2 * drivers/dma/fsl_raid.c
4 * Freescale RAID Engine device driver
7 * Harninder Rai <harninder.rai@freescale.com>
8 * Naveen Burmi <naveenburmi@freescale.com>
11 * Xuelin Shi <xuelin.shi@freescale.com>
13 * Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions are met:
17 * * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * * Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * * Neither the name of Freescale Semiconductor nor the
23 * names of its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written permission.
26 * ALTERNATIVELY, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") as published by the Free Software
28 * Foundation, either version 2 of that License or (at your option) any
31 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
34 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
40 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 * Theory of operation:
44 * General capabilities:
45 * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
46 * calculations required in RAID5 and RAID6 operations. RE driver
47 * registers with Linux's ASYNC layer as dma driver. RE hardware
48 * maintains strict ordering of the requests through chained
52 * Software RAID layer of Linux (MD layer) maintains RAID partitions,
53 * strips, stripes etc. It sends requests to the underlying ASYNC layer
54 * which further passes it to RE driver. ASYNC layer decides which request
55 * goes to which job ring of RE hardware. For every request processed by
56 * RAID Engine, driver gets an interrupt unless coalescing is set. The
57 * per job ring interrupt handler checks the status register for errors,
58 * clears the interrupt and leave the post interrupt processing to the irq
61 #include <linux/interrupt.h>
62 #include <linux/module.h>
63 #include <linux/of_irq.h>
64 #include <linux/of_address.h>
65 #include <linux/of_platform.h>
66 #include <linux/dma-mapping.h>
67 #include <linux/dmapool.h>
68 #include <linux/dmaengine.h>
70 #include <linux/spinlock.h>
71 #include <linux/slab.h>
73 #include "dmaengine.h"
76 #define FSL_RE_MAX_XOR_SRCS 16
77 #define FSL_RE_MAX_PQ_SRCS 16
78 #define FSL_RE_MIN_DESCS 256
79 #define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS)
80 #define FSL_RE_FRAME_FORMAT 0x1
81 #define FSL_RE_MAX_DATA_LEN (1024*1024)
83 #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
85 /* Add descriptors into per chan software queue - submit_q */
86 static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx)
88 struct fsl_re_desc *desc;
89 struct fsl_re_chan *re_chan;
93 desc = to_fsl_re_dma_desc(tx);
94 re_chan = container_of(tx->chan, struct fsl_re_chan, chan);
96 spin_lock_irqsave(&re_chan->desc_lock, flags);
97 cookie = dma_cookie_assign(tx);
98 list_add_tail(&desc->node, &re_chan->submit_q);
99 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
104 /* Copy descriptor from per chan software queue into hardware job ring */
105 static void fsl_re_issue_pending(struct dma_chan *chan)
107 struct fsl_re_chan *re_chan;
109 struct fsl_re_desc *desc, *_desc;
112 re_chan = container_of(chan, struct fsl_re_chan, chan);
114 spin_lock_irqsave(&re_chan->desc_lock, flags);
115 avail = FSL_RE_SLOT_AVAIL(
116 in_be32(&re_chan->jrregs->inbring_slot_avail));
118 list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) {
122 list_move_tail(&desc->node, &re_chan->active_q);
124 memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count],
125 &desc->hwdesc, sizeof(struct fsl_re_hw_desc));
127 re_chan->inb_count = (re_chan->inb_count + 1) &
128 FSL_RE_RING_SIZE_MASK;
129 out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1));
132 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
135 static void fsl_re_desc_done(struct fsl_re_desc *desc)
137 dma_async_tx_callback callback;
138 void *callback_param;
140 dma_cookie_complete(&desc->async_tx);
142 callback = desc->async_tx.callback;
143 callback_param = desc->async_tx.callback_param;
145 callback(callback_param);
147 dma_descriptor_unmap(&desc->async_tx);
150 static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan)
152 struct fsl_re_desc *desc, *_desc;
155 spin_lock_irqsave(&re_chan->desc_lock, flags);
156 list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) {
157 if (async_tx_test_ack(&desc->async_tx))
158 list_move_tail(&desc->node, &re_chan->free_q);
160 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
162 fsl_re_issue_pending(&re_chan->chan);
165 static void fsl_re_dequeue(unsigned long data)
167 struct fsl_re_chan *re_chan;
168 struct fsl_re_desc *desc, *_desc;
