]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/dma/imx-sdma.c
drm/amdgpu/gmc8: skip MC ucode loading on SR-IOV capable boards
[karo-tx-linux.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_address.h>
39 #include <linux/of_device.h>
40 #include <linux/of_dma.h>
41
42 #include <asm/irq.h>
43 #include <linux/platform_data/dma-imx-sdma.h>
44 #include <linux/platform_data/dma-imx.h>
45 #include <linux/regmap.h>
46 #include <linux/mfd/syscon.h>
47 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
48
49 #include "dmaengine.h"
50
51 /* SDMA registers */
52 #define SDMA_H_C0PTR            0x000
53 #define SDMA_H_INTR             0x004
54 #define SDMA_H_STATSTOP         0x008
55 #define SDMA_H_START            0x00c
56 #define SDMA_H_EVTOVR           0x010
57 #define SDMA_H_DSPOVR           0x014
58 #define SDMA_H_HOSTOVR          0x018
59 #define SDMA_H_EVTPEND          0x01c
60 #define SDMA_H_DSPENBL          0x020
61 #define SDMA_H_RESET            0x024
62 #define SDMA_H_EVTERR           0x028
63 #define SDMA_H_INTRMSK          0x02c
64 #define SDMA_H_PSW              0x030
65 #define SDMA_H_EVTERRDBG        0x034
66 #define SDMA_H_CONFIG           0x038
67 #define SDMA_ONCE_ENB           0x040
68 #define SDMA_ONCE_DATA          0x044
69 #define SDMA_ONCE_INSTR         0x048
70 #define SDMA_ONCE_STAT          0x04c
71 #define SDMA_ONCE_CMD           0x050
72 #define SDMA_EVT_MIRROR         0x054
73 #define SDMA_ILLINSTADDR        0x058
74 #define SDMA_CHN0ADDR           0x05c
75 #define SDMA_ONCE_RTB           0x060
76 #define SDMA_XTRIG_CONF1        0x070
77 #define SDMA_XTRIG_CONF2        0x074
78 #define SDMA_CHNENBL0_IMX35     0x200
79 #define SDMA_CHNENBL0_IMX31     0x080
80 #define SDMA_CHNPRI_0           0x100
81
82 /*
83  * Buffer descriptor status values.
84  */
85 #define BD_DONE  0x01
86 #define BD_WRAP  0x02
87 #define BD_CONT  0x04
88 #define BD_INTR  0x08
89 #define BD_RROR  0x10
90 #define BD_LAST  0x20
91 #define BD_EXTD  0x80
92
93 /*
94  * Data Node descriptor status values.
95  */
96 #define DND_END_OF_FRAME  0x80
97 #define DND_END_OF_XFER   0x40
98 #define DND_DONE          0x20
99 #define DND_UNUSED        0x01
100
101 /*
102  * IPCV2 descriptor status values.
103  */
104 #define BD_IPCV2_END_OF_FRAME  0x40
105
106 #define IPCV2_MAX_NODES        50
107 /*
108  * Error bit set in the CCB status field by the SDMA,
109  * in setbd routine, in case of a transfer error
110  */
111 #define DATA_ERROR  0x10000000
112
113 /*
114  * Buffer descriptor commands.
115  */
116 #define C0_ADDR             0x01
117 #define C0_LOAD             0x02
118 #define C0_DUMP             0x03
119 #define C0_SETCTX           0x07
120 #define C0_GETCTX           0x03
121 #define C0_SETDM            0x01
122 #define C0_SETPM            0x04
123 #define C0_GETDM            0x02
124 #define C0_GETPM            0x08
125 /*
126  * Change endianness indicator in the BD command field
127  */
128 #define CHANGE_ENDIANNESS   0x80
129
130 /*
131  *  p_2_p watermark_level description
132  *      Bits            Name                    Description
133  *      0-7             Lower WML               Lower watermark level
134  *      8               PS                      1: Pad Swallowing
135  *                                              0: No Pad Swallowing
136  *      9               PA                      1: Pad Adding
137  *                                              0: No Pad Adding
138  *      10              SPDIF                   If this bit is set both source
139  *                                              and destination are on SPBA
140  *      11              Source Bit(SP)          1: Source on SPBA
141  *                                              0: Source on AIPS
142  *      12              Destination Bit(DP)     1: Destination on SPBA
143  *                                              0: Destination on AIPS
144  *      13-15           ---------               MUST BE 0
145  *      16-23           Higher WML              HWML
146  *      24-27           N                       Total number of samples after
147  *                                              which Pad adding/Swallowing
148  *                                              must be done. It must be odd.
