]> git.karo-electronics.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up scc_mgr_*_delay() args
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33
34 static struct socfpga_data_mgr *data_mgr =
35         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39
40 #define DELTA_D         1
41
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59         STATIC_SKIP_DELAY_LOOPS)
60
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72
73 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
74
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76         ((non_skip_value) & skip_delay_mask)
77
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83         uint32_t write_group, uint32_t use_dm,
84         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87         uint32_t substage)
88 {
89         /*
90          * Only set the global stage if there was not been any other
91          * failing group
92          */
93         if (gbl->error_stage == CAL_STAGE_NIL)  {
94                 gbl->error_substage = substage;
95                 gbl->error_stage = stage;
96                 gbl->error_group = group;
97         }
98 }
99
100 static void reg_file_set_group(u16 set_group)
101 {
102         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104
105 static void reg_file_set_stage(u8 set_stage)
106 {
107         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112         set_sub_stage &= 0xff;
113         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115
116 static void initialize(void)
117 {
118         debug("%s:%d\n", __func__, __LINE__);
119         /* USER calibration has control over path to memory */
120         /*
121          * In Hard PHY this is a 2-bit control:
122          * 0: AFI Mux Select
123          * 1: DDIO Mux Select
124          */
125         writel(0x3, &phy_mgr_cfg->mux_sel);
126
127         /* USER memory clock is not stable we begin initialization  */
128         writel(0, &phy_mgr_cfg->reset_mem_stbl);
129
130         /* USER calibration status all set to zero */
131         writel(0, &phy_mgr_cfg->cal_status);
132
133         writel(0, &phy_mgr_cfg->cal_debug_info);
134
135         if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
136                 param->read_correct_mask_vg  = ((uint32_t)1 <<
137                         (RW_MGR_MEM_DQ_PER_READ_DQS /
138                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
139                 param->write_correct_mask_vg = ((uint32_t)1 <<
140                         (RW_MGR_MEM_DQ_PER_READ_DQS /
141                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
142                 param->read_correct_mask     = ((uint32_t)1 <<
143                         RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
144                 param->write_correct_mask    = ((uint32_t)1 <<
145                         RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
146                 param->dm_correct_mask       = ((uint32_t)1 <<
147                         (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
148                         - 1;
149         }
150 }
151
152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
153 {
154         uint32_t odt_mask_0 = 0;
155         uint32_t odt_mask_1 = 0;
156         uint32_t cs_and_odt_mask;
157
158         if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
159                 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
160                         /*
161                          * 1 Rank
162                          * Read: ODT = 0
163                          * Write: ODT = 1
164                          */
165                         odt_mask_0 = 0x0;
166                         odt_mask_1 = 0x1;
167                 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
168                         /* 2 Ranks */
169                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
170                                 /* - Dual-Slot , Single-Rank
171                                  * (1 chip-select per DIMM)
172                                  * OR
173                                  * - RDIMM, 4 total CS (2 CS per DIMM)
174                                  * means 2 DIMM
175                                  * Since MEM_NUMBER_OF_RANKS is 2 they are
176                                  * both single rank
177                                  * with 2 CS each (special for RDIMM)
178                                  * Read: Turn on ODT on the opposite rank
179                                  * Write: Turn on ODT on all ranks
180                                  */
181                                 odt_mask_0 = 0x3 & ~(1 << rank);
182                                 odt_mask_1 = 0x3;
183                         } else {
184                                 /*
185                                  * USER - Single-Slot , Dual-rank DIMMs
186                                  * (2 chip-selects per DIMM)
187                                  * USER Read: Turn on ODT off on all ranks
188                                  * USER Write: Turn on ODT on active rank
189                                  */
190                                 odt_mask_0 = 0x0;
191                                 odt_mask_1 = 0x3 & (1 << rank);
192                         }
193                 } else {
194                         /* 4 Ranks
195                          * Read:
196                          * ----------+-----------------------+
197                          *           |                       |
198                          *           |         ODT           |
199                          * Read From +-----------------------+
200                          *   Rank    |  3  |  2  |  1  |  0  |
201                          * ----------+-----+-----+-----+-----+
202                          *     0     |  0  |  1  |  0  |  0  |
203                          *     1     |  1  |  0  |  0  |  0  |
204                          *     2     |  0  |  0  |  0  |  1  |
205                          *     3     |  0  |  0  |  1  |  0  |
206                          * ----------+-----+-----+-----+-----+
207                          *
208                          * Write:
209                          * ----------+-----------------------+
210                          *           |                       |
211                          *           |         ODT           |
212                          * Write To  +-----------------------+
213                          *   Rank    |  3  |  2  |  1  |  0  |
214                          * ----------+-----+-----+-----+-----+
215                          *     0     |  0  |  1  |  0  |  1  |
216                          *     1     |  1  |  0  |  1  |  0  |
217                          *     2     |  0  |  1  |  0  |  1  |
218                          *     3     |  1  |  0  |  1  |  0  |
219                          * ----------+-----+-----+-----+-----+
220                          */
221                         switch (rank) {
222                         case 0:
223                                 odt_mask_0 = 0x4;
224                                 odt_mask_1 = 0x5;
225                                 break;
226                         case 1:
227                                 odt_mask_0 = 0x8;
228                                 odt_mask_1 = 0xA;
229                                 break;
230                         case 2:
231                                 odt_mask_0 = 0x1;
232                                 odt_mask_1 = 0x5;
233                                 break;
234                         case 3:
235                                 odt_mask_0 = 0x2;
236                                 odt_mask_1 = 0xA;
237                                 break;
238                         }
239                 }
240         } else {
241                 odt_mask_0 = 0x0;
242                 odt_mask_1 = 0x0;
243         }
244
245         cs_and_odt_mask =
246                 (0xFF & ~(1 << rank)) |
247                 ((0xFF & odt_mask_0) << 8) |
248                 ((0xFF & odt_mask_1) << 16);
249         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
250                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
251 }
252
253 /**
254  * scc_mgr_set() - Set SCC Manager register
255  * @off:        Base offset in SCC Manager space
256  * @grp:        Read/Write group
257  * @val:        Value to be set
258  *
259  * This function sets the SCC Manager (Scan Chain Control Manager) register.
260  */
261 static void scc_mgr_set(u32 off, u32 grp, u32 val)
262 {
263         writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
264 }
265
266 /**
267  * scc_mgr_initialize() - Initialize SCC Manager registers
268  *
269  * Initialize SCC Manager registers.
270  */
271 static void scc_mgr_initialize(void)
272 {
273         /*
274          * Clear register file for HPS. 16 (2^4) is the size of the
275          * full register file in the scc mgr:
276          *      RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
277          *                             MEM_IF_READ_DQS_WIDTH - 1);
278          */
279         int i;
280
281         for (i = 0; i < 16; i++) {
282                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
283                            __func__, __LINE__, i);
284                 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
285         }
286 }
287
288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
289 {
290         scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
291 }
292
293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
294 {
295         scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
296 }
297
298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
299 {
300         scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
301 }
302
303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
304 {
305         scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
306 }
307
308 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
309 {
310         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
311                     delay);
312 }
313
314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
315 {
316         scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
317 }
318
319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
322 }
323
324 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
325 {
326         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
327                     delay);
328 }
329
330 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
331 {
332         scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
333                     RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
334                     delay);
335 }
336
337 /* load up dqs config settings */
338 static void scc_mgr_load_dqs(uint32_t dqs)
339 {
340         writel(dqs, &sdr_scc_mgr->dqs_ena);
341 }
342
343 /* load up dqs io config settings */
344 static void scc_mgr_load_dqs_io(void)
345 {
346         writel(0, &sdr_scc_mgr->dqs_io_ena);
347 }
348
349 /* load up dq config settings */
350 static void scc_mgr_load_dq(uint32_t dq_in_group)
351 {
352         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
353 }
354
355 /* load up dm config settings */
356 static void scc_mgr_load_dm(uint32_t dm)
357 {
358         writel(dm, &sdr_scc_mgr->dm_ena);
359 }
360
361 /**
362  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
363  * @off:        Base offset in SCC Manager space
364  * @grp:        Read/Write group
365  * @val:        Value to be set
366  * @update:     If non-zero, trigger SCC Manager update for all ranks
367  *
368  * This function sets the SCC Manager (Scan Chain Control Manager) register
369  * and optionally triggers the SCC update for all ranks.
370  */
371 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
372                                   const int update)
373 {
374         u32 r;
375
376         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
377              r += NUM_RANKS_PER_SHADOW_REG) {
378                 scc_mgr_set(off, grp, val);
379
380                 if (update || (r == 0)) {
381                         writel(grp, &sdr_scc_mgr->dqs_ena);
382                         writel(0, &sdr_scc_mgr->update);
383                 }
384         }
385 }
386
387 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
388 {
389         /*
390          * USER although the h/w doesn't support different phases per
391          * shadow register, for simplicity our scc manager modeling
392          * keeps different phase settings per shadow reg, and it's
393          * important for us to keep them in sync to match h/w.
394          * for efficiency, the scan chain update should occur only
395          * once to sr0.
396          */
397         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
398                               read_group, phase, 0);
399 }
400
401 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
402                                                      uint32_t phase)
403 {
404         /*
405          * USER although the h/w doesn't support different phases per
406          * shadow register, for simplicity our scc manager modeling
407          * keeps different phase settings per shadow reg, and it's
408          * important for us to keep them in sync to match h/w.
409          * for efficiency, the scan chain update should occur only
410          * once to sr0.
411          */
412         scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
413                               write_group, phase, 0);
414 }
415
416 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
417                                                uint32_t delay)
418 {
419         /*
420          * In shadow register mode, the T11 settings are stored in
421          * registers in the core, which are updated by the DQS_ENA
422          * signals. Not issuing the SCC_MGR_UPD command allows us to
423          * save lots of rank switching overhead, by calling
424          * select_shadow_regs_for_update with update_scan_chains
425          * set to 0.
426          */
427         scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
428                               read_group, delay, 1);
429         writel(0, &sdr_scc_mgr->update);
430 }
431
432 /**
433  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
434  * @write_group:        Write group
435  * @delay:              Delay value
436  *
437  * This function sets the OCT output delay in SCC manager.
438  */
439 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
440 {
441         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
442                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
443         const int base = write_group * ratio;
444         int i;
445         /*
446          * Load the setting in the SCC manager
447          * Although OCT affects only write data, the OCT delay is controlled
448          * by the DQS logic block which is instantiated once per read group.
449          * For protocols where a write group consists of multiple read groups,
450          * the setting must be set multiple times.
451          */
452         for (i = 0; i < ratio; i++)
453                 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
454 }
455
456 static void scc_mgr_set_hhp_extras(void)
457 {
458         /*
459          * Load the fixed setting in the SCC manager
460          * bits: 0:0 = 1'b1   - dqs bypass
461          * bits: 1:1 = 1'b1   - dq bypass
462          * bits: 4:2 = 3'b001   - rfifo_mode
463          * bits: 6:5 = 2'b01  - rfifo clock_select
464          * bits: 7:7 = 1'b0  - separate gating from ungating setting
465          * bits: 8:8 = 1'b0  - separate OE from Output delay setting
466          */
467         uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
468         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET;
469
470         writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET);
471 }
472
473 /*
474  * USER Zero all DQS config
475  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
476  */
477 static void scc_mgr_zero_all(void)
478 {
479         uint32_t i, r;
480
481         /*
482          * USER Zero all DQS config settings, across all groups and all
483          * shadow registers
484          */
485         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
486              NUM_RANKS_PER_SHADOW_REG) {
487                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
488                         /*
489                          * The phases actually don't exist on a per-rank basis,
490                          * but there's no harm updating them several times, so
491                          * let's keep the code simple.
492                          */
493                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
494                         scc_mgr_set_dqs_en_phase(i, 0);
495                         scc_mgr_set_dqs_en_delay(i, 0);
496                 }
497
498                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
499                         scc_mgr_set_dqdqs_output_phase(i, 0);
500                         /* av/cv don't have out2 */
501                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
502                 }
503         }
504
505         /* multicast to all DQS group enables */
506         writel(0xff, &sdr_scc_mgr->dqs_ena);
507         writel(0, &sdr_scc_mgr->update);
508 }
509
510 /**
511  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
512  * @write_group:        Write group
513  *
514  * Set bypass mode and trigger SCC update.
515  */
516 static void scc_set_bypass_mode(const u32 write_group)
517 {
518         /* Only needed once to set all groups, pins, DQ, DQS, DM. */
519         if (write_group == 0) {
520                 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
521                            __LINE__);
522                 scc_mgr_set_hhp_extras();
523                 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
524                           __func__, __LINE__);
525         }
526
527         /* Multicast to all DQ enables. */
528         writel(0xff, &sdr_scc_mgr->dq_ena);
529         writel(0xff, &sdr_scc_mgr->dm_ena);
530
531         /* Update current DQS IO enable. */
532         writel(0, &sdr_scc_mgr->dqs_io_ena);
533
534         /* Update the DQS logic. */
535         writel(write_group, &sdr_scc_mgr->dqs_ena);
536
537         /* Hit update. */
538         writel(0, &sdr_scc_mgr->update);
539 }
540
541 /**
542  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
543  * @write_group:        Write group
544  *
545  * Load DQS settings for Write Group, do not trigger SCC update.