169 struct fsl_re_hw_desc *hwdesc;
171 unsigned int count, oub_count;
174 re_chan = dev_get_drvdata((struct device *)data);
176 fsl_re_cleanup_descs(re_chan);
178 spin_lock_irqsave(&re_chan->desc_lock, flags);
179 count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full));
182 hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count];
183 list_for_each_entry_safe(desc, _desc, &re_chan->active_q,
185 /* compare the hw dma addr to find the completed */
186 if (desc->hwdesc.lbea32 == hwdesc->lbea32 &&
187 desc->hwdesc.addr_low == hwdesc->addr_low) {
194 fsl_re_desc_done(desc);
195 list_move_tail(&desc->node, &re_chan->ack_q);
197 dev_err(re_chan->dev,
198 "found hwdesc not in sw queue, discard it\n");
201 oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK;
202 re_chan->oub_count = oub_count;
204 out_be32(&re_chan->jrregs->oubring_job_rmvd,
207 spin_unlock_irqrestore(&re_chan->desc_lock, flags);
210 /* Per Job Ring interrupt handler */
211 static irqreturn_t fsl_re_isr(int irq, void *data)
213 struct fsl_re_chan *re_chan;
214 u32 irqstate, status;
216 re_chan = dev_get_drvdata((struct device *)data);
218 irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status);
223 * There's no way in upper layer (read MD layer) to recover from
224 * error conditions except restart everything. In long term we
225 * need to do something more than just crashing
227 if (irqstate & FSL_RE_ERROR) {
228 status = in_be32(&re_chan->jrregs->jr_status);
229 dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n",
233 /* Clear interrupt */
234 out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR);
236 tasklet_schedule(&re_chan->irqtask);
241 static enum dma_status fsl_re_tx_status(struct dma_chan *chan,
243 struct dma_tx_state *txstate)
245 return dma_cookie_status(chan, cookie, txstate);
248 static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index,
249 size_t length, dma_addr_t addr, bool final)
251 u32 efrl = length & FSL_RE_CF_LENGTH_MASK;
253 efrl |= final << FSL_RE_CF_FINAL_SHIFT;
254 cf[index].efrl32 = efrl;
255 cf[index].addr_high = upper_32_bits(addr);
256 cf[index].addr_low = lower_32_bits(addr);
259 static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan,
260 struct fsl_re_desc *desc,
261 void *cf, dma_addr_t paddr)
263 desc->re_chan = re_chan;
264 desc->async_tx.tx_submit = fsl_re_tx_submit;
265 dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan);
266 INIT_LIST_HEAD(&desc->node);
268 desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT;
269 desc->hwdesc.lbea32 = upper_32_bits(paddr);
270 desc->hwdesc.addr_low = lower_32_bits(paddr);
272 desc->cf_paddr = paddr;
274 desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE);
275 desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE;
280 static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan,
283 struct fsl_re_desc *desc = NULL;
286 unsigned long lock_flag;
288 fsl_re_cleanup_descs(re_chan);
290 spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
291 if (!list_empty(&re_chan->free_q)) {
292 /* take one desc from free_q */
293 desc = list_first_entry(&re_chan->free_q,
294 struct fsl_re_desc, node);
295 list_del(&desc->node);
297 desc->async_tx.flags = flags;
299 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
302 desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
306 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT,
313 desc = fsl_re_init_desc(re_chan, desc, cf, paddr);
314 desc->async_tx.flags = flags;
316 spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
317 re_chan->alloc_count++;
318 spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
324 static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq(
325 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
326 unsigned int src_cnt, const unsigned char *scf, size_t len,
329 struct fsl_re_chan *re_chan;
330 struct fsl_re_desc *desc;
331 struct fsl_re_xor_cdb *xor;
332 struct fsl_re_cmpnd_frame *cf;
335 unsigned int save_src_cnt = src_cnt;
338 re_chan = container_of(chan, struct fsl_re_chan, chan);
339 if (len > FSL_RE_MAX_DATA_LEN) {
340 dev_err(re_chan->dev, "genq tx length %lu, max length %d\n",
341 len, FSL_RE_MAX_DATA_LEN);
345 desc = fsl_re_chan_alloc_desc(re_chan, flags);
349 if (scf && (flags & DMA_PREP_CONTINUE)) {
354 /* Filling xor CDB */
355 cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
356 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
357 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
358 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