149  *      28              Lower WML Event(LWE)    SDMA events reg to check for
150  *                                              LWML event mask
151  *                                              0: LWE in EVENTS register
152  *                                              1: LWE in EVENTS2 register
153  *      29              Higher WML Event(HWE)   SDMA events reg to check for
154  *                                              HWML event mask
155  *                                              0: HWE in EVENTS register
156  *                                              1: HWE in EVENTS2 register
157  *      30              ---------               MUST BE 0
158  *      31              CONT                    1: Amount of samples to be
159  *                                              transferred is unknown and
160  *                                              script will keep on
161  *                                              transferring samples as long as
162  *                                              both events are detected and
163  *                                              script must be manually stopped
164  *                                              by the application
165  *                                              0: The amount of samples to be
166  *                                              transferred is equal to the
167  *                                              count field of mode word
168  */
169 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
170 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
171 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
172 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
173 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
174 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
175 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
176 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
177 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
178 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
179
180 /*
181  * Mode/Count of data node descriptors - IPCv2
182  */
183 struct sdma_mode_count {
184         u32 count   : 16; /* size of the buffer pointed by this BD */
185         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
186         u32 command :  8; /* command mostlky used for channel 0 */
187 };
188
189 /*
190  * Buffer descriptor
191  */
192 struct sdma_buffer_descriptor {
193         struct sdma_mode_count  mode;
194         u32 buffer_addr;        /* address of the buffer described */
195         u32 ext_buffer_addr;    /* extended buffer address */
196 } __attribute__ ((packed));
197
198 /**
199  * struct sdma_channel_control - Channel control Block
200  *
201  * @current_bd_ptr      current buffer descriptor processed
202  * @base_bd_ptr         first element of buffer descriptor array
203  * @unused              padding. The SDMA engine expects an array of 128 byte
204  *                      control blocks
205  */
206 struct sdma_channel_control {
207         u32 current_bd_ptr;
208         u32 base_bd_ptr;
209         u32 unused[2];
210 } __attribute__ ((packed));
211
212 /**
213  * struct sdma_state_registers - SDMA context for a channel
214  *
215  * @pc:         program counter
216  * @t:          test bit: status of arithmetic & test instruction
217  * @rpc:        return program counter
218  * @sf:         source fault while loading data
219  * @spc:        loop start program counter
220  * @df:         destination fault while storing data
221  * @epc:        loop end program counter
222  * @lm:         loop mode
223  */
224 struct sdma_state_registers {
225         u32 pc     :14;
226         u32 unused1: 1;
227         u32 t      : 1;
228         u32 rpc    :14;
229         u32 unused0: 1;
230         u32 sf     : 1;
231         u32 spc    :14;
232         u32 unused2: 1;
233         u32 df     : 1;
234         u32 epc    :14;
235         u32 lm     : 2;
236 } __attribute__ ((packed));
237
238 /**
239  * struct sdma_context_data - sdma context specific to a channel
240  *
241  * @channel_state:      channel state bits
242  * @gReg:               general registers
243  * @mda:                burst dma destination address register