546  */
547 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
548 {
549         const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
550                           RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
551         const int base = write_group * ratio;
552         int i;
553         /*
554          * Load the setting in the SCC manager
555          * Although OCT affects only write data, the OCT delay is controlled
556          * by the DQS logic block which is instantiated once per read group.
557          * For protocols where a write group consists of multiple read groups,
558          * the setting must be set multiple times.
559          */
560         for (i = 0; i < ratio; i++)
561                 writel(base + i, &sdr_scc_mgr->dqs_ena);
562 }
563
564 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
565                                int32_t out_only)
566 {
567         uint32_t i, r;
568
569         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
570                 NUM_RANKS_PER_SHADOW_REG) {
571                 /* Zero all DQ config settings */
572                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
573                         scc_mgr_set_dq_out1_delay(i, 0);
574                         if (!out_only)
575                                 scc_mgr_set_dq_in_delay(i, 0);
576                 }
577
578                 /* multicast to all DQ enables */
579                 writel(0xff, &sdr_scc_mgr->dq_ena);
580
581                 /* Zero all DM config settings */
582                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
583                         scc_mgr_set_dm_out1_delay(i, 0);
584                 }
585
586                 /* multicast to all DM enables */
587                 writel(0xff, &sdr_scc_mgr->dm_ena);
588
589                 /* zero all DQS io settings */
590                 if (!out_only)
591                         scc_mgr_set_dqs_io_in_delay(0);
592                 /* av/cv don't have out2 */
593                 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
594                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
595                 scc_mgr_load_dqs_for_write_group(write_group);
596
597                 /* multicast to all DQS IO enables (only 1) */
598                 writel(0, &sdr_scc_mgr->dqs_io_ena);
599
600                 /* hit update to zero everything */
601                 writel(0, &sdr_scc_mgr->update);
602         }
603 }
604
605 /*
606  * apply and load a particular input delay for the DQ pins in a group
607  * group_bgn is the index of the first dq pin (in the write group)
608  */
609 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
610 {
611         uint32_t i, p;
612
613         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
614                 scc_mgr_set_dq_in_delay(p, delay);
615                 scc_mgr_load_dq(p);
616         }
617 }
618
619 /**
620  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
621  * @delay:              Delay value
622  *
623  * Apply and load a particular output delay for the DQ pins in a group.
624  */
625 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
626 {
627         int i;
628
629         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
630                 scc_mgr_set_dq_out1_delay(i, delay);
631                 scc_mgr_load_dq(i);
632         }
633 }
634
635 /* apply and load a particular output delay for the DM pins in a group */
636 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
637 {
638         uint32_t i;
639
640         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
641                 scc_mgr_set_dm_out1_delay(i, delay1);
642                 scc_mgr_load_dm(i);
643         }
644 }
645
646
647 /* apply and load delay on both DQS and OCT out1 */
648 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
649                                                     uint32_t delay)
650 {
651         scc_mgr_set_dqs_out1_delay(delay);
652         scc_mgr_load_dqs_io();
653
654         scc_mgr_set_oct_out1_delay(write_group, delay);
655         scc_mgr_load_dqs_for_write_group(write_group);
656 }
657
658 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
659 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
660                                                   uint32_t group_bgn,
661                                                   uint32_t delay)
662 {
663         uint32_t i, p, new_delay;
664
665         /* dq shift */
666         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
667                 new_delay = READ_SCC_DQ_OUT2_DELAY;
668                 new_delay += delay;
669
670                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
671                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
672                                    %u > %lu => %lu", __func__, __LINE__,
673                                    write_group, group_bgn, delay, i, p, new_delay,
674                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
675                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
676                         new_delay = IO_IO_OUT2_DELAY_MAX;
677                 }
678
679                 scc_mgr_load_dq(i);
680         }
681
682         /* dm shift */
683         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
684                 new_delay = READ_SCC_DM_IO_OUT2_DELAY;
685                 new_delay += delay;
686
687                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
688                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
689                                    %u > %lu => %lu\n",  __func__, __LINE__,
690                                    write_group, group_bgn, delay, i, new_delay,
691                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
692                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
693                         new_delay = IO_IO_OUT2_DELAY_MAX;
694                 }
695
696                 scc_mgr_load_dm(i);
697         }
698
699         /* dqs shift */
700         new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
701         new_delay += delay;
702
703         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
704                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
705                            " adding %u to OUT1\n", __func__, __LINE__,
706                            write_group, group_bgn, delay, new_delay,
707                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
708                            new_delay - IO_IO_OUT2_DELAY_MAX);
709                 scc_mgr_set_dqs_out1_delay(new_delay -
710                                            IO_IO_OUT2_DELAY_MAX);
711                 new_delay = IO_IO_OUT2_DELAY_MAX;
712         }
713
714         scc_mgr_load_dqs_io();
715
716         /* oct shift */
717         new_delay = READ_SCC_OCT_OUT2_DELAY;
718         new_delay += delay;
719
720         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
721                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
722                            " adding %u to OUT1\n", __func__, __LINE__,
723                            write_group, group_bgn, delay, new_delay,
724                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
725                            new_delay - IO_IO_OUT2_DELAY_MAX);
726                 scc_mgr_set_oct_out1_delay(write_group, new_delay -
727                                            IO_IO_OUT2_DELAY_MAX);
728                 new_delay = IO_IO_OUT2_DELAY_MAX;
729         }
730
731         scc_mgr_load_dqs_for_write_group(write_group);
732 }
733
734 /*
735  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
736  * and to all ranks
737  */
738 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
739         uint32_t write_group, uint32_t group_bgn, uint32_t delay)
740 {
741         uint32_t r;
742
743         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
744                 r += NUM_RANKS_PER_SHADOW_REG) {
745                 scc_mgr_apply_group_all_out_delay_add(write_group,
746                                                       group_bgn, delay);
747                 writel(0, &sdr_scc_mgr->update);
748         }
749 }
750
751 /* optimization used to recover some slots in ddr3 inst_rom */
752 /* could be applied to other protocols if we wanted to */
753 static void set_jump_as_return(void)
754 {
755         /*
756          * to save space, we replace return with jump to special shared
757          * RETURN instruction so we set the counter to large value so that
758          * we always jump
759          */
760         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
761         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
762 }
763
764 /*
765  * should always use constants as argument to ensure all computations are
766  * performed at compile time
767  */
768 static void delay_for_n_mem_clocks(const uint32_t clocks)
769 {
770         uint32_t afi_clocks;
771         uint8_t inner = 0;
772         uint8_t outer = 0;
773         uint16_t c_loop = 0;
774
775         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
776
777
778         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
779         /* scale (rounding up) to get afi clocks */
780
781         /*
782          * Note, we don't bother accounting for being off a little bit
783          * because of a few extra instructions in outer loops
784          * Note, the loops have a test at the end, and do the test before
785          * the decrement, and so always perform the loop
786          * 1 time more than the counter value
787          */
788         if (afi_clocks == 0) {
789                 ;
790         } else if (afi_clocks <= 0x100) {
791                 inner = afi_clocks-1;
792                 outer = 0;
793                 c_loop = 0;
794         } else if (afi_clocks <= 0x10000) {
795                 inner = 0xff;
796                 outer = (afi_clocks-1) >> 8;
797                 c_loop = 0;
798         } else {
799                 inner = 0xff;
800                 outer = 0xff;
801                 c_loop = (afi_clocks-1) >> 16;
802         }
803
804         /*
805          * rom instructions are structured as follows:
806          *
807          *    IDLE_LOOP2: jnz cntr0, TARGET_A
808          *    IDLE_LOOP1: jnz cntr1, TARGET_B
809          *                return
810          *
811          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
812          * TARGET_B is set to IDLE_LOOP2 as well
813          *
814          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
815          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
816          *
817          * a little confusing, but it helps save precious space in the inst_rom
818          * and sequencer rom and keeps the delays more accurate and reduces
819          * overhead
820          */
821         if (afi_clocks <= 0x100) {
822                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
823                         &sdr_rw_load_mgr_regs->load_cntr1);
824
825                 writel(RW_MGR_IDLE_LOOP1,
826                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
827
828                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
829                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
830         } else {
831                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
832                         &sdr_rw_load_mgr_regs->load_cntr0);
833
834                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
835                         &sdr_rw_load_mgr_regs->load_cntr1);
836
837                 writel(RW_MGR_IDLE_LOOP2,
838                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
839
840                 writel(RW_MGR_IDLE_LOOP2,
841                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
842
843                 /* hack to get around compiler not being smart enough */
844                 if (afi_clocks <= 0x10000) {
845                         /* only need to run once */
846                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
847                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
848                 } else {
849                         do {
850                                 writel(RW_MGR_IDLE_LOOP2,
851                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
852                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
853                         } while (c_loop-- != 0);
854                 }
855         }
856         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
857 }
858
859 static void rw_mgr_mem_initialize(void)
860 {
861         uint32_t r;
862         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
863                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
864
865         debug("%s:%d\n", __func__, __LINE__);
866
867         /* The reset / cke part of initialization is broadcasted to all ranks */
868         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
869                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
870
871         /*
872          * Here's how you load register for a loop
873          * Counters are located @ 0x800
874          * Jump address are located @ 0xC00
875          * For both, registers 0 to 3 are selected using bits 3 and 2, like
876          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
877          * I know this ain't pretty, but Avalon bus throws away the 2 least
878          * significant bits
879          */
880
881         /* start with memory RESET activated */
882
883         /* tINIT = 200us */
884
885         /*
886          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
887          * If a and b are the number of iteration in 2 nested loops
888          * it takes the following number of cycles to complete the operation:
889          * number_of_cycles = ((2 + n) * a + 2) * b
890          * where n is the number of instruction in the inner loop
891          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
892          * b = 6A
893          */
894
895         /* Load counters */
896         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
897                &sdr_rw_load_mgr_regs->load_cntr0);
898         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
899                &sdr_rw_load_mgr_regs->load_cntr1);
900         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
901                &sdr_rw_load_mgr_regs->load_cntr2);
902
903         /* Load jump address */
904         writel(RW_MGR_INIT_RESET_0_CKE_0,
905                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
906         writel(RW_MGR_INIT_RESET_0_CKE_0,
907                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
908         writel(RW_MGR_INIT_RESET_0_CKE_0,
909                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
910
911         /* Execute count instruction */
912         writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
913
914         /* indicate that memory is stable */
915         writel(1, &phy_mgr_cfg->reset_mem_stbl);
916
917         /*
918          * transition the RESET to high
919          * Wait for 500us
920          */
921
922         /*
923          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
924          * If a and b are the number of iteration in 2 nested loops
925          * it takes the following number of cycles to complete the operation
926          * number_of_cycles = ((2 + n) * a + 2) * b
927          * where n is the number of instruction in the inner loop
928          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
929          * b = FF
930          */
931
932         /* Load counters */
933         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
934                &sdr_rw_load_mgr_regs->load_cntr0);
935         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
936                &sdr_rw_load_mgr_regs->load_cntr1);
937         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
938                &sdr_rw_load_mgr_regs->load_cntr2);
939
940         /* Load jump address */
941         writel(RW_MGR_INIT_RESET_1_CKE_0,
942                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
943         writel(RW_MGR_INIT_RESET_1_CKE_0,
944                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
945         writel(RW_MGR_INIT_RESET_1_CKE_0,
946                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
947
948         writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
949
950         /* bring up clock enable */
951
952         /* tXRP < 250 ck cycles */
953         delay_for_n_mem_clocks(250);
954
955         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
956                 if (param->skip_ranks[r]) {
957                         /* request to skip the rank */
958                         continue;
959                 }
960
961                 /* set rank */
962                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
963
964                 /*
965                  * USER Use Mirror-ed commands for odd ranks if address
966                  * mirrorring is on
967                  */
968                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
969                         set_jump_as_return();
970                         writel(RW_MGR_MRS2_MIRR, grpaddr);
971                         delay_for_n_mem_clocks(4);
972                         set_jump_as_return();
973                         writel(RW_MGR_MRS3_MIRR, grpaddr);
974                         delay_for_n_mem_clocks(4);
975                         set_jump_as_return();
976                         writel(RW_MGR_MRS1_MIRR, grpaddr);
977                         delay_for_n_mem_clocks(4);
978                         set_jump_as_return();
979                         writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
980                 } else {
981                         set_jump_as_return();
982                         writel(RW_MGR_MRS2, grpaddr);
983                         delay_for_n_mem_clocks(4);
984                         set_jump_as_return();
985                         writel(RW_MGR_MRS3, grpaddr);
986                         delay_for_n_mem_clocks(4);
987                         set_jump_as_return();
988                         writel(RW_MGR_MRS1, grpaddr);
989                         set_jump_as_return();
990                         writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
991                 }
992                 set_jump_as_return();
993                 writel(RW_MGR_ZQCL, grpaddr);
994
995                 /* tZQinit = tDLLK = 512 ck cycles */
996                 delay_for_n_mem_clocks(512);
997         }
998 }
999
1000 /*
1001  * At the end of calibration we have to program the user settings in, and
1002  * USER  hand off the memory to the user.