359 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
360 xor = desc->cdb_addr;
364 /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
365 for (i = 0; i < save_src_cnt; i++)
366 xor->gfm[i] = scf[i];
370 /* compute P, that is XOR all srcs */
371 for (i = 0; i < src_cnt; i++)
375 /* Filling frame 0 of compound frame descriptor with CDB */
377 fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0);
379 /* Fill CFD's 1st frame with dest buffer */
380 fill_cfd_frame(cf, 1, len, dest, 0);
382 /* Fill CFD's rest of the frames with source buffers */
383 for (i = 2, j = 0; j < save_src_cnt; i++, j++)
384 fill_cfd_frame(cf, i, len, src[j], 0);
387 fill_cfd_frame(cf, i++, len, dest, 0);
389 /* Setting the final bit in the last source buffer frame in CFD */
390 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
392 return &desc->async_tx;
396 * Prep function for P parity calculation.In RAID Engine terminology,
397 * XOR calculation is called GenQ calculation done through GenQ command
399 static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor(
400 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
401 unsigned int src_cnt, size_t len, unsigned long flags)
403 /* NULL let genq take all coef as 1 */
404 return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags);
408 * Prep function for P/Q parity calculation.In RAID Engine terminology,
409 * P/Q calculation is called GenQQ done through GenQQ command
411 static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq(
412 struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
413 unsigned int src_cnt, const unsigned char *scf, size_t len,
416 struct fsl_re_chan *re_chan;
417 struct fsl_re_desc *desc;
418 struct fsl_re_pq_cdb *pq;
419 struct fsl_re_cmpnd_frame *cf;
423 unsigned int save_src_cnt = src_cnt;
425 re_chan = container_of(chan, struct fsl_re_chan, chan);
426 if (len > FSL_RE_MAX_DATA_LEN) {
427 dev_err(re_chan->dev, "pq tx length is %lu, max length is %d\n",
428 len, FSL_RE_MAX_DATA_LEN);
433 * RE requires at least 2 sources, if given only one source, we pass the
434 * second source same as the first one.
435 * With only one source, generating P is meaningless, only generate Q.
438 struct dma_async_tx_descriptor *tx;
439 dma_addr_t dma_src[2];
440 unsigned char coef[2];
446 tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len,
449 desc = to_fsl_re_dma_desc(tx);
455 * During RAID6 array creation, Linux's MD layer gets P and Q
456 * calculated separately in two steps. But our RAID Engine has
457 * the capability to calculate both P and Q with a single command
458 * Hence to merge well with MD layer, we need to provide a hook
459 * here and call re_jq_prep_dma_genq() function
462 if (flags & DMA_PREP_PQ_DISABLE_P)
463 return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt,
466 if (flags & DMA_PREP_CONTINUE)
469 desc = fsl_re_chan_alloc_desc(re_chan, flags);
473 /* Filling GenQQ CDB */
474 cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
475 cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
476 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
477 cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT;
478 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
485 for (i = 0; i < src_cnt; i++)
488 /* Align gfm[] to 32bit */
489 gfmq_len = ALIGN(src_cnt, 4);
493 for (i = 0; i < src_cnt; i++)
496 /* Filling frame 0 of compound frame descriptor with CDB */
498 fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0);
500 /* Fill CFD's 1st & 2nd frame with dest buffers */
501 for (i = 1, j = 0; i < 3; i++, j++)
502 fill_cfd_frame(cf, i, len, dest[j], 0);
504 /* Fill CFD's rest of the frames with source buffers */
505 for (i = 3, j = 0; j < save_src_cnt; i++, j++)
506 fill_cfd_frame(cf, i, len, src[j], 0);
508 /* PQ computation continuation */
509 if (flags & DMA_PREP_CONTINUE) {
510 if (src_cnt - save_src_cnt == 3) {
512 p[save_src_cnt + 1] = 0;
513 p[save_src_cnt + 2] = 1;
514 fill_cfd_frame(cf, i++, len, dest[0], 0);
515 fill_cfd_frame(cf, i++, len, dest[1], 0);
516 fill_cfd_frame(cf, i++, len, dest[1], 0);
518 dev_err(re_chan->dev, "PQ tx continuation error!\n");
523 /* Setting the final bit in the last source buffer frame in CFD */
524 cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
526 return &desc->async_tx;
530 * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
531 * command. Logic of this function will need to be modified once multipage
532 * support is added in Linux's MD/ASYNC Layer
534 static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy(