244  * @msa:                burst dma source address register
245  * @ms:                 burst dma status register
246  * @md:                 burst dma data register
247  * @pda:                peripheral dma destination address register
248  * @psa:                peripheral dma source address register
249  * @ps:                 peripheral dma status register
250  * @pd:                 peripheral dma data register
251  * @ca:                 CRC polynomial register
252  * @cs:                 CRC accumulator register
253  * @dda:                dedicated core destination address register
254  * @dsa:                dedicated core source address register
255  * @ds:                 dedicated core status register
256  * @dd:                 dedicated core data register
257  */
258 struct sdma_context_data {
259         struct sdma_state_registers  channel_state;
260         u32  gReg[8];
261         u32  mda;
262         u32  msa;
263         u32  ms;
264         u32  md;
265         u32  pda;
266         u32  psa;
267         u32  ps;
268         u32  pd;
269         u32  ca;
270         u32  cs;
271         u32  dda;
272         u32  dsa;
273         u32  ds;
274         u32  dd;
275         u32  scratch0;
276         u32  scratch1;
277         u32  scratch2;
278         u32  scratch3;
279         u32  scratch4;
280         u32  scratch5;
281         u32  scratch6;
282         u32  scratch7;
283 } __attribute__ ((packed));
284
285 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
286
287 struct sdma_engine;
288
289 /**
290  * struct sdma_channel - housekeeping for a SDMA channel
291  *
292  * @sdma                pointer to the SDMA engine for this channel
293  * @channel             the channel number, matches dmaengine chan_id + 1
294  * @direction           transfer type. Needed for setting SDMA script
295  * @peripheral_type     Peripheral type. Needed for setting SDMA script
296  * @event_id0           aka dma request line
297  * @event_id1           for channels that use 2 events
298  * @word_size           peripheral access size
299  * @buf_tail            ID of the buffer that was processed
300  * @num_bd              max NUM_BD. number of descriptors currently handling
301  */
302 struct sdma_channel {
303         struct sdma_engine              *sdma;
304         unsigned int                    channel;
305         enum dma_transfer_direction             direction;
306         enum sdma_peripheral_type       peripheral_type;
307         unsigned int                    event_id0;
308         unsigned int                    event_id1;
309         enum dma_slave_buswidth         word_size;
310         unsigned int                    buf_tail;
311         unsigned int                    num_bd;
312         unsigned int                    period_len;
313         struct sdma_buffer_descriptor   *bd;
314         dma_addr_t                      bd_phys;
315         unsigned int                    pc_from_device, pc_to_device;
316         unsigned int                    device_to_device;
317         unsigned long                   flags;
318         dma_addr_t                      per_address, per_address2;
319         unsigned long                   event_mask[2];
320         unsigned long                   watermark_level;
321         u32                             shp_addr, per_addr;
322         struct dma_chan                 chan;
323         spinlock_t                      lock;
324         struct dma_async_tx_descriptor  desc;
325         enum dma_status                 status;
326         unsigned int                    chn_count;
327         unsigned int                    chn_real_count;
328         struct tasklet_struct           tasklet;
329         struct imx_dma_data             data;
330 };
331
332 #define IMX_DMA_SG_LOOP         BIT(0)
333
334 #define MAX_DMA_CHANNELS 32
335 #define MXC_SDMA_DEFAULT_PRIORITY 1
336 #define MXC_SDMA_MIN_PRIORITY 1
337 #define MXC_SDMA_MAX_PRIORITY 7
338
339 #define SDMA_FIRMWARE_MAGIC 0x414d4453
340
341 /**
342  * struct sdma_firmware_header - Layout of the firmware image
343  *
344  * @magic               "SDMA"
345  * @version_major       increased whenever layout of struct sdma_script_start_addrs
346  *                      changes.