1003  */
1004 static void rw_mgr_mem_handoff(void)
1005 {
1006         uint32_t r;
1007         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1008                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1009
1010         debug("%s:%d\n", __func__, __LINE__);
1011         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1012                 if (param->skip_ranks[r])
1013                         /* request to skip the rank */
1014                         continue;
1015                 /* set rank */
1016                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1017
1018                 /* precharge all banks ... */
1019                 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1020
1021                 /* load up MR settings specified by user */
1022
1023                 /*
1024                  * Use Mirror-ed commands for odd ranks if address
1025                  * mirrorring is on
1026                  */
1027                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1028                         set_jump_as_return();
1029                         writel(RW_MGR_MRS2_MIRR, grpaddr);
1030                         delay_for_n_mem_clocks(4);
1031                         set_jump_as_return();
1032                         writel(RW_MGR_MRS3_MIRR, grpaddr);
1033                         delay_for_n_mem_clocks(4);
1034                         set_jump_as_return();
1035                         writel(RW_MGR_MRS1_MIRR, grpaddr);
1036                         delay_for_n_mem_clocks(4);
1037                         set_jump_as_return();
1038                         writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1039                 } else {
1040                         set_jump_as_return();
1041                         writel(RW_MGR_MRS2, grpaddr);
1042                         delay_for_n_mem_clocks(4);
1043                         set_jump_as_return();
1044                         writel(RW_MGR_MRS3, grpaddr);
1045                         delay_for_n_mem_clocks(4);
1046                         set_jump_as_return();
1047                         writel(RW_MGR_MRS1, grpaddr);
1048                         delay_for_n_mem_clocks(4);
1049                         set_jump_as_return();
1050                         writel(RW_MGR_MRS0_USER, grpaddr);
1051                 }
1052                 /*
1053                  * USER  need to wait tMOD (12CK or 15ns) time before issuing
1054                  * other commands, but we will have plenty of NIOS cycles before
1055                  * actual handoff so its okay.
1056                  */
1057         }
1058 }
1059
1060 /*
1061  * performs a guaranteed read on the patterns we are going to use during a
1062  * read test to ensure memory works
1063  */
1064 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1065         uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1066         uint32_t all_ranks)
1067 {
1068         uint32_t r, vg;
1069         uint32_t correct_mask_vg;
1070         uint32_t tmp_bit_chk;
1071         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1072                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1073         uint32_t addr;
1074         uint32_t base_rw_mgr;
1075
1076         *bit_chk = param->read_correct_mask;
1077         correct_mask_vg = param->read_correct_mask_vg;
1078
1079         for (r = rank_bgn; r < rank_end; r++) {
1080                 if (param->skip_ranks[r])
1081                         /* request to skip the rank */
1082                         continue;
1083
1084                 /* set rank */
1085                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1086
1087                 /* Load up a constant bursts of read commands */
1088                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1089                 writel(RW_MGR_GUARANTEED_READ,
1090                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1091
1092                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1093                 writel(RW_MGR_GUARANTEED_READ_CONT,
1094                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1095
1096                 tmp_bit_chk = 0;
1097                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1098                         /* reset the fifos to get pointers to known state */
1099
1100                         writel(0, &phy_mgr_cmd->fifo_reset);
1101                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1102                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1103
1104                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1105                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1106
1107                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1108                         writel(RW_MGR_GUARANTEED_READ, addr +
1109                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1110                                 vg) << 2));
1111
1112                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1113                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1114
1115                         if (vg == 0)
1116                                 break;
1117                 }
1118                 *bit_chk &= tmp_bit_chk;
1119         }
1120
1121         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1122         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1123
1124         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1125         debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1126                    %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1127                    (long unsigned int)(*bit_chk == param->read_correct_mask));
1128         return *bit_chk == param->read_correct_mask;
1129 }
1130
1131 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1132         (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1133 {
1134         return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1135                 num_tries, bit_chk, 1);
1136 }
1137
1138 /* load up the patterns we are going to use during a read test */
1139 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1140         uint32_t all_ranks)
1141 {
1142         uint32_t r;
1143         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1144                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1145
1146         debug("%s:%d\n", __func__, __LINE__);
1147         for (r = rank_bgn; r < rank_end; r++) {
1148                 if (param->skip_ranks[r])
1149                         /* request to skip the rank */
1150                         continue;
1151
1152                 /* set rank */
1153                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1154
1155                 /* Load up a constant bursts */
1156                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1157
1158                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1159                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1160
1161                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1162
1163                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1164                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1165
1166                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1167
1168                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1169                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1170
1171                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1172
1173                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1174                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1175
1176                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1177                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1178         }
1179
1180         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1181 }
1182
1183 /*
1184  * try a read and see if it returns correct data back. has dummy reads
1185  * inserted into the mix used to align dqs enable. has more thorough checks
1186  * than the regular read test.
1187  */
1188 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1189         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1190         uint32_t all_groups, uint32_t all_ranks)
1191 {
1192         uint32_t r, vg;
1193         uint32_t correct_mask_vg;
1194         uint32_t tmp_bit_chk;
1195         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1196                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1197         uint32_t addr;
1198         uint32_t base_rw_mgr;
1199
1200         *bit_chk = param->read_correct_mask;
1201         correct_mask_vg = param->read_correct_mask_vg;
1202
1203         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1204                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1205
1206         for (r = rank_bgn; r < rank_end; r++) {
1207                 if (param->skip_ranks[r])
1208                         /* request to skip the rank */
1209                         continue;
1210
1211                 /* set rank */
1212                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1213
1214                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1215
1216                 writel(RW_MGR_READ_B2B_WAIT1,
1217                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1218
1219                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1220                 writel(RW_MGR_READ_B2B_WAIT2,
1221                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1222
1223                 if (quick_read_mode)
1224                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1225                         /* need at least two (1+1) reads to capture failures */
1226                 else if (all_groups)
1227                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1228                 else
1229                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1230
1231                 writel(RW_MGR_READ_B2B,
1232                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1233                 if (all_groups)
1234                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1235                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1236                                &sdr_rw_load_mgr_regs->load_cntr3);
1237                 else
1238                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1239
1240                 writel(RW_MGR_READ_B2B,
1241                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1242
1243                 tmp_bit_chk = 0;
1244                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1245                         /* reset the fifos to get pointers to known state */
1246                         writel(0, &phy_mgr_cmd->fifo_reset);
1247                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1248                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1249
1250                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1251                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1252
1253                         if (all_groups)
1254                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1255                         else
1256                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1257
1258                         writel(RW_MGR_READ_B2B, addr +
1259                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1260                                vg) << 2));
1261
1262                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1263                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1264
1265                         if (vg == 0)
1266                                 break;
1267                 }
1268                 *bit_chk &= tmp_bit_chk;
1269         }
1270
1271         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1272         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1273
1274         if (all_correct) {
1275                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1276                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1277                            (%u == %u) => %lu", __func__, __LINE__, group,
1278                            all_groups, *bit_chk, param->read_correct_mask,
1279                            (long unsigned int)(*bit_chk ==
1280                            param->read_correct_mask));
1281                 return *bit_chk == param->read_correct_mask;
1282         } else  {
1283                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1284                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1285                            (%u != %lu) => %lu\n", __func__, __LINE__,
1286                            group, all_groups, *bit_chk, (long unsigned int)0,
1287                            (long unsigned int)(*bit_chk != 0x00));
1288                 return *bit_chk != 0x00;
1289         }
1290 }
1291
1292 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1293         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1294         uint32_t all_groups)
1295 {
1296         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1297                                               bit_chk, all_groups, 1);
1298 }
1299
1300 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1301 {
1302         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1303         (*v)++;
1304 }
1305
1306 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1307 {
1308         uint32_t i;
1309
1310         for (i = 0; i < VFIFO_SIZE-1; i++)
1311                 rw_mgr_incr_vfifo(grp, v);
1312 }
1313
1314 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1315 {
1316         uint32_t  v;
1317         uint32_t fail_cnt = 0;
1318         uint32_t test_status;
1319
1320         for (v = 0; v < VFIFO_SIZE; ) {
1321                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1322                            __func__, __LINE__, v);
1323                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1324                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1325                 if (!test_status) {
1326                         fail_cnt++;
1327
1328                         if (fail_cnt == 2)
1329                                 break;
1330                 }
1331
1332                 /* fiddle with FIFO */
1333                 rw_mgr_incr_vfifo(grp, &v);
1334         }
1335
1336         if (v >= VFIFO_SIZE) {
1337                 /* no failing read found!! Something must have gone wrong */
1338                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1339                            __func__, __LINE__);
1340                 return 0;
1341         } else {
1342                 return v;
1343         }
1344 }
1345
1346 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1347                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1348                               uint32_t *v, uint32_t *d, uint32_t *p,
1349                               uint32_t *i, uint32_t *max_working_cnt)
1350 {
1351         uint32_t found_begin = 0;
1352         uint32_t tmp_delay = 0;
1353         uint32_t test_status;
1354
1355         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1356                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1357                 *work_bgn = tmp_delay;
1358                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1359
1360                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1361                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1362                                 IO_DELAY_PER_OPA_TAP) {
1363                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1364
1365                                 test_status =
1366                                 rw_mgr_mem_calibrate_read_test_all_ranks
1367                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1368
1369                                 if (test_status) {
1370                                         *max_working_cnt = 1;
1371                                         found_begin = 1;
1372                                         break;
1373                                 }
1374                         }
1375
1376                         if (found_begin)
1377                                 break;
1378
1379                         if (*p > IO_DQS_EN_PHASE_MAX)
1380                                 /* fiddle with FIFO */
1381                                 rw_mgr_incr_vfifo(*grp, v);
1382                 }
1383
1384                 if (found_begin)
1385                         break;
1386         }
1387
1388         if (*i >= VFIFO_SIZE) {
1389                 /* cannot find working solution */
1390                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1391                            ptap/dtap\n", __func__, __LINE__);
1392                 return 0;
1393         } else {
1394                 return 1;
1395         }
1396 }
1397
1398 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1399                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1400                              uint32_t *p, uint32_t *max_working_cnt)
1401 {
1402         uint32_t found_begin = 0;
1403         uint32_t tmp_delay;
1404
1405         /* Special case code for backing up a phase */
1406         if (*p == 0) {
1407                 *p = IO_DQS_EN_PHASE_MAX;
1408                 rw_mgr_decr_vfifo(*grp, v);
1409         } else {
1410                 (*p)--;
1411         }
1412         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1413         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1414
1415         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1416                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1417                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1418
1419                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1420                                                              PASS_ONE_BIT,
1421                                                              bit_chk, 0)) {
1422                         found_begin = 1;
1423                         *work_bgn = tmp_delay;
1424                         break;
1425                 }
1426         }
1427
1428         /* We have found a working dtap before the ptap found above */
1429         if (found_begin == 1)
1430                 (*max_working_cnt)++;
1431
1432         /*
1433          * Restore VFIFO to old state before we decremented it
1434          * (if needed).
1435          */
1436         (*p)++;
1437         if (*p > IO_DQS_EN_PHASE_MAX) {
1438                 *p = 0;
1439                 rw_mgr_incr_vfifo(*grp, v);
1440         }
1441
1442         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1443 }
1444
1445 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1446                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1447                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1448                              uint32_t *work_end)
1449 {
1450         uint32_t found_end = 0;
1451
1452         (*p)++;
1453         *work_end += IO_DELAY_PER_OPA_TAP;
1454         if (*p > IO_DQS_EN_PHASE_MAX) {
1455                 /* fiddle with FIFO */
1456                 *p = 0;
1457                 rw_mgr_incr_vfifo(*grp, v);
1458         }
1459
1460         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1461                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1462                         += IO_DELAY_PER_OPA_TAP) {
1463                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1464
1465                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1466                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1467                                 found_end = 1;
1468                                 break;
1469                         } else {
1470                                 (*max_working_cnt)++;
1471                         }
1472                 }
1473
1474                 if (found_end)
1475                         break;
1476
1477                 if (*p > IO_DQS_EN_PHASE_MAX) {
1478                         /* fiddle with FIFO */
1479                         rw_mgr_incr_vfifo(*grp, v);
1480                         *p = 0;
1481                 }
1482         }
1483
1484         if (*i >= VFIFO_SIZE + 1) {
1485                 /* cannot see edge of failing read */
1486                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1487                            failed\n", __func__, __LINE__);
1488                 return 0;
1489         } else {
1490                 return 1;
1491         }
1492 }
1493
1494 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1495                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1496                                   uint32_t *p, uint32_t *work_mid,
1497                                   uint32_t *work_end)
1498 {
1499         int i;
1500         int tmp_delay = 0;
1501
1502         *work_mid = (*work_bgn + *work_end) / 2;
1503
1504         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1505                    *work_bgn, *work_end, *work_mid);
1506         /* Get the middle delay to be less than a VFIFO delay */
1507         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1508                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1509                 ;
1510         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1511         while (*work_mid > tmp_delay)
1512                 *work_mid -= tmp_delay;
1513         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1514
1515         tmp_delay = 0;
1516         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1517                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1518                 ;
1519         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1520         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1521         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1522                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1523                 ;
1524         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1525
1526         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1527         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1528
1529         /*
1530          * push vfifo until we can successfully calibrate. We can do this
1531          * because the largest possible margin in 1 VFIFO cycle.
