);
3126
3127         if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3128                 return -EINVAL;
3129
3130         return 0;
3131 }
3132
3133 /**
3134  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3135  * @rank_bgn:           Rank number
3136  * @group:              Read/Write Group
3137  * @test_bgn:           Rank at which the test begins
3138  *
3139  * Stage 2: Write Calibration Part One.
3140  *
3141  * This function implements UniPHY calibration Stage 2, as explained in
3142  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3143  */
3144 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3145                                        const u32 test_bgn)
3146 {
3147         int ret;
3148
3149         /* Update info for sims */
3150         debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3151
3152         reg_file_set_group(group);
3153         reg_file_set_stage(CAL_STAGE_WRITES);
3154         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3155
3156         ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3157         if (ret)
3158                 set_failing_group_stage(group, CAL_STAGE_WRITES,
3159                                         CAL_SUBSTAGE_WRITES_CENTER);
3160
3161         return ret;
3162 }
3163
3164 /**
3165  * mem_precharge_and_activate() - Precharge all banks and activate
3166  *
3167  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3168  */
3169 static void mem_precharge_and_activate(void)
3170 {
3171         int r;
3172
3173         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3174                 /* Test if the rank should be skipped. */
3175                 if (param->skip_ranks[r])
3176                         continue;
3177
3178                 /* Set rank. */
3179                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3180
3181                 /* Precharge all banks. */
3182                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3183                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3184
3185                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3186                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3187                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3188
3189                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3190                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3191                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3192
3193                 /* Activate rows. */
3194                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3195                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3196         }
3197 }
3198
3199 /**
3200  * mem_init_latency() - Configure memory RLAT and WLAT settings
3201  *
3202  * Configure memory RLAT and WLAT parameters.
3203  */
3204 static void mem_init_latency(void)
3205 {
3206         /*
3207          * For AV/CV, LFIFO is hardened and always runs at full rate
3208          * so max latency in AFI clocks, used here, is correspondingly
3209          * smaller.
3210          */
3211         const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3212         u32 rlat, wlat;
3213
3214         debug("%s:%d\n", __func__, __LINE__);
3215
3216         /*
3217          * Read in write latency.
3218          * WL for Hard PHY does not include additive latency.
3219          */
3220         wlat = readl(&data_mgr->t_wl_add);
3221         wlat += readl(&data_mgr->mem_t_add);
3222
3223         gbl->rw_wl_nop_cycles = wlat - 1;
3224
3225         /* Read in readl latency. */
3226         rlat = readl(&data_mgr->t_rl_add);
3227
3228         /* Set a pretty high read latency initially. */
3229         gbl->curr_read_lat = rlat + 16;
3230         if (gbl->curr_read_lat > max_latency)
3231                 gbl->curr_read_lat = max_latency;
3232
3233         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3234
3235         /* Advertise write latency. */
3236         writel(wlat, &phy_mgr_cfg->afi_wlat);
3237 }
3238
3239 /**
3240  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3241  *
3242  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3243  */
3244 static void mem_skip_calibrate(void)
3245 {
3246         uint32_t vfifo_offset;
3247         uint32_t i, j, r;
3248
3249         debug("%s:%d\n", __func__, __LINE__);
3250         /* Need to update every shadow register set used by the interface */
3251         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3252              r += NUM_RANKS_PER_SHADOW_REG) {
3253                 /*
3254                  * Set output phase alignment settings appropriate for
3255                  * skip calibration.
3256                  */
3257                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3258                         scc_mgr_set_dqs_en_phase(i, 0);
3259 #if IO_DLL_CHAIN_LENGTH == 6
3260                         scc_mgr_set_dqdqs_output_phase(i, 6);
3261 #else
3262                         scc_mgr_set_dqdqs_output_phase(i, 7);
3263 #endif
3264                         /*
3265                          * Case:33398
3266                          *
3267                          * Write data arrives to the I/O two cycles before write
3268                          * latency is reached (720 deg).