347  * @version_minor       firmware minor version (for binary compatible changes)
348  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
349  * @num_script_addrs    Number of script addresses in this image
350  * @ram_code_start      offset of SDMA ram image in this firmware image
351  * @ram_code_size       size of SDMA ram image
352  * @script_addrs        Stores the start address of the SDMA scripts
353  *                      (in SDMA memory space)
354  */
355 struct sdma_firmware_header {
356         u32     magic;
357         u32     version_major;
358         u32     version_minor;
359         u32     script_addrs_start;
360         u32     num_script_addrs;
361         u32     ram_code_start;
362         u32     ram_code_size;
363 };
364
365 struct sdma_driver_data {
366         int chnenbl0;
367         int num_events;
368         struct sdma_script_start_addrs  *script_addrs;
369 };
370
371 struct sdma_engine {
372         struct device                   *dev;
373         struct device_dma_parameters    dma_parms;
374         struct sdma_channel             channel[MAX_DMA_CHANNELS];
375         struct sdma_channel_control     *channel_control;
376         void __iomem                    *regs;
377         struct sdma_context_data        *context;
378         dma_addr_t                      context_phys;
379         struct dma_device               dma_device;
380         struct clk                      *clk_ipg;
381         struct clk                      *clk_ahb;
382         spinlock_t                      channel_0_lock;
383         u32                             script_number;
384         struct sdma_script_start_addrs  *script_addrs;
385         const struct sdma_driver_data   *drvdata;
386         u32                             spba_start_addr;
387         u32                             spba_end_addr;
388 };
389
390 static struct sdma_driver_data sdma_imx31 = {
391         .chnenbl0 = SDMA_CHNENBL0_IMX31,
392         .num_events = 32,
393 };
394
395 static struct sdma_script_start_addrs sdma_script_imx25 = {
396         .ap_2_ap_addr = 729,
397         .uart_2_mcu_addr = 904,
398         .per_2_app_addr = 1255,
399         .mcu_2_app_addr = 834,
400         .uartsh_2_mcu_addr = 1120,
401         .per_2_shp_addr = 1329,
402         .mcu_2_shp_addr = 1048,
403         .ata_2_mcu_addr = 1560,
404         .mcu_2_ata_addr = 1479,
405         .app_2_per_addr = 1189,
406         .app_2_mcu_addr = 770,
407         .shp_2_per_addr = 1407,
408         .shp_2_mcu_addr = 979,
409 };
410
411 static struct sdma_driver_data sdma_imx25 = {
412         .chnenbl0 = SDMA_CHNENBL0_IMX35,
413         .num_events = 48,
414         .script_addrs = &sdma_script_imx25,
415 };
416
417 static struct sdma_driver_data sdma_imx35 = {
418         .chnenbl0 = SDMA_CHNENBL0_IMX35,
419         .num_events = 48,
420 };
421
422 static struct sdma_script_start_addrs sdma_script_imx51 = {
423         .ap_2_ap_addr = 642,
424         .uart_2_mcu_addr = 817,
425         .mcu_2_app_addr = 747,
426         .mcu_2_shp_addr = 961,
427         .ata_2_mcu_addr = 1473,
428         .mcu_2_ata_addr = 1392,
429         .app_2_per_addr = 1033,
430         .app_2_mcu_addr = 683,
431         .shp_2_per_addr = 1251,
432         .shp_2_mcu_addr = 892,
433 };
434
435 static struct sdma_driver_data sdma_imx51 = {
436         .chnenbl0 = SDMA_CHNENBL0_IMX35,
437         .num_events = 48,
438         .script_addrs = &sdma_script_imx51,
439 };
440
441 static struct sdma_script_start_addrs sdma_script_imx53 = {
442         .ap_2_ap_addr = 642,
443         .app_2_mcu_addr = 683,
444         .mcu_2_app_addr = 747,
445         .uart_2_mcu_addr = 817,
446         .shp_2_mcu_addr = 891,
447         .mcu_2_shp_addr = 960,
448         .uartsh_2_mcu_addr = 1032,
449         .spdif_2_mcu_addr = 1100,
450         .mcu_2_spdif_addr = 1134,
451         .firi_2_mcu_addr = 1193,
452         .mcu_2_firi_addr = 1290,
453 };
454
455 static struct sdma_driver_data sdma_imx53 = {
456         .chnenbl0 = SDMA_CHNENBL0_IMX35,
457         .num_events = 48,
458         .script_addrs = &sdma_script_imx53,
459 };
460
461 static struct sdma_script_start_addrs sdma_script_imx6q = {
462         .ap_2_ap_addr = 642,
463         .uart_2_mcu_addr = 817,
464         .mcu_2_app_addr = 747,
465         .per_2_per_addr = 6331,
466         .uartsh_2_mcu_addr = 1032,
467         .mcu_2_shp_addr = 960,
468         .app_2_mcu_addr = 683,
469         .shp_2_mcu_addr = 891,
470         .spdif_2_mcu_addr = 1100,
471         .mcu_2_spdif_addr = 1134,
472 };
473
474 static struct sdma_driver_data sdma_imx6q = {
475         .chnenbl0 = SDMA_CHNENBL0_IMX35,
476         .num_events = 48,
477         .script_addrs = &sdma_script_imx6q,
478 };
479
480 static const struct platform_device_id sdma_devtypes[] = {
481         {
482                 .name = "imx25-sdma",