1532          */
1533         for (i = 0; i < VFIFO_SIZE; i++) {
1534                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1535                            *v);
1536                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1537                                                              PASS_ONE_BIT,
1538                                                              bit_chk, 0)) {
1539                         break;
1540                 }
1541
1542                 /* fiddle with FIFO */
1543                 rw_mgr_incr_vfifo(*grp, v);
1544         }
1545
1546         if (i >= VFIFO_SIZE) {
1547                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1548                            failed\n", __func__, __LINE__);
1549                 return 0;
1550         } else {
1551                 return 1;
1552         }
1553 }
1554
1555 /* find a good dqs enable to use */
1556 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1557 {
1558         uint32_t v, d, p, i;
1559         uint32_t max_working_cnt;
1560         uint32_t bit_chk;
1561         uint32_t dtaps_per_ptap;
1562         uint32_t work_bgn, work_mid, work_end;
1563         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1564
1565         debug("%s:%d %u\n", __func__, __LINE__, grp);
1566
1567         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1568
1569         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1570         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1571
1572         /* ************************************************************** */
1573         /* * Step 0 : Determine number of delay taps for each phase tap * */
1574         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1575
1576         /* ********************************************************* */
1577         /* * Step 1 : First push vfifo until we get a failing read * */
1578         v = find_vfifo_read(grp, &bit_chk);
1579
1580         max_working_cnt = 0;
1581
1582         /* ******************************************************** */
1583         /* * step 2: find first working phase, increment in ptaps * */
1584         work_bgn = 0;
1585         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1586                                 &p, &i, &max_working_cnt) == 0)
1587                 return 0;
1588
1589         work_end = work_bgn;
1590
1591         /*
1592          * If d is 0 then the working window covers a phase tap and
1593          * we can follow the old procedure otherwise, we've found the beginning,
1594          * and we need to increment the dtaps until we find the end.
1595          */
1596         if (d == 0) {
1597                 /* ********************************************************* */
1598                 /* * step 3a: if we have room, back off by one and
1599                 increment in dtaps * */
1600
1601                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1602                                  &max_working_cnt);
1603
1604                 /* ********************************************************* */
1605                 /* * step 4a: go forward from working phase to non working
1606                 phase, increment in ptaps * */
1607                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1608                                          &i, &max_working_cnt, &work_end) == 0)
1609                         return 0;
1610
1611                 /* ********************************************************* */
1612                 /* * step 5a:  back off one from last, increment in dtaps  * */
1613
1614                 /* Special case code for backing up a phase */
1615                 if (p == 0) {
1616                         p = IO_DQS_EN_PHASE_MAX;
1617                         rw_mgr_decr_vfifo(grp, &v);
1618                 } else {
1619                         p = p - 1;
1620                 }
1621
1622                 work_end -= IO_DELAY_PER_OPA_TAP;
1623                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1624
1625                 /* * The actual increment of dtaps is done outside of
1626                 the if/else loop to share code */
1627                 d = 0;
1628
1629                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1630                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1631                            v, p);
1632         } else {
1633                 /* ******************************************************* */
1634                 /* * step 3-5b:  Find the right edge of the window using
1635                 delay taps   * */
1636                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1637                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1638                            v, p, d, work_bgn);
1639
1640                 work_end = work_bgn;
1641
1642                 /* * The actual increment of dtaps is done outside of the
1643                 if/else loop to share code */
1644
1645                 /* Only here to counterbalance a subtract later on which is
1646                 not needed if this branch of the algorithm is taken */
1647                 max_working_cnt++;
1648         }
1649
1650         /* The dtap increment to find the failing edge is done here */
1651         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1652                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1653                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1654                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1655                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1656
1657                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1658                                                                       PASS_ONE_BIT,
1659                                                                       &bit_chk, 0)) {
1660                                 break;
1661                         }
1662         }
1663
1664         /* Go back to working dtap */
1665         if (d != 0)
1666                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1667
1668         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1669                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1670                    v, p, d-1, work_end);
1671
1672         if (work_end < work_bgn) {
1673                 /* nil range */
1674                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1675                            failed\n", __func__, __LINE__);
1676                 return 0;
1677         }
1678
1679         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1680                    __func__, __LINE__, work_bgn, work_end);
1681
1682         /* *************************************************************** */
1683         /*
1684          * * We need to calculate the number of dtaps that equal a ptap
1685          * * To do that we'll back up a ptap and re-find the edge of the
1686          * * window using dtaps
1687          */
1688
1689         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1690                    for tracking\n", __func__, __LINE__);
1691
1692         /* Special case code for backing up a phase */
1693         if (p == 0) {
1694                 p = IO_DQS_EN_PHASE_MAX;
1695                 rw_mgr_decr_vfifo(grp, &v);
1696                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1697                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1698                            v, p);
1699         } else {
1700                 p = p - 1;
1701                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1702                            phase only: v=%u p=%u", __func__, __LINE__,
1703                            v, p);
1704         }
1705
1706         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1707
1708         /*
1709          * Increase dtap until we first see a passing read (in case the
1710          * window is smaller than a ptap),
1711          * and then a failing read to mark the edge of the window again
1712          */
1713
1714         /* Find a passing read */
1715         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1716                    __func__, __LINE__);
1717         found_passing_read = 0;
1718         found_failing_read = 0;
1719         initial_failing_dtap = d;
1720         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1721                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1722                            read d=%u\n", __func__, __LINE__, d);
1723                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1724
1725                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1726                                                              PASS_ONE_BIT,
1727                                                              &bit_chk, 0)) {
1728                         found_passing_read = 1;
1729                         break;
1730                 }
1731         }
1732
1733         if (found_passing_read) {
1734                 /* Find a failing read */
1735                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1736                            read\n", __func__, __LINE__);
1737                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1738                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1739                                    testing read d=%u\n", __func__, __LINE__, d);
1740                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1741
1742                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1743                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1744                                 found_failing_read = 1;
1745                                 break;
1746                         }
1747                 }
1748         } else {
1749                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1750                            calculate dtaps", __func__, __LINE__);
1751                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1752         }
1753
1754         /*
1755          * The dynamically calculated dtaps_per_ptap is only valid if we
1756          * found a passing/failing read. If we didn't, it means d hit the max
1757          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1758          * statically calculated value.
1759          */
1760         if (found_passing_read && found_failing_read)
1761                 dtaps_per_ptap = d - initial_failing_dtap;
1762
1763         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1764         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1765                    - %u = %u",  __func__, __LINE__, d,
1766                    initial_failing_dtap, dtaps_per_ptap);
1767
1768         /* ******************************************** */
1769         /* * step 6:  Find the centre of the window   * */
1770         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1771                                    &work_mid, &work_end) == 0)
1772                 return 0;
1773
1774         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1775                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1776                    v, p-1, d);
1777         return 1;
1778 }
1779
1780 /*
1781  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1782  * dq_in_delay values
1783  */
1784 static uint32_t
1785 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1786 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1787 {
1788         uint32_t found;
1789         uint32_t i;
1790         uint32_t p;
1791         uint32_t d;
1792         uint32_t r;
1793
1794         const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1795                 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1796                 /* we start at zero, so have one less dq to devide among */
1797
1798         debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1799               test_bgn);
1800
1801         /* try different dq_in_delays since the dq path is shorter than dqs */
1802
1803         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1804              r += NUM_RANKS_PER_SHADOW_REG) {
1805                 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1806                         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1807                                    vfifo_find_dqs_", __func__, __LINE__);
1808                         debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1809                                write_group, read_group);
1810                         debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1811                         scc_mgr_set_dq_in_delay(p, d);
1812                         scc_mgr_load_dq(p);
1813                 }
1814                 writel(0, &sdr_scc_mgr->update);
1815         }
1816
1817         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1818
1819         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1820                    en_phase_sweep_dq", __func__, __LINE__);
1821         debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1822                    chain to zero\n", write_group, read_group, found);
1823
1824         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1825              r += NUM_RANKS_PER_SHADOW_REG) {
1826                 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1827                         i++, p++) {
1828                         scc_mgr_set_dq_in_delay(p, 0);
1829                         scc_mgr_load_dq(p);
1830                 }
1831                 writel(0, &sdr_scc_mgr->update);
1832         }
1833
1834         return found;
1835 }
1836
1837 /* per-bit deskew DQ and center */
1838 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1839         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1840         uint32_t use_read_test, uint32_t update_fom)
1841 {
1842         uint32_t i, p, d, min_index;
1843         /*
1844          * Store these as signed since there are comparisons with
1845          * signed numbers.
1846          */
1847         uint32_t bit_chk;
1848         uint32_t sticky_bit_chk;
1849         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1850         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1851         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1852         int32_t mid;
1853         int32_t orig_mid_min, mid_min;
1854         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1855                 final_dqs_en;
1856         int32_t dq_margin, dqs_margin;
1857         uint32_t stop;
1858         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1859         uint32_t addr;
1860
1861         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1862
1863         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1864         start_dqs = readl(addr + (read_group << 2));
1865         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1866                 start_dqs_en = readl(addr + ((read_group << 2)
1867                                      - IO_DQS_EN_DELAY_OFFSET));
1868
1869         /* set the left and right edge of each bit to an illegal value */
1870         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1871         sticky_bit_chk = 0;
1872         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1873                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1874                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1875         }
1876
1877         /* Search for the left edge of the window for each bit */
1878         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1879                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1880
1881                 writel(0, &sdr_scc_mgr->update);
1882
1883                 /*
1884                  * Stop searching when the read test doesn't pass AND when
1885                  * we've seen a passing read on every bit.
1886                  */
1887                 if (use_read_test) {
1888                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1889                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1890                                 &bit_chk, 0, 0);
1891                 } else {
1892                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1893                                                         0, PASS_ONE_BIT,
1894                                                         &bit_chk, 0);
1895                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1896                                 (read_group - (write_group *
1897                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1898                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1899                         stop = (bit_chk == 0);
1900                 }
1901                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1902                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1903                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1904                            && %u", __func__, __LINE__, d,
1905                            sticky_bit_chk,
1906                         param->read_correct_mask, stop);
1907
1908                 if (stop == 1) {
1909                         break;
1910                 } else {
1911                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1912                                 if (bit_chk & 1) {
1913                                         /* Remember a passing test as the
1914                                         left_edge */
1915                                         left_edge[i] = d;
1916                                 } else {
1917                                         /* If a left edge has not been seen yet,
1918                                         then a future passing test will mark
1919                                         this edge as the right edge */
1920                                         if (left_edge[i] ==
1921                                                 IO_IO_IN_DELAY_MAX + 1) {
1922                                                 right_edge[i] = -(d + 1);
1923                                         }
1924                                 }
1925                                 bit_chk = bit_chk >> 1;
1926                         }
1927                 }
1928         }
1929
1930         /* Reset DQ delay chains to 0 */
1931         scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1932         sticky_bit_chk = 0;
1933         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1934                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1935                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1936                            i, left_edge[i], i, right_edge[i]);
1937
1938                 /*
1939                  * Check for cases where we haven't found the left edge,
1940                  * which makes our assignment of the the right edge invalid.
1941                  * Reset it to the illegal value.
1942                  */
1943                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1944                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1945                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1946                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1947                                    right_edge[%u]: %d\n", __func__, __LINE__,
1948                                    i, right_edge[i]);
1949                 }
1950
1951                 /*
1952                  * Reset sticky bit (except for bits where we have seen
1953                  * both the left and right edge).
1954                  */
1955                 sticky_bit_chk = sticky_bit_chk << 1;
1956                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1957                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1958                         sticky_bit_chk = sticky_bit_chk | 1;
1959                 }
1960
1961                 if (i == 0)
1962                         break;
1963         }
1964
1965         /* Search for the right edge of the window for each bit */
1966         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1967                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1968                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1969                         uint32_t delay = d + start_dqs_en;
1970                         if (delay > IO_DQS_EN_DELAY_MAX)
1971                                 delay = IO_DQS_EN_DELAY_MAX;
1972                         scc_mgr_set_dqs_en_delay(read_group, delay);
1973                 }
1974                 scc_mgr_load_dqs(read_group);
1975
1976                 writel(0, &sdr_scc_mgr->update);
1977
1978                 /*
1979                  * Stop searching when the read test doesn't pass AND when
1980                  * we've seen a passing read on every bit.