3269                          *   -> due to bit-slip in a/c bus
3270                          *   -> to allow board skew where dqs is longer than ck
3271                          *      -> how often can this happen!?
3272                          *      -> can claim back some ptaps for high freq
3273                          *       support if we can relax this, but i digress...
3274                          *
3275                          * The write_clk leads mem_ck by 90 deg
3276                          * The minimum ptap of the OPA is 180 deg
3277                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3278                          * The write_clk is always delayed by 2 ptaps
3279                          *
3280                          * Hence, to make DQS aligned to CK, we need to delay
3281                          * DQS by:
3282                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3283                          *
3284                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3285                          * gives us the number of ptaps, which simplies to:
3286                          *
3287                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3288                          */
3289                         scc_mgr_set_dqdqs_output_phase(i,
3290                                         1.25 * IO_DLL_CHAIN_LENGTH - 2);
3291                 }
3292                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3293                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3294
3295                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3296                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3297                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3298                 }
3299                 writel(0xff, &sdr_scc_mgr->dq_ena);
3300                 writel(0xff, &sdr_scc_mgr->dm_ena);
3301                 writel(0, &sdr_scc_mgr->update);
3302         }
3303
3304         /* Compensate for simulation model behaviour */
3305         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3306                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3307                 scc_mgr_load_dqs(i);
3308         }
3309         writel(0, &sdr_scc_mgr->update);
3310
3311         /*
3312          * ArriaV has hard FIFOs that can only be initialized by incrementing
3313          * in sequencer.
3314          */
3315         vfifo_offset = CALIB_VFIFO_OFFSET;
3316         for (j = 0; j < vfifo_offset; j++)
3317                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3318         writel(0, &phy_mgr_cmd->fifo_reset);
3319
3320         /*
3321          * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3322          * setting from generation-time constant.
3323          */
3324         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3325         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3326 }
3327
3328 /**
3329  * mem_calibrate() - Memory calibration entry point.
3330  *
3331  * Perform memory calibration.
3332  */
3333 static uint32_t mem_calibrate(void)
3334 {
3335         uint32_t i;
3336         uint32_t rank_bgn, sr;
3337         uint32_t write_group, write_test_bgn;
3338         uint32_t read_group, read_test_bgn;
3339         uint32_t run_groups, current_run;
3340         uint32_t failing_groups = 0;
3341         uint32_t group_failed = 0;
3342
3343         const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3344                                 RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3345
3346         debug("%s:%d\n", __func__, __LINE__);
3347
3348         /* Initialize the data settings */
3349         gbl->error_substage = CAL_SUBSTAGE_NIL;
3350         gbl->error_stage = CAL_STAGE_NIL;
3351         gbl->error_group = 0xff;
3352         gbl->fom_in = 0;
3353         gbl->fom_out = 0;
3354
3355         /* Initialize WLAT and RLAT. */
3356         mem_init_latency();
3357
3358         /* Initialize bit slips. */
3359         mem_precharge_and_activate();
3360
3361         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3362                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3363                           SCC_MGR_GROUP_COUNTER_OFFSET);
3364                 /* Only needed once to set all groups, pins, DQ, DQS, DM. */
3365                 if (i == 0)
3366                         scc_mgr_set_hhp_extras();
3367
3368                 scc_set_bypass_mode(i);
3369         }
3370
3371         /* Calibration is skipped. */
3372         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3373                 /*
3374                  * Set VFIFO and LFIFO to instant-on settings in skip
3375                  * calibration mode.
3376                  */
3377                 mem_skip_calibrate();
3378
3379                 /*
3380                  * Do not remove this line as it makes sure all of our
3381                  * decisions have been applied.
3382                  */
3383                 writel(0, &sdr_scc_mgr->update);
3384                 return 1;
3385         }
3386
3387         /* Calibration is not skipped. */
3388         for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3389                 /*
3390                  * Zero all delay chain/phase settings for all
3391                  * groups and all shadow register sets.