483                 .driver_data = (unsigned long)&sdma_imx25,
484         }, {
485                 .name = "imx31-sdma",
486                 .driver_data = (unsigned long)&sdma_imx31,
487         }, {
488                 .name = "imx35-sdma",
489                 .driver_data = (unsigned long)&sdma_imx35,
490         }, {
491                 .name = "imx51-sdma",
492                 .driver_data = (unsigned long)&sdma_imx51,
493         }, {
494                 .name = "imx53-sdma",
495                 .driver_data = (unsigned long)&sdma_imx53,
496         }, {
497                 .name = "imx6q-sdma",
498                 .driver_data = (unsigned long)&sdma_imx6q,
499         }, {
500                 /* sentinel */
501         }
502 };
503 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
504
505 static const struct of_device_id sdma_dt_ids[] = {
506         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
507         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
508         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
509         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
510         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
511         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
512         { /* sentinel */ }
513 };
514 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
515
516 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
517 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
518 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
519 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
520
521 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
522 {
523         u32 chnenbl0 = sdma->drvdata->chnenbl0;
524         return chnenbl0 + event * 4;
525 }
526
527 static int sdma_config_ownership(struct sdma_channel *sdmac,
528                 bool event_override, bool mcu_override, bool dsp_override)
529 {
530         struct sdma_engine *sdma = sdmac->sdma;
531         int channel = sdmac->channel;
532         unsigned long evt, mcu, dsp;
533
534         if (event_override && mcu_override && dsp_override)
535                 return -EINVAL;
536
537         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
538         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
539         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
540
541         if (dsp_override)
542                 __clear_bit(channel, &dsp);
543         else
544                 __set_bit(channel, &dsp);
545
546         if (event_override)
547                 __clear_bit(channel, &evt);
548         else
549                 __set_bit(channel, &evt);
550
551         if (mcu_override)
552                 __clear_bit(channel, &mcu);
553         else
554                 __set_bit(channel, &mcu);
555
556         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
557         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
558         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
559
560         return 0;
561 }
562
563 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
564 {
565         writel(BIT(channel), sdma->regs + SDMA_H_START);
566 }
567
568 /*
569  * sdma_run_channel0 - run a channel and wait till it's done
570  */
571 static int sdma_run_channel0(struct sdma_engine *sdma)
572 {
573         int ret;
574         unsigned long timeout = 500;
575
576         sdma_enable_channel(sdma, 0);
577
578         while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
579                 if (timeout-- <= 0)
580                         break;
581                 udelay(1);
582         }
583
584         if (ret) {
585                 /* Clear the interrupt status */
586                 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
587         } else {
588                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
589         }
590
591         /* Set bits of CONFIG register with dynamic context switching */
592         if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
593                 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
594
595         return ret ? 0 : -ETIMEDOUT;
596 }
597
598 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
599                 u32 address)
600 {
601         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
602         void *buf_virt;
603         dma_addr_t buf_phys;
604         int ret;
605         unsigned long flags;
606
607         buf_virt = dma_alloc_coherent(NULL,
608                         size,
609                         &buf_phys, GFP_KERNEL);
610         if (!buf_virt) {
611                 return -ENOMEM;
612         }
613
614         spin_lock_irqsave(&sdma->channel_0_lock, flags);
615
616         bd0->mode.command = C0_SETPM;
617         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
618         bd0->mode.count = size / 2;
619         bd0->buffer_addr = buf_phys;