1981                  */
1982                 if (use_read_test) {
1983                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1984                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1985                                 &bit_chk, 0, 0);
1986                 } else {
1987                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1988                                                         0, PASS_ONE_BIT,
1989                                                         &bit_chk, 0);
1990                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1991                                 (read_group - (write_group *
1992                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1993                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1994                         stop = (bit_chk == 0);
1995                 }
1996                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1997                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1998
1999                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2000                            %u && %u", __func__, __LINE__, d,
2001                            sticky_bit_chk, param->read_correct_mask, stop);
2002
2003                 if (stop == 1) {
2004                         break;
2005                 } else {
2006                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2007                                 if (bit_chk & 1) {
2008                                         /* Remember a passing test as
2009                                         the right_edge */
2010                                         right_edge[i] = d;
2011                                 } else {
2012                                         if (d != 0) {
2013                                                 /* If a right edge has not been
2014                                                 seen yet, then a future passing
2015                                                 test will mark this edge as the
2016                                                 left edge */
2017                                                 if (right_edge[i] ==
2018                                                 IO_IO_IN_DELAY_MAX + 1) {
2019                                                         left_edge[i] = -(d + 1);
2020                                                 }
2021                                         } else {
2022                                                 /* d = 0 failed, but it passed
2023                                                 when testing the left edge,
2024                                                 so it must be marginal,
2025                                                 set it to -1 */
2026                                                 if (right_edge[i] ==
2027                                                         IO_IO_IN_DELAY_MAX + 1 &&
2028                                                         left_edge[i] !=
2029                                                         IO_IO_IN_DELAY_MAX
2030                                                         + 1) {
2031                                                         right_edge[i] = -1;
2032                                                 }
2033                                                 /* If a right edge has not been
2034                                                 seen yet, then a future passing
2035                                                 test will mark this edge as the
2036                                                 left edge */
2037                                                 else if (right_edge[i] ==
2038                                                         IO_IO_IN_DELAY_MAX +
2039                                                         1) {
2040                                                         left_edge[i] = -(d + 1);
2041                                                 }
2042                                         }
2043                                 }
2044
2045                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2046                                            d=%u]: ", __func__, __LINE__, d);
2047                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2048                                            (int)(bit_chk & 1), i, left_edge[i]);
2049                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2050                                            right_edge[i]);
2051                                 bit_chk = bit_chk >> 1;
2052                         }
2053                 }
2054         }
2055
2056         /* Check that all bits have a window */
2057         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2058                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2059                            %d right_edge[%u]: %d", __func__, __LINE__,
2060                            i, left_edge[i], i, right_edge[i]);
2061                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2062                         == IO_IO_IN_DELAY_MAX + 1)) {
2063                         /*
2064                          * Restore delay chain settings before letting the loop
2065                          * in rw_mgr_mem_calibrate_vfifo to retry different
2066                          * dqs/ck relationships.
2067                          */
2068                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2069                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2070                                 scc_mgr_set_dqs_en_delay(read_group,
2071                                                          start_dqs_en);
2072                         }
2073                         scc_mgr_load_dqs(read_group);
2074                         writel(0, &sdr_scc_mgr->update);
2075
2076                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2077                                    find edge [%u]: %d %d", __func__, __LINE__,
2078                                    i, left_edge[i], right_edge[i]);
2079                         if (use_read_test) {
2080                                 set_failing_group_stage(read_group *
2081                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2082                                         CAL_STAGE_VFIFO,
2083                                         CAL_SUBSTAGE_VFIFO_CENTER);
2084                         } else {
2085                                 set_failing_group_stage(read_group *
2086                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2087                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2088                                         CAL_SUBSTAGE_VFIFO_CENTER);
2089                         }
2090                         return 0;
2091                 }
2092         }
2093
2094         /* Find middle of window for each DQ bit */
2095         mid_min = left_edge[0] - right_edge[0];
2096         min_index = 0;
2097         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2098                 mid = left_edge[i] - right_edge[i];
2099                 if (mid < mid_min) {
2100                         mid_min = mid;
2101                         min_index = i;
2102                 }
2103         }
2104
2105         /*
2106          * -mid_min/2 represents the amount that we need to move DQS.
2107          * If mid_min is odd and positive we'll need to add one to
2108          * make sure the rounding in further calculations is correct
2109          * (always bias to the right), so just add 1 for all positive values.
2110          */
2111         if (mid_min > 0)
2112                 mid_min++;
2113
2114         mid_min = mid_min / 2;
2115
2116         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2117                    __func__, __LINE__, mid_min, min_index);
2118
2119         /* Determine the amount we can change DQS (which is -mid_min) */
2120         orig_mid_min = mid_min;
2121         new_dqs = start_dqs - mid_min;
2122         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2123                 new_dqs = IO_DQS_IN_DELAY_MAX;
2124         else if (new_dqs < 0)
2125                 new_dqs = 0;
2126
2127         mid_min = start_dqs - new_dqs;
2128         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2129                    mid_min, new_dqs);
2130
2131         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2132                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2133                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2134                 else if (start_dqs_en - mid_min < 0)
2135                         mid_min += start_dqs_en - mid_min;
2136         }
2137         new_dqs = start_dqs - mid_min;
2138
2139         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2140                    new_dqs=%d mid_min=%d\n", start_dqs,
2141                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2142                    new_dqs, mid_min);
2143
2144         /* Initialize data for export structures */
2145         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2146         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2147
2148         /* add delay to bring centre of all DQ windows to the same "level" */
2149         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2150                 /* Use values before divide by 2 to reduce round off error */
2151                 shift_dq = (left_edge[i] - right_edge[i] -
2152                         (left_edge[min_index] - right_edge[min_index]))/2  +
2153                         (orig_mid_min - mid_min);
2154
2155                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2156                            shift_dq[%u]=%d\n", i, shift_dq);
2157
2158                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2159                 temp_dq_in_delay1 = readl(addr + (p << 2));
2160                 temp_dq_in_delay2 = readl(addr + (i << 2));
2161
2162                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2163                         (int32_t)IO_IO_IN_DELAY_MAX) {
2164                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2165                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2166                         shift_dq = -(int32_t)temp_dq_in_delay1;
2167                 }
2168                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2169                            shift_dq[%u]=%d\n", i, shift_dq);
2170                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2171                 scc_mgr_set_dq_in_delay(p, final_dq[i]);
2172                 scc_mgr_load_dq(p);
2173
2174                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2175                            left_edge[i] - shift_dq + (-mid_min),
2176                            right_edge[i] + shift_dq - (-mid_min));
2177                 /* To determine values for export structures */
2178                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2179                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2180
2181                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2182                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2183         }
2184
2185         final_dqs = new_dqs;
2186         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2187                 final_dqs_en = start_dqs_en - mid_min;
2188
2189         /* Move DQS-en */
2190         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2191                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2192                 scc_mgr_load_dqs(read_group);
2193         }
2194
2195         /* Move DQS */
2196         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2197         scc_mgr_load_dqs(read_group);
2198         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2199                    dqs_margin=%d", __func__, __LINE__,
2200                    dq_margin, dqs_margin);
2201
2202         /*
2203          * Do not remove this line as it makes sure all of our decisions
2204          * have been applied. Apply the update bit.
2205          */
2206         writel(0, &sdr_scc_mgr->update);
2207
2208         return (dq_margin >= 0) && (dqs_margin >= 0);
2209 }
2210
2211 /*
2212  * calibrate the read valid prediction FIFO.
2213  *
2214  *  - read valid prediction will consist of finding a good DQS enable phase,
2215  * DQS enable delay, DQS input phase, and DQS input delay.
2216  *  - we also do a per-bit deskew on the DQ lines.
2217  */
2218 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2219                                            uint32_t test_bgn)
2220 {
2221         uint32_t p, d, rank_bgn, sr;
2222         uint32_t dtaps_per_ptap;
2223         uint32_t tmp_delay;
2224         uint32_t bit_chk;
2225         uint32_t grp_calibrated;
2226         uint32_t write_group, write_test_bgn;
2227         uint32_t failed_substage;
2228
2229         debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2230
2231         /* update info for sims */
2232         reg_file_set_stage(CAL_STAGE_VFIFO);
2233
2234         write_group = read_group;
2235         write_test_bgn = test_bgn;
2236
2237         /* USER Determine number of delay taps for each phase tap */
2238         dtaps_per_ptap = 0;
2239         tmp_delay = 0;
2240         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2241                 dtaps_per_ptap++;
2242                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2243         }
2244         dtaps_per_ptap--;
2245         tmp_delay = 0;
2246
2247         /* update info for sims */
2248         reg_file_set_group(read_group);
2249
2250         grp_calibrated = 0;
2251
2252         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2253         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2254
2255         for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2256                 /*
2257                  * In RLDRAMX we may be messing the delay of pins in
2258                  * the same write group but outside of the current read
2259                  * the group, but that's ok because we haven't
2260                  * calibrated output side yet.
2261                  */
2262                 if (d > 0) {
2263                         scc_mgr_apply_group_all_out_delay_add_all_ranks
2264                         (write_group, write_test_bgn, d);
2265                 }
2266
2267                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2268                         p++) {
2269                         /* set a particular dqdqs phase */
2270                         scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2271
2272                         debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2273                                    p=%u d=%u\n", __func__, __LINE__,
2274                                    read_group, p, d);
2275
2276                         /*
2277                          * Load up the patterns used by read calibration
2278                          * using current DQDQS phase.
2279                          */
2280                         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2281                         if (!(gbl->phy_debug_mode_flags &
2282                                 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2283                                 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2284                                     (read_group, 1, &bit_chk)) {
2285                                         debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2286                                                    __func__, __LINE__);
2287                                         debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2288                                                    read_group, p, d);
2289                                         break;
2290                                 }
2291                         }
2292
2293 /* case:56390 */
2294                         grp_calibrated = 1;
2295                 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2296                     (write_group, read_group, test_bgn)) {
2297                                 /*
2298                                  * USER Read per-bit deskew can be done on a
2299                                  * per shadow register basis.
2300                                  */
2301                                 for (rank_bgn = 0, sr = 0;
2302                                         rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2303                                         rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2304                                         ++sr) {
2305                                         /*
2306                                          * Determine if this set of ranks
2307                                          * should be skipped entirely.
2308                                          */
2309                                         if (!param->skip_shadow_regs[sr]) {
2310                                                 /*
2311                                                  * If doing read after write
2312                                                  * calibration, do not update
2313                                                  * FOM, now - do it then.
2314                                                  */
2315                                         if (!rw_mgr_mem_calibrate_vfifo_center
2316                                                 (rank_bgn, write_group,
2317                                                 read_group, test_bgn, 1, 0)) {
2318                                                         grp_calibrated = 0;
2319                                                         failed_substage =
2320                                                 CAL_SUBSTAGE_VFIFO_CENTER;
2321                                                 }
2322                                         }
2323                                 }
2324                         } else {
2325                                 grp_calibrated = 0;
2326                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2327                         }
2328                 }
2329         }
2330
2331         if (grp_calibrated == 0) {
2332                 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2333                                         failed_substage);
2334                 return 0;
2335         }
2336
2337         /*
2338          * Reset the delay chains back to zero if they have moved > 1
2339          * (check for > 1 because loop will increase d even when pass in
2340          * first case).
2341          */
2342         if (d > 2)
2343                 scc_mgr_zero_group(write_group, write_test_bgn, 1);
2344
2345         return 1;
2346 }
2347
2348 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2349 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2350                                                uint32_t test_bgn)
2351 {
2352         uint32_t rank_bgn, sr;
2353         uint32_t grp_calibrated;
2354         uint32_t write_group;
2355
2356         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2357
2358         /* update info for sims */
2359
2360         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2361         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2362
2363         write_group = read_group;
2364
2365         /* update info for sims */
2366         reg_file_set_group(read_group);
2367
2368         grp_calibrated = 1;
2369         /* Read per-bit deskew can be done on a per shadow register basis */
2370         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2371                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2372                 /* Determine if this set of ranks should be skipped entirely */
2373                 if (!param->skip_shadow_regs[sr]) {
2374                 /* This is the last calibration round, update FOM here */
2375                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2376                                                                 write_group,
2377                                                                 read_group,
2378                                                                 test_bgn, 0,
2379                                                                 1)) {
2380                                 grp_calibrated = 0;
2381                         }
2382                 }
2383         }
2384
2385
2386         if (grp_calibrated == 0) {
2387                 set_failing_group_stage(write_group,
2388                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2389                                         CAL_SUBSTAGE_VFIFO_CENTER);
2390                 return 0;
2391         }
2392
2393         return 1;
2394 }
2395
2396 /* Calibrate LFIFO to find smallest read latency */
2397 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2398 {
2399         uint32_t found_one;
2400         uint32_t bit_chk;
2401
2402         debug("%s:%d\n", __func__, __LINE__);
2403
2404         /* update info for sims */
2405         reg_file_set_stage(CAL_STAGE_LFIFO);
2406         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2407
2408         /* Load up the patterns used by read calibration for all ranks */
2409         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2410         found_one = 0;
2411
2412         do {
2413                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2414                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2415                            __func__, __LINE__, gbl->curr_read_lat);
2416
2417                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2418                                                               NUM_READ_TESTS,
2419                                                               PASS_ALL_BITS,
2420                                                               &bit_chk, 1)) {
2421                         break;
2422                 }
2423
2424                 found_one = 1;
2425                 /* reduce read latency and see if things are working */
2426                 /* correctly */
2427                 gbl->curr_read_lat--;
2428         } while (gbl->curr_read_lat > 0);
2429
2430         /* reset the fifos to get pointers to known state */
2431
2432         writel(0, &phy_mgr_cmd->fifo_reset);
2433
2434         if (found_one) {
2435                 /* add a fudge factor to the read latency that was determined */
2436                 gbl->curr_read_lat += 2;
2437                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2438                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2439                            read_lat=%u\n", __func__, __LINE__,
2440                            gbl->curr_read_lat);
2441                 return 1;
2442         } else {
2443                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2444                                         CAL_SUBSTAGE_READ_LATENCY);
2445
2446                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2447                            read_lat=%u\n", __func__, __LINE__,
2448                            gbl->curr_read_lat);
2449                 return 0;
2450         }
2451 }
2452
2453 /*
2454  * issue write test command.