535 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
536 size_t len, unsigned long flags)
538 struct fsl_re_chan *re_chan;
539 struct fsl_re_desc *desc;
541 struct fsl_re_cmpnd_frame *cf;
542 struct fsl_re_move_cdb *move;
545 re_chan = container_of(chan, struct fsl_re_chan, chan);
547 if (len > FSL_RE_MAX_DATA_LEN) {
548 dev_err(re_chan->dev, "cp tx length is %lu, max length is %d\n",
549 len, FSL_RE_MAX_DATA_LEN);
553 desc = fsl_re_chan_alloc_desc(re_chan, flags);
557 /* Filling move CDB */
558 cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
559 cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
560 cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
561 cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
563 move = desc->cdb_addr;
566 /* Filling frame 0 of CFD with move CDB */
568 fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0);
570 length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN);
572 /* Fill CFD's 1st frame with dest buffer */
573 fill_cfd_frame(cf, 1, length, dest, 0);
575 /* Fill CFD's 2nd frame with src buffer */
576 fill_cfd_frame(cf, 2, length, src, 1);
578 return &desc->async_tx;
581 static int fsl_re_alloc_chan_resources(struct dma_chan *chan)
583 struct fsl_re_chan *re_chan;
584 struct fsl_re_desc *desc;
589 re_chan = container_of(chan, struct fsl_re_chan, chan);
590 for (i = 0; i < FSL_RE_MIN_DESCS; i++) {
591 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
595 cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL,
602 INIT_LIST_HEAD(&desc->node);
603 fsl_re_init_desc(re_chan, desc, cf, paddr);
605 list_add_tail(&desc->node, &re_chan->free_q);
606 re_chan->alloc_count++;
608 return re_chan->alloc_count;
611 static void fsl_re_free_chan_resources(struct dma_chan *chan)
613 struct fsl_re_chan *re_chan;
614 struct fsl_re_desc *desc;
616 re_chan = container_of(chan, struct fsl_re_chan, chan);
617 while (re_chan->alloc_count--) {
618 desc = list_first_entry(&re_chan->free_q,
622 list_del(&desc->node);
623 dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr,
628 if (!list_empty(&re_chan->free_q))
629 dev_err(re_chan->dev, "chan resource cannot be cleaned!\n");
632 static int fsl_re_chan_probe(struct platform_device *ofdev,
633 struct device_node *np, u8 q, u32 off)
635 struct device *dev, *chandev;
636 struct fsl_re_drv_private *re_priv;
637 struct fsl_re_chan *chan;
638 struct dma_device *dma_dev;
642 struct platform_device *chan_ofdev;
645 re_priv = dev_get_drvdata(dev);
646 dma_dev = &re_priv->dma_dev;
648 chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
652 /* create platform device for chan node */
653 chan_ofdev = of_platform_device_create(np, NULL, dev);
655 dev_err(dev, "Not able to create ofdev for jr %d\n", q);
660 /* read reg property from dts */
661 rc = of_property_read_u32(np, "reg", &ptr);
663 dev_err(dev, "Reg property not found in jr %d\n", q);
668 chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs +
671 /* read irq property from dts */
672 chan->irq = irq_of_parse_and_map(np, 0);
673 if (chan->irq == NO_IRQ) {
674 dev_err(dev, "No IRQ defined for JR %d\n", q);
679 snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q);
681 chandev = &chan_ofdev->dev;
682 tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev);
684 ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev);
686 dev_err(dev, "Unable to register interrupt for JR %d\n", q);
691 re_priv->re_jrs[q] = chan;
692 chan->chan.device = dma_dev;
693 chan->chan.private = chan;
695 chan->re_dev = re_priv;
697 spin_lock_init(&chan->desc_lock);
698 INIT_LIST_HEAD(&chan->ack_q);
699 INIT_LIST_HEAD(&chan->active_q);
700 INIT_LIST_HEAD(&chan->submit_q);
701 INIT_LIST_HEAD(&chan->free_q);
703 chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
704 GFP_KERNEL, &chan->inb_phys_addr);
705 if (!chan->inb_ring_virt_addr) {
706 dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
711 chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
712 GFP_KERNEL, &chan->oub_phys_addr);
713 if (!chan->oub_ring_virt_addr) {
714 dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
719 /* Program the Inbound/Outbound ring base addresses and size */
720 out_be32(&chan->jrregs->inbring_base_h,
721 chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK);
722 out_be32(&chan->jrregs->oubring_base_h,
723 chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK);
724 out_be32(&chan->jrregs->inbring_base_l,
725 chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
726 out_be32(&chan->jrregs->oubring_base_l,