620         bd0->ext_buffer_addr = address;
621
622         memcpy(buf_virt, buf, size);
623
624         ret = sdma_run_channel0(sdma);
625
626         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
627
628         dma_free_coherent(NULL, size, buf_virt, buf_phys);
629
630         return ret;
631 }
632
633 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
634 {
635         struct sdma_engine *sdma = sdmac->sdma;
636         int channel = sdmac->channel;
637         unsigned long val;
638         u32 chnenbl = chnenbl_ofs(sdma, event);
639
640         val = readl_relaxed(sdma->regs + chnenbl);
641         __set_bit(channel, &val);
642         writel_relaxed(val, sdma->regs + chnenbl);
643 }
644
645 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
646 {
647         struct sdma_engine *sdma = sdmac->sdma;
648         int channel = sdmac->channel;
649         u32 chnenbl = chnenbl_ofs(sdma, event);
650         unsigned long val;
651
652         val = readl_relaxed(sdma->regs + chnenbl);
653         __clear_bit(channel, &val);
654         writel_relaxed(val, sdma->regs + chnenbl);
655 }
656
657 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
658 {
659         if (sdmac->desc.callback)
660                 sdmac->desc.callback(sdmac->desc.callback_param);
661 }
662
663 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
664 {
665         struct sdma_buffer_descriptor *bd;
666
667         /*
668          * loop mode. Iterate over descriptors, re-setup them and
669          * call callback function.
670          */
671         while (1) {
672                 bd = &sdmac->bd[sdmac->buf_tail];
673
674                 if (bd->mode.status & BD_DONE)
675                         break;
676
677                 if (bd->mode.status & BD_RROR)
678                         sdmac->status = DMA_ERROR;
679
680                 bd->mode.status |= BD_DONE;
681                 sdmac->buf_tail++;
682                 sdmac->buf_tail %= sdmac->num_bd;
683         }
684 }
685
686 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
687 {
688         struct sdma_buffer_descriptor *bd;
689         int i, error = 0;
690
691         sdmac->chn_real_count = 0;
692         /*
693          * non loop mode. Iterate over all descriptors, collect
694          * errors and call callback function
695          */
696         for (i = 0; i < sdmac->num_bd; i++) {
697                 bd = &sdmac->bd[i];
698
699                  if (bd->mode.status & (BD_DONE | BD_RROR))
700                         error = -EIO;
701                  sdmac->chn_real_count += bd->mode.count;
702         }
703
704         if (error)
705                 sdmac->status = DMA_ERROR;
706         else
707                 sdmac->status = DMA_COMPLETE;
708
709         dma_cookie_complete(&sdmac->desc);
710         if (sdmac->desc.callback)
711                 sdmac->desc.callback(sdmac->desc.callback_param);
712 }
713
714 static void sdma_tasklet(unsigned long data)
715 {
716         struct sdma_channel *sdmac = (struct sdma_channel *) data;
717
718         if (sdmac->flags & IMX_DMA_SG_LOOP)
719                 sdma_handle_channel_loop(sdmac);
720         else
721                 mxc_sdma_handle_channel_normal(sdmac);
722 }
723
724 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
725 {
726         struct sdma_engine *sdma = dev_id;
727         unsigned long stat;
728
729         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
730         /* not interested in channel 0 interrupts */
731         stat &= ~1;
732         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
733
734         while (stat) {
735                 int channel = fls(stat) - 1;
736                 struct sdma_channel *sdmac = &sdma->channel[channel];
737
738                 if (sdmac->flags & IMX_DMA_SG_LOOP)
739                         sdma_update_channel_loop(sdmac);
740
741                 tasklet_schedule(&sdmac->tasklet);
742
743                 __clear_bit(channel, &stat);
744         }
745
746         return IRQ_HANDLED;
747 }
748
749 /*
750  * sets the pc of SDMA script according to the peripheral type
751  */
752 static void sdma_get_pc(struct sdma_channel *sdmac,
753                 enum sdma_peripheral_type peripheral_type)
754 {
755         struct sdma_engine *sdma = sdmac->sdma;
756         int per_2_emi = 0, emi_2_per = 0;
757         /*
758          * These are needed once we start to support transfers between
759          * two peripherals or memory-to-memory transfers
760          */
761         int per_2_per = 0, emi_2_emi = 0;
762
763         sdmac->pc_from_device = 0;
764         sdmac->pc_to_device = 0;
765         sdmac->device_to_device = 0;
766
767         switch (peripheral_type) {
768         case IMX_DMATYPE_MEMORY:
769                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
770                 break;