2455  * two variants are provided. one that just tests a write pattern and
2456  * another that tests datamask functionality.
2457  */
2458 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2459                                                   uint32_t test_dm)
2460 {
2461         uint32_t mcc_instruction;
2462         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2463                 ENABLE_SUPER_QUICK_CALIBRATION);
2464         uint32_t rw_wl_nop_cycles;
2465         uint32_t addr;
2466
2467         /*
2468          * Set counter and jump addresses for the right
2469          * number of NOP cycles.
2470          * The number of supported NOP cycles can range from -1 to infinity
2471          * Three different cases are handled:
2472          *
2473          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2474          *    mechanism will be used to insert the right number of NOPs
2475          *
2476          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2477          *    issuing the write command will jump straight to the
2478          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2479          *    data (for RLD), skipping
2480          *    the NOP micro-instruction all together
2481          *
2482          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2483          *    turned on in the same micro-instruction that issues the write
2484          *    command. Then we need
2485          *    to directly jump to the micro-instruction that sends out the data
2486          *
2487          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2488          *       (2 and 3). One jump-counter (0) is used to perform multiple
2489          *       write-read operations.
2490          *       one counter left to issue this command in "multiple-group" mode
2491          */
2492
2493         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2494
2495         if (rw_wl_nop_cycles == -1) {
2496                 /*
2497                  * CNTR 2 - We want to execute the special write operation that
2498                  * turns on DQS right away and then skip directly to the
2499                  * instruction that sends out the data. We set the counter to a
2500                  * large number so that the jump is always taken.
2501                  */
2502                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2503
2504                 /* CNTR 3 - Not used */
2505                 if (test_dm) {
2506                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2507                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2508                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2509                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2510                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2511                 } else {
2512                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2513                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2514                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2515                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2516                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2517                 }
2518         } else if (rw_wl_nop_cycles == 0) {
2519                 /*
2520                  * CNTR 2 - We want to skip the NOP operation and go straight
2521                  * to the DQS enable instruction. We set the counter to a large
2522                  * number so that the jump is always taken.
2523                  */
2524                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2525
2526                 /* CNTR 3 - Not used */
2527                 if (test_dm) {
2528                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2529                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2530                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2531                 } else {
2532                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2533                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2534                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2535                 }
2536         } else {
2537                 /*
2538                  * CNTR 2 - In this case we want to execute the next instruction
2539                  * and NOT take the jump. So we set the counter to 0. The jump
2540                  * address doesn't count.
2541                  */
2542                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2543                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2544
2545                 /*
2546                  * CNTR 3 - Set the nop counter to the number of cycles we
2547                  * need to loop for, minus 1.
2548                  */
2549                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2550                 if (test_dm) {
2551                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2552                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2553                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2554                 } else {
2555                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2556                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2557                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2558                 }
2559         }
2560
2561         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2562                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2563
2564         if (quick_write_mode)
2565                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2566         else
2567                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2568
2569         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2570
2571         /*
2572          * CNTR 1 - This is used to ensure enough time elapses
2573          * for read data to come back.
2574          */
2575         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2576
2577         if (test_dm) {
2578                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2579                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2580         } else {
2581                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2582                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2583         }
2584
2585         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2586         writel(mcc_instruction, addr + (group << 2));
2587 }
2588
2589 /* Test writes, can check for a single bit pass or multiple bit pass */
2590 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2591         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2592         uint32_t *bit_chk, uint32_t all_ranks)
2593 {
2594         uint32_t r;
2595         uint32_t correct_mask_vg;
2596         uint32_t tmp_bit_chk;
2597         uint32_t vg;
2598         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2599                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2600         uint32_t addr_rw_mgr;
2601         uint32_t base_rw_mgr;
2602
2603         *bit_chk = param->write_correct_mask;
2604         correct_mask_vg = param->write_correct_mask_vg;
2605
2606         for (r = rank_bgn; r < rank_end; r++) {
2607                 if (param->skip_ranks[r]) {
2608                         /* request to skip the rank */
2609                         continue;
2610                 }
2611
2612                 /* set rank */
2613                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2614
2615                 tmp_bit_chk = 0;
2616                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2617                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2618                         /* reset the fifos to get pointers to known state */
2619                         writel(0, &phy_mgr_cmd->fifo_reset);
2620
2621                         tmp_bit_chk = tmp_bit_chk <<
2622                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2623                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2624                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2625                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2626                                 use_dm);
2627
2628                         base_rw_mgr = readl(addr_rw_mgr);
2629                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2630                         if (vg == 0)
2631                                 break;
2632                 }
2633                 *bit_chk &= tmp_bit_chk;
2634         }
2635
2636         if (all_correct) {
2637                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2638                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2639                            %u => %lu", write_group, use_dm,
2640                            *bit_chk, param->write_correct_mask,
2641                            (long unsigned int)(*bit_chk ==
2642                            param->write_correct_mask));
2643                 return *bit_chk == param->write_correct_mask;
2644         } else {
2645                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2646                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2647                        write_group, use_dm, *bit_chk);
2648                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2649                         (long unsigned int)(*bit_chk != 0));
2650                 return *bit_chk != 0x00;
2651         }
2652 }
2653
2654 /*
2655  * center all windows. do per-bit-deskew to possibly increase size of
2656  * certain windows.
2657  */
2658 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2659         uint32_t write_group, uint32_t test_bgn)
2660 {
2661         uint32_t i, p, min_index;
2662         int32_t d;
2663         /*
2664          * Store these as signed since there are comparisons with
2665          * signed numbers.
2666          */
2667         uint32_t bit_chk;
2668         uint32_t sticky_bit_chk;
2669         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2670         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2671         int32_t mid;
2672         int32_t mid_min, orig_mid_min;
2673         int32_t new_dqs, start_dqs, shift_dq;
2674         int32_t dq_margin, dqs_margin, dm_margin;
2675         uint32_t stop;
2676         uint32_t temp_dq_out1_delay;
2677         uint32_t addr;
2678
2679         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2680
2681         dm_margin = 0;
2682
2683         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2684         start_dqs = readl(addr +
2685                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2686
2687         /* per-bit deskew */
2688
2689         /*
2690          * set the left and right edge of each bit to an illegal value
2691          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2692          */
2693         sticky_bit_chk = 0;
2694         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2695                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2696                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2697         }
2698
2699         /* Search for the left edge of the window for each bit */
2700         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2701                 scc_mgr_apply_group_dq_out1_delay(write_group, d);
2702
2703                 writel(0, &sdr_scc_mgr->update);
2704
2705                 /*
2706                  * Stop searching when the read test doesn't pass AND when
2707                  * we've seen a passing read on every bit.
2708                  */
2709                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2710                         0, PASS_ONE_BIT, &bit_chk, 0);
2711                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2712                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2713                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2714                            == %u && %u [bit_chk= %u ]\n",
2715                         d, sticky_bit_chk, param->write_correct_mask,
2716                         stop, bit_chk);
2717
2718                 if (stop == 1) {
2719                         break;
2720                 } else {
2721                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2722                                 if (bit_chk & 1) {
2723                                         /*
2724                                          * Remember a passing test as the
2725                                          * left_edge.
2726                                          */
2727                                         left_edge[i] = d;
2728                                 } else {
2729                                         /*
2730                                          * If a left edge has not been seen
2731                                          * yet, then a future passing test will
2732                                          * mark this edge as the right edge.
2733                                          */
2734                                         if (left_edge[i] ==
2735                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2736                                                 right_edge[i] = -(d + 1);
2737                                         }
2738                                 }
2739                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2740                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2741                                            (int)(bit_chk & 1), i, left_edge[i]);
2742                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2743                                        right_edge[i]);
2744                                 bit_chk = bit_chk >> 1;
2745                         }
2746                 }
2747         }
2748
2749         /* Reset DQ delay chains to 0 */
2750         scc_mgr_apply_group_dq_out1_delay(0);
2751         sticky_bit_chk = 0;
2752         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2753                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2754                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2755                            i, left_edge[i], i, right_edge[i]);
2756
2757                 /*
2758                  * Check for cases where we haven't found the left edge,
2759                  * which makes our assignment of the the right edge invalid.
2760                  * Reset it to the illegal value.
2761                  */
2762                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2763                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2764                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2765                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2766                                    right_edge[%u]: %d\n", __func__, __LINE__,
2767                                    i, right_edge[i]);
2768                 }
2769
2770                 /*
2771                  * Reset sticky bit (except for bits where we have
2772                  * seen the left edge).
2773                  */
2774                 sticky_bit_chk = sticky_bit_chk << 1;
2775                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2776                         sticky_bit_chk = sticky_bit_chk | 1;
2777
2778                 if (i == 0)
2779                         break;
2780         }
2781
2782         /* Search for the right edge of the window for each bit */
2783         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2784                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2785                                                         d + start_dqs);
2786
2787                 writel(0, &sdr_scc_mgr->update);
2788
2789                 /*
2790                  * Stop searching when the read test doesn't pass AND when
2791                  * we've seen a passing read on every bit.
2792                  */
2793                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2794                         0, PASS_ONE_BIT, &bit_chk, 0);
2795
2796                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2797                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2798
2799                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2800                            %u && %u\n", d, sticky_bit_chk,
2801                            param->write_correct_mask, stop);
2802
2803                 if (stop == 1) {
2804                         if (d == 0) {
2805                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2806                                         i++) {
2807                                         /* d = 0 failed, but it passed when
2808                                         testing the left edge, so it must be
2809                                         marginal, set it to -1 */
2810                                         if (right_edge[i] ==
2811                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2812                                                 left_edge[i] !=
2813                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2814                                                 right_edge[i] = -1;
2815                                         }
2816                                 }
2817                         }
2818                         break;
2819                 } else {
2820                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2821                                 if (bit_chk & 1) {
2822                                         /*
2823                                          * Remember a passing test as
2824                                          * the right_edge.
2825                                          */
2826                                         right_edge[i] = d;
2827                                 } else {
2828                                         if (d != 0) {
2829                                                 /*
2830                                                  * If a right edge has not
2831                                                  * been seen yet, then a future
2832                                                  * passing test will mark this
2833                                                  * edge as the left edge.
2834                                                  */
2835                                                 if (right_edge[i] ==
2836                                                     IO_IO_OUT1_DELAY_MAX + 1)
2837                                                         left_edge[i] = -(d + 1);
2838                                         } else {
2839                                                 /*
2840                                                  * d = 0 failed, but it passed
2841                                                  * when testing the left edge,
2842                                                  * so it must be marginal, set
2843                                                  * it to -1.
2844                                                  */
2845                                                 if (right_edge[i] ==
2846                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2847                                                     left_edge[i] !=
2848                                                     IO_IO_OUT1_DELAY_MAX + 1)
2849                                                         right_edge[i] = -1;
2850                                                 /*
2851                                                  * If a right edge has not been
2852                                                  * seen yet, then a future
2853                                                  * passing test will mark this
2854                                                  * edge as the left edge.
2855                                                  */
2856                                                 else if (right_edge[i] ==
2857                                                         IO_IO_OUT1_DELAY_MAX +
2858                                                         1)
2859                                                         left_edge[i] = -(d + 1);
2860                                         }
2861                                 }
2862                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2863                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2864                                            (int)(bit_chk & 1), i, left_edge[i]);
2865                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2866                                            right_edge[i]);
2867                                 bit_chk = bit_chk >> 1;
2868                         }
2869                 }
2870         }
2871
2872         /* Check that all bits have a window */
2873         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2874                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2875                            %d right_edge[%u]: %d", __func__, __LINE__,
2876                            i, left_edge[i], i, right_edge[i]);
2877                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2878                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2879                         set_failing_group_stage(test_bgn + i,
2880                                                 CAL_STAGE_WRITES,
2881                                                 CAL_SUBSTAGE_WRITES_CENTER);
2882                         return 0;
2883                 }
2884         }
2885
2886         /* Find middle of window for each DQ bit */
2887         mid_min = left_edge[0] - right_edge[0];
2888         min_index = 0;
2889         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2890                 mid = left_edge[i] - right_edge[i];
2891                 if (mid < mid_min) {
2892                         mid_min = mid;
2893                         min_index = i;
2894                 }
2895         }
2896
2897         /*
2898          * -mid_min/2 represents the amount that we need to move DQS.
2899          * If mid_min is odd and positive we'll need to add one to
2900          * make sure the rounding in further calculations is correct
2901          * (always bias to the right), so just add 1 for all positive values.