3392                  */
3393                 scc_mgr_zero_all();
3394
3395                 run_groups = ~param->skip_groups;
3396
3397                 for (write_group = 0, write_test_bgn = 0; write_group
3398                         < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3399                         write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3400
3401                         /* Initialize the group failure */
3402                         group_failed = 0;
3403
3404                         current_run = run_groups & ((1 <<
3405                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3406                         run_groups = run_groups >>
3407                                 RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3408
3409                         if (current_run == 0)
3410                                 continue;
3411
3412                         writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3413                                             SCC_MGR_GROUP_COUNTER_OFFSET);
3414                         scc_mgr_zero_group(write_group, 0);
3415
3416                         for (read_group = write_group * rwdqs_ratio,
3417                              read_test_bgn = 0;
3418                              read_group < (write_group + 1) * rwdqs_ratio;
3419                              read_group++,
3420                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3421                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3422                                         continue;
3423
3424                                 /* Calibrate the VFIFO */
3425                                 if (rw_mgr_mem_calibrate_vfifo(read_group,
3426                                                                read_test_bgn))
3427                                         continue;
3428
3429                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3430                                         return 0;
3431
3432                                 /* The group failed, we're done. */
3433                                 goto grp_failed;
3434                         }
3435
3436                         /* Calibrate the output side */
3437                         for (rank_bgn = 0, sr = 0;
3438                              rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3439                              rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3440                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3441                                         continue;
3442
3443                                 /* Not needed in quick mode! */
3444                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3445                                         continue;
3446
3447                                 /*
3448                                  * Determine if this set of ranks
3449                                  * should be skipped entirely.
3450                                  */
3451                                 if (param->skip_shadow_regs[sr])
3452                                         continue;
3453
3454                                 /* Calibrate WRITEs */
3455                                 if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3456                                                 write_group, write_test_bgn))
3457                                         continue;
3458
3459                                 group_failed = 1;
3460                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3461                                         return 0;
3462                         }
3463
3464                         /* Some group failed, we're done. */
3465                         if (group_failed)
3466                                 goto grp_failed;
3467
3468                         for (read_group = write_group * rwdqs_ratio,
3469                              read_test_bgn = 0;
3470                              read_group < (write_group + 1) * rwdqs_ratio;
3471                              read_group++,
3472                              read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3473                                 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3474                                         continue;
3475
3476                                 if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3477                                                                 read_test_bgn))
3478                                         continue;
3479
3480                                 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3481                                         return 0;
3482
3483                                 /* The group failed, we're done. */
3484                                 goto grp_failed;
3485                         }
3486
3487                         /* No group failed, continue as usual. */
3488                         continue;
3489
3490 grp_failed:             /* A group failed, increment the counter. */
3491                         failing_groups++;
3492                 }
3493
3494                 /*
3495                  * USER If there are any failing groups then report
3496                  * the failure.
3497                  */
3498                 if (failing_groups != 0)
3499                         return 0;
3500
3501                 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3502                         continue;
3503
3504                 /*
3505                  * If we're skipping groups as part of debug,
3506                  * don't calibrate LFIFO.
3507                  */
3508                 if (param->skip_groups != 0)
3509                         continue;
3510
3511                 /* Calibrate the LFIFO */
3512                 if (!rw_mgr_mem_calibrate_lfifo())
3513                         return 0;
3514         }
3515
3516         /*
3517          * Do not remove this line as it makes sure all of our decisions
3518          * have been applied.
3519          */
3520         writel(0, &sdr_scc_mgr->update);
3521         return 1;
3522 }
3523
3524 /**
3525  * run_mem_calibrate() - Perform memory calibration
3526  *
3527  * This function triggers the entire memory calibration procedure.