727 chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
728 out_be32(&chan->jrregs->inbring_size,
729 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
730 out_be32(&chan->jrregs->oubring_size,
731 FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
733 /* Read LIODN value from u-boot */
734 status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK;
736 /* Program the CFG reg */
737 out_be32(&chan->jrregs->jr_config_1,
738 FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status);
740 dev_set_drvdata(chandev, chan);
743 out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE);
748 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
749 chan->inb_phys_addr);
754 /* Probe function for RAID Engine */
755 static int fsl_re_probe(struct platform_device *ofdev)
757 struct fsl_re_drv_private *re_priv;
758 struct device_node *np;
759 struct device_node *child;
762 struct dma_device *dma_dev;
763 struct resource *res;
765 struct device *dev = &ofdev->dev;
767 re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL);
771 res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
775 /* IOMAP the entire RAID Engine region */
776 re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
777 if (!re_priv->re_regs)
780 /* Program the RE mode */
781 out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE);
783 /* Program Galois Field polynomial */
784 out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY);
786 dev_info(dev, "version %x, mode %x, gfp %x\n",
787 in_be32(&re_priv->re_regs->re_version_id),
788 in_be32(&re_priv->re_regs->global_config),
789 in_be32(&re_priv->re_regs->galois_field_config));
791 dma_dev = &re_priv->dma_dev;
793 INIT_LIST_HEAD(&dma_dev->channels);
794 dma_set_mask(dev, DMA_BIT_MASK(40));
796 dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources;
797 dma_dev->device_tx_status = fsl_re_tx_status;
798 dma_dev->device_issue_pending = fsl_re_issue_pending;
800 dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS;
801 dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor;
802 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
804 dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS;
805 dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq;
806 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
808 dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy;
809 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
811 dma_dev->device_free_chan_resources = fsl_re_free_chan_resources;
813 re_priv->total_chans = 0;
815 re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev,
817 FSL_RE_CF_CDB_ALIGN, 0);
819 if (!re_priv->cf_desc_pool) {
820 dev_err(dev, "No memory for fsl re_cf desc pool\n");
824 re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev,
825 sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE,
826 FSL_RE_FRAME_ALIGN, 0);
827 if (!re_priv->hw_desc_pool) {
828 dev_err(dev, "No memory for fsl re_hw desc pool\n");
832 dev_set_drvdata(dev, re_priv);
834 /* Parse Device tree to find out the total number of JQs present */
835 for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
836 rc = of_property_read_u32(np, "reg", &off);
838 dev_err(dev, "Reg property not found in JQ node\n");
841 /* Find out the Job Rings present under each JQ */
842 for_each_child_of_node(np, child) {
843 rc = of_device_is_compatible(child,
844 "fsl,raideng-v1.0-job-ring");
846 fsl_re_chan_probe(ofdev, child, ridx++, off);
847 re_priv->total_chans++;
852 dma_async_device_register(dma_dev);
857 static void fsl_re_remove_chan(struct fsl_re_chan *chan)
859 dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
860 chan->inb_phys_addr);
862 dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr,
863 chan->oub_phys_addr);
866 static int fsl_re_remove(struct platform_device *ofdev)
868 struct fsl_re_drv_private *re_priv;
873 re_priv = dev_get_drvdata(dev);
875 /* Cleanup chan related memory areas */
876 for (i = 0; i < re_priv->total_chans; i++)
877 fsl_re_remove_chan(re_priv->re_jrs[i]);
879 /* Unregister the driver */
880 dma_async_device_unregister(&re_priv->dma_dev);
885 static struct of_device_id fsl_re_ids[] = {
886 { .compatible = "fsl,raideng-v1.0", },
890 static struct platform_driver fsl_re_driver = {
892 .name = "fsl-raideng",
893 .owner = THIS_MODULE,
894 .of_match_table = fsl_re_ids,
896 .probe = fsl_re_probe,
897 .remove = fsl_re_remove,
900 module_platform_driver(fsl_re_driver);
902 MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
903 MODULE_LICENSE("GPL v2");
904 MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");