2902          */
2903         if (mid_min > 0)
2904                 mid_min++;
2905         mid_min = mid_min / 2;
2906         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2907                    __LINE__, mid_min);
2908
2909         /* Determine the amount we can change DQS (which is -mid_min) */
2910         orig_mid_min = mid_min;
2911         new_dqs = start_dqs;
2912         mid_min = 0;
2913         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2914                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2915         /* Initialize data for export structures */
2916         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2917         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2918
2919         /* add delay to bring centre of all DQ windows to the same "level" */
2920         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2921                 /* Use values before divide by 2 to reduce round off error */
2922                 shift_dq = (left_edge[i] - right_edge[i] -
2923                         (left_edge[min_index] - right_edge[min_index]))/2  +
2924                 (orig_mid_min - mid_min);
2925
2926                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2927                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2928
2929                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2930                 temp_dq_out1_delay = readl(addr + (i << 2));
2931                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2932                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2933                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2934                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2935                         shift_dq = -(int32_t)temp_dq_out1_delay;
2936                 }
2937                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2938                            i, shift_dq);
2939                 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2940                 scc_mgr_load_dq(i);
2941
2942                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2943                            left_edge[i] - shift_dq + (-mid_min),
2944                            right_edge[i] + shift_dq - (-mid_min));
2945                 /* To determine values for export structures */
2946                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2947                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2948
2949                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2950                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2951         }
2952
2953         /* Move DQS */
2954         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2955         writel(0, &sdr_scc_mgr->update);
2956
2957         /* Centre DM */
2958         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2959
2960         /*
2961          * set the left and right edge of each bit to an illegal value,
2962          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2963          */
2964         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2965         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2966         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2967         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2968         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2969         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2970         int32_t win_best = 0;
2971
2972         /* Search for the/part of the window with DM shift */
2973         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2974                 scc_mgr_apply_group_dm_out1_delay(d);
2975                 writel(0, &sdr_scc_mgr->update);
2976
2977                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2978                                                     PASS_ALL_BITS, &bit_chk,
2979                                                     0)) {
2980                         /* USE Set current end of the window */
2981                         end_curr = -d;
2982                         /*
2983                          * If a starting edge of our window has not been seen
2984                          * this is our current start of the DM window.
2985                          */
2986                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2987                                 bgn_curr = -d;
2988
2989                         /*
2990                          * If current window is bigger than best seen.
2991                          * Set best seen to be current window.
2992                          */
2993                         if ((end_curr-bgn_curr+1) > win_best) {
2994                                 win_best = end_curr-bgn_curr+1;
2995                                 bgn_best = bgn_curr;
2996                                 end_best = end_curr;
2997                         }
2998                 } else {
2999                         /* We just saw a failing test. Reset temp edge */
3000                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3001                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3002                         }
3003                 }
3004
3005
3006         /* Reset DM delay chains to 0 */
3007         scc_mgr_apply_group_dm_out1_delay(0);
3008
3009         /*
3010          * Check to see if the current window nudges up aganist 0 delay.
3011          * If so we need to continue the search by shifting DQS otherwise DQS
3012          * search begins as a new search. */
3013         if (end_curr != 0) {
3014                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3015                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3016         }
3017
3018         /* Search for the/part of the window with DQS shifts */
3019         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3020                 /*
3021                  * Note: This only shifts DQS, so are we limiting ourselve to
3022                  * width of DQ unnecessarily.
3023                  */
3024                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3025                                                         d + new_dqs);
3026
3027                 writel(0, &sdr_scc_mgr->update);
3028                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3029                                                     PASS_ALL_BITS, &bit_chk,
3030                                                     0)) {
3031                         /* USE Set current end of the window */
3032                         end_curr = d;
3033                         /*
3034                          * If a beginning edge of our window has not been seen
3035                          * this is our current begin of the DM window.
3036                          */
3037                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3038                                 bgn_curr = d;
3039
3040                         /*
3041                          * If current window is bigger than best seen. Set best
3042                          * seen to be current window.
3043                          */
3044                         if ((end_curr-bgn_curr+1) > win_best) {
3045                                 win_best = end_curr-bgn_curr+1;
3046                                 bgn_best = bgn_curr;
3047                                 end_best = end_curr;
3048                         }
3049                 } else {
3050                         /* We just saw a failing test. Reset temp edge */
3051                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3052                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3053
3054                         /* Early exit optimization: if ther remaining delay
3055                         chain space is less than already seen largest window
3056                         we can exit */
3057                         if ((win_best-1) >
3058                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3059                                         break;
3060                                 }
3061                         }
3062                 }
3063
3064         /* assign left and right edge for cal and reporting; */
3065         left_edge[0] = -1*bgn_best;
3066         right_edge[0] = end_best;
3067
3068         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3069                    __LINE__, left_edge[0], right_edge[0]);
3070
3071         /* Move DQS (back to orig) */
3072         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3073
3074         /* Move DM */
3075
3076         /* Find middle of window for the DM bit */
3077         mid = (left_edge[0] - right_edge[0]) / 2;
3078
3079         /* only move right, since we are not moving DQS/DQ */
3080         if (mid < 0)
3081                 mid = 0;
3082
3083         /* dm_marign should fail if we never find a window */
3084         if (win_best == 0)
3085                 dm_margin = -1;
3086         else
3087                 dm_margin = left_edge[0] - mid;
3088
3089         scc_mgr_apply_group_dm_out1_delay(mid);
3090         writel(0, &sdr_scc_mgr->update);
3091
3092         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3093                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3094                    right_edge[0], mid, dm_margin);
3095         /* Export values */
3096         gbl->fom_out += dq_margin + dqs_margin;
3097
3098         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3099                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3100                    dq_margin, dqs_margin, dm_margin);
3101
3102         /*
3103          * Do not remove this line as it makes sure all of our
3104          * decisions have been applied.
3105          */
3106         writel(0, &sdr_scc_mgr->update);
3107         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3108 }
3109
3110 /* calibrate the write operations */
3111 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3112         uint32_t test_bgn)
3113 {
3114         /* update info for sims */
3115         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3116
3117         reg_file_set_stage(CAL_STAGE_WRITES);
3118         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3119
3120         reg_file_set_group(g);
3121
3122         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3123                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3124                                         CAL_SUBSTAGE_WRITES_CENTER);
3125                 return 0;
3126         }
3127
3128         return 1;
3129 }
3130
3131 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3132 static void mem_precharge_and_activate(void)
3133 {
3134         uint32_t r;
3135
3136         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3137                 if (param->skip_ranks[r]) {
3138                         /* request to skip the rank */
3139                         continue;
3140                 }
3141
3142                 /* set rank */
3143                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3144
3145                 /* precharge all banks ... */
3146                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3147                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3148
3149                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3150                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3151                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3152
3153                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3154                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3155                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3156
3157                 /* activate rows */
3158                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3159                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3160         }
3161 }
3162
3163 /* Configure various memory related parameters. */
3164 static void mem_config(void)
3165 {
3166         uint32_t rlat, wlat;
3167         uint32_t rw_wl_nop_cycles;
3168         uint32_t max_latency;
3169
3170         debug("%s:%d\n", __func__, __LINE__);
3171         /* read in write and read latency */
3172         wlat = readl(&data_mgr->t_wl_add);
3173         wlat += readl(&data_mgr->mem_t_add);
3174
3175         /* WL for hard phy does not include additive latency */
3176
3177         /*
3178          * add addtional write latency to offset the address/command extra
3179          * clock cycle. We change the AC mux setting causing AC to be delayed
3180          * by one mem clock cycle. Only do this for DDR3
3181          */
3182         wlat = wlat + 1;
3183
3184         rlat = readl(&data_mgr->t_rl_add);
3185
3186         rw_wl_nop_cycles = wlat - 2;
3187         gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3188
3189         /*
3190          * For AV/CV, lfifo is hardened and always runs at full rate so
3191          * max latency in AFI clocks, used here, is correspondingly smaller.
3192          */
3193         max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3194         /* configure for a burst length of 8 */
3195
3196         /* write latency */
3197         /* Adjust Write Latency for Hard PHY */
3198         wlat = wlat + 1;
3199
3200         /* set a pretty high read latency initially */
3201         gbl->curr_read_lat = rlat + 16;
3202
3203         if (gbl->curr_read_lat > max_latency)
3204                 gbl->curr_read_lat = max_latency;
3205
3206         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3207
3208         /* advertise write latency */
3209         gbl->curr_write_lat = wlat;
3210         writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3211
3212         /* initialize bit slips */
3213         mem_precharge_and_activate();
3214 }
3215
3216 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3217 static void mem_skip_calibrate(void)
3218 {
3219         uint32_t vfifo_offset;
3220         uint32_t i, j, r;
3221
3222         debug("%s:%d\n", __func__, __LINE__);
3223         /* Need to update every shadow register set used by the interface */
3224         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3225                 r += NUM_RANKS_PER_SHADOW_REG) {
3226                 /*
3227                  * Set output phase alignment settings appropriate for
3228                  * skip calibration.
3229                  */
3230                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3231                         scc_mgr_set_dqs_en_phase(i, 0);
3232 #if IO_DLL_CHAIN_LENGTH == 6
3233                         scc_mgr_set_dqdqs_output_phase(i, 6);
3234 #else
3235                         scc_mgr_set_dqdqs_output_phase(i, 7);
3236 #endif
3237                         /*
3238                          * Case:33398
3239                          *
3240                          * Write data arrives to the I/O two cycles before write
3241                          * latency is reached (720 deg).
3242                          *   -> due to bit-slip in a/c bus
3243                          *   -> to allow board skew where dqs is longer than ck
3244                          *      -> how often can this happen!?
3245                          *      -> can claim back some ptaps for high freq
3246                          *       support if we can relax this, but i digress...
3247                          *
3248                          * The write_clk leads mem_ck by 90 deg
3249                          * The minimum ptap of the OPA is 180 deg
3250                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3251                          * The write_clk is always delayed by 2 ptaps
3252                          *
3253                          * Hence, to make DQS aligned to CK, we need to delay
3254                          * DQS by:
3255                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3256                          *
3257                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3258                          * gives us the number of ptaps, which simplies to:
3259                          *
3260                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3261                          */
3262                         scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3263                                 IO_DLL_CHAIN_LENGTH - 2));
3264                 }
3265                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3266                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3267
3268                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3269                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3270                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3271                 }
3272                 writel(0xff, &sdr_scc_mgr->dq_ena);
3273                 writel(0xff, &sdr_scc_mgr->dm_ena);
3274                 writel(0, &sdr_scc_mgr->update);
3275         }
3276
3277         /* Compensate for simulation model behaviour */
3278         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3279                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3280                 scc_mgr_load_dqs(i);
3281         }
3282         writel(0, &sdr_scc_mgr->update);
3283
3284         /*
3285          * ArriaV has hard FIFOs that can only be initialized by incrementing
3286          * in sequencer.
3287          */
3288         vfifo_offset = CALIB_VFIFO_OFFSET;
3289         for (j = 0; j < vfifo_offset; j++) {
3290                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3291         }
3292         writel(0, &phy_mgr_cmd->fifo_reset);
3293
3294         /*
3295          * For ACV with hard lfifo, we get the skip-cal setting from
3296          * generation-time constant.
3297          */
3298         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3299         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3300 }
3301
3302 /* Memory calibration entry point */
3303 static uint32_t mem_calibrate(void)
3304 {
3305         uint32_t i;
3306         uint32_t rank_bgn, sr;
3307         uint32_t write_group, write_test_bgn;
3308         uint32_t read_group, read_test_bgn;
3309         uint32_t run_groups, current_run;
3310         uint32_t failing_groups = 0;
3311         uint32_t group_failed = 0;
3312         uint32_t sr_failed = 0;
3313
3314         debug("%s:%d\n", __func__, __LINE__);
3315         /* Initialize the data settings */
3316
3317         gbl->error_substage = CAL_SUBSTAGE_NIL;
3318         gbl->error_stage = CAL_STAGE_NIL;
3319         gbl->error_group = 0xff;
3320         gbl->fom_in = 0;
3321         gbl->fom_out = 0;
3322
3323         mem_config();
3324
3325         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3326                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3327                           SCC_MGR_GROUP_COUNTER_OFFSET);
3328                 scc_set_bypass_mode(i);
3329         }
3330
3331         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3332                 /*
3333                  * Set VFIFO and LFIFO to instant-on settings in skip
3334                  * calibration mode.
3335                  */
3336                 mem_skip_calibrate();
3337         } else {
3338                 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3339                         /*
3340                          * Zero all delay chain/phase settings for all
3341                          * groups and all shadow register sets.