3528  */
3529 static int run_mem_calibrate(void)
3530 {
3531         int pass;
3532
3533         debug("%s:%d\n", __func__, __LINE__);
3534
3535         /* Reset pass/fail status shown on afi_cal_success/fail */
3536         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3537
3538         /* Stop tracking manager. */
3539         clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3540
3541         phy_mgr_initialize();
3542         rw_mgr_mem_initialize();
3543
3544         /* Perform the actual memory calibration. */
3545         pass = mem_calibrate();
3546
3547         mem_precharge_and_activate();
3548         writel(0, &phy_mgr_cmd->fifo_reset);
3549
3550         /* Handoff. */
3551         rw_mgr_mem_handoff();
3552         /*
3553          * In Hard PHY this is a 2-bit control:
3554          * 0: AFI Mux Select
3555          * 1: DDIO Mux Select
3556          */
3557         writel(0x2, &phy_mgr_cfg->mux_sel);
3558
3559         /* Start tracking manager. */
3560         setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3561
3562         return pass;
3563 }
3564
3565 /**
3566  * debug_mem_calibrate() - Report result of memory calibration
3567  * @pass:       Value indicating whether calibration passed or failed
3568  *
3569  * This function reports the results of the memory calibration
3570  * and writes debug information into the register file.
3571  */
3572 static void debug_mem_calibrate(int pass)
3573 {
3574         uint32_t debug_info;
3575
3576         if (pass) {
3577                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3578
3579                 gbl->fom_in /= 2;
3580                 gbl->fom_out /= 2;
3581
3582                 if (gbl->fom_in > 0xff)
3583                         gbl->fom_in = 0xff;
3584
3585                 if (gbl->fom_out > 0xff)
3586                         gbl->fom_out = 0xff;
3587
3588                 /* Update the FOM in the register file */
3589                 debug_info = gbl->fom_in;
3590                 debug_info |= gbl->fom_out << 8;
3591                 writel(debug_info, &sdr_reg_file->fom);
3592
3593                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3594                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3595         } else {
3596                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3597
3598                 debug_info = gbl->error_stage;
3599                 debug_info |= gbl->error_substage << 8;
3600                 debug_info |= gbl->error_group << 16;
3601
3602                 writel(debug_info, &sdr_reg_file->failing_stage);
3603                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3604                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3605
3606                 /* Update the failing group/stage in the register file */
3607                 debug_info = gbl->error_stage;
3608                 debug_info |= gbl->error_substage << 8;
3609                 debug_info |= gbl->error_group << 16;
3610                 writel(debug_info, &sdr_reg_file->failing_stage);
3611         }
3612
3613         printf("%s: Calibration complete\n", __FILE__);
3614 }
3615
3616 /**
3617  * hc_initialize_rom_data() - Initialize ROM data
3618  *
3619  * Initialize ROM data.
3620  */
3621 static void hc_initialize_rom_data(void)
3622 {
3623         u32 i, addr;
3624
3625         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3626         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3627                 writel(inst_rom_init[i], addr + (i << 2));
3628
3629         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3630         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3631                 writel(ac_rom_init[i], addr + (i << 2));
3632 }
3633
3634 /**
3635  * initialize_reg_file() - Initialize SDR register file
3636  *
3637  * Initialize SDR register file.
3638  */
3639 static void initialize_reg_file(void)
3640 {
3641         /* Initialize the register file with the correct data */
3642         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3643         writel(0, &sdr_reg_file->debug_data_addr);
3644         writel(0, &sdr_reg_file->cur_stage);
3645         writel(0, &sdr_reg_file->fom);
3646         writel(0, &sdr_reg_file->failing_stage);
3647         writel(0, &sdr_reg_file->debug1);
3648         writel(0, &sdr_reg_file->debug2);
3649 }
3650
3651 /**
3652  * initialize_hps_phy() - Initialize HPS PHY
3653  *
3654  * Initialize HPS PHY.
3655  */
3656 static void initialize_hps_phy(void)
3657 {
3658         uint32_t reg;
3659         /*
3660          * Tracking also gets configured here because it's in the
3661          * same register.
3662          */
3663         uint32_t trk_sample_count = 7500;
3664         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3665         /*
3666          * Format is number of outer loops in the 16 MSB, sample
3667          * count in 16 LSB.
3668          */
3669
3670         reg = 0;
3671         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3672         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3673         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3674         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3675         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3676         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3677         /*
3678          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3679          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3680          */
3681         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3682         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3683                 trk_sample_count);
3684         writel(reg, &sdr_ctrl->phy_ctrl0);
3685
3686         reg = 0;
3687         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3688                 trk_sample_count >>
3689                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3690         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3691                 trk_long_idle_sample_count);
3692         writel(reg, &sdr_ctrl->phy_ctrl1);
3693
3694         reg = 0;
3695         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3696                 trk_long_idle_sample_count >>
3697                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3698         writel(reg, &sdr_ctrl->phy_ctrl2);
3699 }
3700
3701 /**
3702  * initialize_tracking() - Initialize tracking
3703  *
3704  * Initialize the register file with usable initial data.
3705  */
3706 static void initialize_tracking(void)
3707 {
3708         /*
3709          * Initialize the register file with the correct data.
3710          * Compute usable version of value in case we skip full
3711          * computation later.
3712          */
3713         writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3714                &sdr_reg_file->dtaps_per_ptap);
3715
3716         /* trk_sample_count */
3717         writel(7500, &sdr_reg_file->trk_sample_count);
3718
3719         /* longidle outer loop [15:0] */
3720         writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3721
3722         /*
3723          * longidle sample count [31:24]
3724          * trfc, worst case of 933Mhz 4Gb [23:16]
3725          * trcd, worst case [15:8]
3726          * vfifo wait [7:0]
3727          */
3728         writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3729                &sdr_reg_file->delays);
3730
3731         /* mux delay */
3732         writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3733                (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3734                &sdr_reg_file->trk_rw_mgr_addr);
3735
3736         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3737                &sdr_reg_file->trk_read_dqs_width);
3738
3739         /* trefi [7:0] */
3740         writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3741                &sdr_reg_file->trk_rfsh);
3742 }
3743
3744 int sdram_calibration_full(void)
3745 {
3746         struct param_type my_param;
3747         struct gbl_type my_gbl;
3748         uint32_t pass;
3749
3750         memset(&my_param, 0, sizeof(my_param));
3751         memset(&my_gbl, 0, sizeof(my_gbl));
3752
3753         param = &my_param;
3754         gbl = &my_gbl;
3755
3756         /* Set the calibration enabled by default */
3757         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3758         /*
3759          * Only sweep all groups (regardless of fail state) by default
3760          * Set enabled read test by default.
3761          */
3762 #if DISABLE_GUARANTEED_READ
3763         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3764 #endif
3765         /* Initialize the register file */
3766         initialize_reg_file();
3767
3768         /* Initialize any PHY CSR */
3769         initialize_hps_phy();
3770
3771         scc_mgr_initialize();
3772
3773         initialize_tracking();
3774
3775         printf("%s: Preparing to start memory calibration\n", __FILE__);
3776
3777         debug("%s:%d\n", __func__, __LINE__);
3778         debug_cond(DLEVEL == 1,
3779                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3780                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3781                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3782                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3783                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3784         debug_cond(DLEVEL == 1,
3785                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3786                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3787                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3788                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3789         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3790                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3791         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3792                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3793                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3794         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3795                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3796                    IO_IO_OUT2_DELAY_MAX);
3797         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3798                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3799
3800         hc_initialize_rom_data();
3801
3802         /* update info for sims */
3803         reg_file_set_stage(CAL_STAGE_NIL);
3804         reg_file_set_group(0);
3805
3806         /*
3807          * Load global needed for those actions that require
3808          * some dynamic calibration support.
3809          */
3810         dyn_calib_steps = STATIC_CALIB_STEPS;
3811         /*
3812          * Load global to allow dynamic selection of delay loop settings
3813          * based on calibration mode.
3814          */
3815         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3816                 skip_delay_mask = 0xff;
3817         else
3818                 skip_delay_mask = 0x0;
3819
3820         pass = run_mem_calibrate();
3821         debug_mem_calibrate(pass);
3822         return pass;
3823 }