3342                          */
3343                         scc_mgr_zero_all();
3344
3345                         run_groups = ~param->skip_groups;
3346
3347                         for (write_group = 0, write_test_bgn = 0; write_group
3348                                 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3349                                 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3350                                 /* Initialized the group failure */
3351                                 group_failed = 0;
3352
3353                                 current_run = run_groups & ((1 <<
3354                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3355                                 run_groups = run_groups >>
3356                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3357
3358                                 if (current_run == 0)
3359                                         continue;
3360
3361                                 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3362                                                     SCC_MGR_GROUP_COUNTER_OFFSET);
3363                                 scc_mgr_zero_group(write_group, write_test_bgn,
3364                                                    0);
3365
3366                                 for (read_group = write_group *
3367                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3368                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3369                                         read_test_bgn = 0;
3370                                         read_group < (write_group + 1) *
3371                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3372                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3373                                         group_failed == 0;
3374                                         read_group++, read_test_bgn +=
3375                                         RW_MGR_MEM_DQ_PER_READ_DQS) {
3376                                         /* Calibrate the VFIFO */
3377                                         if (!((STATIC_CALIB_STEPS) &
3378                                                 CALIB_SKIP_VFIFO)) {
3379                                                 if (!rw_mgr_mem_calibrate_vfifo
3380                                                         (read_group,
3381                                                         read_test_bgn)) {
3382                                                         group_failed = 1;
3383
3384                                                         if (!(gbl->
3385                                                         phy_debug_mode_flags &
3386                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3387                                                                 return 0;
3388                                                         }
3389                                                 }
3390                                         }
3391                                 }
3392
3393                                 /* Calibrate the output side */
3394                                 if (group_failed == 0)  {
3395                                         for (rank_bgn = 0, sr = 0; rank_bgn
3396                                                 < RW_MGR_MEM_NUMBER_OF_RANKS;
3397                                                 rank_bgn +=
3398                                                 NUM_RANKS_PER_SHADOW_REG,
3399                                                 ++sr) {
3400                                                 sr_failed = 0;
3401                                                 if (!((STATIC_CALIB_STEPS) &
3402                                                 CALIB_SKIP_WRITES)) {
3403                                                         if ((STATIC_CALIB_STEPS)
3404                                                 & CALIB_SKIP_DELAY_SWEEPS) {
3405                                                 /* not needed in quick mode! */
3406                                                         } else {
3407                                                 /*
3408                                                  * Determine if this set of
3409                                                  * ranks should be skipped
3410                                                  * entirely.
3411                                                  */
3412                                         if (!param->skip_shadow_regs[sr]) {
3413                                                 if (!rw_mgr_mem_calibrate_writes
3414                                                 (rank_bgn, write_group,
3415                                                 write_test_bgn)) {
3416                                                         sr_failed = 1;
3417                                                         if (!(gbl->
3418                                                         phy_debug_mode_flags &
3419                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3420                                                                 return 0;
3421                                                                         }
3422                                                                         }
3423                                                                 }
3424                                                         }
3425                                                 }
3426                                                 if (sr_failed != 0)
3427                                                         group_failed = 1;
3428                                         }
3429                                 }
3430
3431                                 if (group_failed == 0) {
3432                                         for (read_group = write_group *
3433                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3434                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3435                                         read_test_bgn = 0;
3436                                                 read_group < (write_group + 1)
3437                                                 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3438                                                 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3439                                                 group_failed == 0;
3440                                                 read_group++, read_test_bgn +=
3441                                                 RW_MGR_MEM_DQ_PER_READ_DQS) {
3442                                                 if (!((STATIC_CALIB_STEPS) &
3443                                                         CALIB_SKIP_WRITES)) {
3444                                         if (!rw_mgr_mem_calibrate_vfifo_end
3445                                                 (read_group, read_test_bgn)) {
3446                                                         group_failed = 1;
3447
3448                                                 if (!(gbl->phy_debug_mode_flags
3449                                                 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3450                                                                 return 0;
3451                                                                 }
3452                                                         }
3453                                                 }
3454                                         }
3455                                 }
3456
3457                                 if (group_failed != 0)
3458                                         failing_groups++;
3459                         }
3460
3461                         /*
3462                          * USER If there are any failing groups then report
3463                          * the failure.
3464                          */
3465                         if (failing_groups != 0)
3466                                 return 0;
3467
3468                         /* Calibrate the LFIFO */
3469                         if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3470                                 /*
3471                                  * If we're skipping groups as part of debug,
3472                                  * don't calibrate LFIFO.
3473                                  */
3474                                 if (param->skip_groups == 0) {
3475                                         if (!rw_mgr_mem_calibrate_lfifo())
3476                                                 return 0;
3477                                 }
3478                         }
3479                 }
3480         }
3481
3482         /*
3483          * Do not remove this line as it makes sure all of our decisions
3484          * have been applied.
3485          */
3486         writel(0, &sdr_scc_mgr->update);
3487         return 1;
3488 }
3489
3490 static uint32_t run_mem_calibrate(void)
3491 {
3492         uint32_t pass;
3493         uint32_t debug_info;
3494
3495         debug("%s:%d\n", __func__, __LINE__);
3496
3497         /* Reset pass/fail status shown on afi_cal_success/fail */
3498         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3499
3500         /* stop tracking manger */
3501         uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3502
3503         writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3504
3505         initialize();
3506         rw_mgr_mem_initialize();
3507
3508         pass = mem_calibrate();
3509
3510         mem_precharge_and_activate();
3511         writel(0, &phy_mgr_cmd->fifo_reset);
3512
3513         /*
3514          * Handoff:
3515          * Don't return control of the PHY back to AFI when in debug mode.
3516          */
3517         if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3518                 rw_mgr_mem_handoff();
3519                 /*
3520                  * In Hard PHY this is a 2-bit control:
3521                  * 0: AFI Mux Select
3522                  * 1: DDIO Mux Select
3523                  */
3524                 writel(0x2, &phy_mgr_cfg->mux_sel);
3525         }
3526
3527         writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3528
3529         if (pass) {
3530                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3531
3532                 gbl->fom_in /= 2;
3533                 gbl->fom_out /= 2;
3534
3535                 if (gbl->fom_in > 0xff)
3536                         gbl->fom_in = 0xff;
3537
3538                 if (gbl->fom_out > 0xff)
3539                         gbl->fom_out = 0xff;
3540
3541                 /* Update the FOM in the register file */
3542                 debug_info = gbl->fom_in;
3543                 debug_info |= gbl->fom_out << 8;
3544                 writel(debug_info, &sdr_reg_file->fom);
3545
3546                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3547                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3548         } else {
3549                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3550
3551                 debug_info = gbl->error_stage;
3552                 debug_info |= gbl->error_substage << 8;
3553                 debug_info |= gbl->error_group << 16;
3554
3555                 writel(debug_info, &sdr_reg_file->failing_stage);
3556                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3557                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3558
3559                 /* Update the failing group/stage in the register file */
3560                 debug_info = gbl->error_stage;
3561                 debug_info |= gbl->error_substage << 8;
3562                 debug_info |= gbl->error_group << 16;
3563                 writel(debug_info, &sdr_reg_file->failing_stage);
3564         }
3565
3566         return pass;
3567 }
3568
3569 /**
3570  * hc_initialize_rom_data() - Initialize ROM data
3571  *
3572  * Initialize ROM data.
3573  */
3574 static void hc_initialize_rom_data(void)
3575 {
3576         u32 i, addr;
3577
3578         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3579         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3580                 writel(inst_rom_init[i], addr + (i << 2));
3581
3582         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3583         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3584                 writel(ac_rom_init[i], addr + (i << 2));
3585 }
3586
3587 /**
3588  * initialize_reg_file() - Initialize SDR register file
3589  *
3590  * Initialize SDR register file.
3591  */
3592 static void initialize_reg_file(void)
3593 {
3594         /* Initialize the register file with the correct data */
3595         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3596         writel(0, &sdr_reg_file->debug_data_addr);
3597         writel(0, &sdr_reg_file->cur_stage);
3598         writel(0, &sdr_reg_file->fom);
3599         writel(0, &sdr_reg_file->failing_stage);
3600         writel(0, &sdr_reg_file->debug1);
3601         writel(0, &sdr_reg_file->debug2);
3602 }
3603
3604 /**
3605  * initialize_hps_phy() - Initialize HPS PHY
3606  *
3607  * Initialize HPS PHY.
3608  */
3609 static void initialize_hps_phy(void)
3610 {
3611         uint32_t reg;
3612         /*
3613          * Tracking also gets configured here because it's in the
3614          * same register.
3615          */
3616         uint32_t trk_sample_count = 7500;
3617         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3618         /*
3619          * Format is number of outer loops in the 16 MSB, sample
3620          * count in 16 LSB.
3621          */
3622
3623         reg = 0;
3624         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3625         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3626         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3627         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3628         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3629         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3630         /*
3631          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3632          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3633          */
3634         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3635         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3636                 trk_sample_count);
3637         writel(reg, &sdr_ctrl->phy_ctrl0);
3638
3639         reg = 0;
3640         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3641                 trk_sample_count >>
3642                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3643         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3644                 trk_long_idle_sample_count);
3645         writel(reg, &sdr_ctrl->phy_ctrl1);
3646
3647         reg = 0;
3648         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3649                 trk_long_idle_sample_count >>
3650                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3651         writel(reg, &sdr_ctrl->phy_ctrl2);
3652 }
3653
3654 static void initialize_tracking(void)
3655 {
3656         uint32_t concatenated_longidle = 0x0;
3657         uint32_t concatenated_delays = 0x0;
3658         uint32_t concatenated_rw_addr = 0x0;
3659         uint32_t concatenated_refresh = 0x0;
3660         uint32_t trk_sample_count = 7500;
3661         uint32_t dtaps_per_ptap;
3662         uint32_t tmp_delay;
3663
3664         /*
3665          * compute usable version of value in case we skip full
3666          * computation later
3667          */
3668         dtaps_per_ptap = 0;
3669         tmp_delay = 0;
3670         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3671                 dtaps_per_ptap++;
3672                 tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3673         }
3674         dtaps_per_ptap--;
3675
3676         concatenated_longidle = concatenated_longidle ^ 10;
3677                 /*longidle outer loop */
3678         concatenated_longidle = concatenated_longidle << 16;
3679         concatenated_longidle = concatenated_longidle ^ 100;
3680                 /*longidle sample count */
3681         concatenated_delays = concatenated_delays ^ 243;
3682                 /* trfc, worst case of 933Mhz 4Gb */
3683         concatenated_delays = concatenated_delays << 8;
3684         concatenated_delays = concatenated_delays ^ 14;
3685                 /* trcd, worst case */
3686         concatenated_delays = concatenated_delays << 8;
3687         concatenated_delays = concatenated_delays ^ 10;
3688                 /* vfifo wait */
3689         concatenated_delays = concatenated_delays << 8;
3690         concatenated_delays = concatenated_delays ^ 4;
3691                 /* mux delay */
3692
3693         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3694         concatenated_rw_addr = concatenated_rw_addr << 8;
3695         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3696         concatenated_rw_addr = concatenated_rw_addr << 8;
3697         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3698         concatenated_rw_addr = concatenated_rw_addr << 8;
3699         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3700
3701         concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3702         concatenated_refresh = concatenated_refresh << 24;
3703         concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3704
3705         /* Initialize the register file with the correct data */
3706         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3707         writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3708         writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3709         writel(concatenated_delays, &sdr_reg_file->delays);
3710         writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3711         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3712         writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3713 }
3714
3715 int sdram_calibration_full(void)
3716 {
3717         struct param_type my_param;
3718         struct gbl_type my_gbl;
3719         uint32_t pass;
3720         uint32_t i;
3721
3722         param = &my_param;
3723         gbl = &my_gbl;
3724
3725         /* Initialize the debug mode flags */
3726         gbl->phy_debug_mode_flags = 0;
3727         /* Set the calibration enabled by default */
3728         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3729         /*
3730          * Only sweep all groups (regardless of fail state) by default
3731          * Set enabled read test by default.
3732          */
3733 #if DISABLE_GUARANTEED_READ
3734         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3735 #endif
3736         /* Initialize the register file */
3737         initialize_reg_file();
3738
3739         /* Initialize any PHY CSR */
3740         initialize_hps_phy();
3741
3742         scc_mgr_initialize();
3743
3744         initialize_tracking();
3745
3746         /* USER Enable all ranks, groups */
3747         for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3748                 param->skip_ranks[i] = 0;
3749         for (i = 0; i < NUM_SHADOW_REGS; ++i)
3750                 param->skip_shadow_regs[i] = 0;
3751         param->skip_groups = 0;
3752
3753         printf("%s: Preparing to start memory calibration\n", __FILE__);
3754
3755         debug("%s:%d\n", __func__, __LINE__);
3756         debug_cond(DLEVEL == 1,
3757                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3758                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3759                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3760                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3761                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3762         debug_cond(DLEVEL == 1,
3763                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3764                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3765                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3766                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3767         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3768                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3769         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3770                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3771                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3772         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3773                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3774                    IO_IO_OUT2_DELAY_MAX);
3775         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3776                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3777
3778         hc_initialize_rom_data();
3779
3780         /* update info for sims */
3781         reg_file_set_stage(CAL_STAGE_NIL);
3782         reg_file_set_group(0);
3783
3784         /*
3785          * Load global needed for those actions that require
3786          * some dynamic calibration support.
3787          */
3788         dyn_calib_steps = STATIC_CALIB_STEPS;
3789         /*
3790          * Load global to allow dynamic selection of delay loop settings
3791          * based on calibration mode.
3792          */
3793         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3794                 skip_delay_mask = 0xff;
3795         else
3796                 skip_delay_mask = 0x0;
3797
3798         pass = run_mem_calibrate();
3799
3800         printf("%s: Calibration complete\n", __FILE__);
3801         return pass;
3802 }