771         case IMX_DMATYPE_DSP:
772                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
773                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
774                 break;
775         case IMX_DMATYPE_FIRI:
776                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
777                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
778                 break;
779         case IMX_DMATYPE_UART:
780                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
781                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
782                 break;
783         case IMX_DMATYPE_UART_SP:
784                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
785                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
786                 break;
787         case IMX_DMATYPE_ATA:
788                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
789                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
790                 break;
791         case IMX_DMATYPE_CSPI:
792         case IMX_DMATYPE_EXT:
793         case IMX_DMATYPE_SSI:
794         case IMX_DMATYPE_SAI:
795                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
796                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
797                 break;
798         case IMX_DMATYPE_SSI_DUAL:
799                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
800                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
801                 break;
802         case IMX_DMATYPE_SSI_SP:
803         case IMX_DMATYPE_MMC:
804         case IMX_DMATYPE_SDHC:
805         case IMX_DMATYPE_CSPI_SP:
806         case IMX_DMATYPE_ESAI:
807         case IMX_DMATYPE_MSHC_SP:
808                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
809                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
810                 break;
811         case IMX_DMATYPE_ASRC:
812                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
813                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
814                 per_2_per = sdma->script_addrs->per_2_per_addr;
815                 break;
816         case IMX_DMATYPE_ASRC_SP:
817                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
818                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
819                 per_2_per = sdma->script_addrs->per_2_per_addr;
820                 break;
821         case IMX_DMATYPE_MSHC:
822                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
823                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
824                 break;
825         case IMX_DMATYPE_CCM:
826                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
827                 break;
828         case IMX_DMATYPE_SPDIF:
829                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
830                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
831                 break;
832         case IMX_DMATYPE_IPU_MEMORY:
833                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
834                 break;
835         default:
836                 break;
837         }
838
839         sdmac->pc_from_device = per_2_emi;
840         sdmac->pc_to_device = emi_2_per;
841         sdmac->device_to_device = per_2_per;
842 }
843
844 static int sdma_load_context(struct sdma_channel *sdmac)
845 {
846         struct sdma_engine *sdma = sdmac->sdma;
847         int channel = sdmac->channel;
848         int load_address;
849         struct sdma_context_data *context = sdma->context;
850         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
851         int ret;
852         unsigned long flags;
853
854         if (sdmac->direction == DMA_DEV_TO_MEM)
855                 load_address = sdmac->pc_from_device;
856         else if (sdmac->direction == DMA_DEV_TO_DEV)
857                 load_address = sdmac->device_to_device;
858         else
859                 load_address = sdmac->pc_to_device;
860
861         if (load_address < 0)
862                 return load_address;
863
864         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
865         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
866         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
867         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
868         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
869         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
870
871         spin_lock_irqsave(&sdma->channel_0_lock, flags);
872
873         memset(context, 0, sizeof(*context));
874         context->channel_state.pc = load_address;
875
876         /* Send by context the event mask,base address for peripheral
877          * and watermark level
878          */
879         context->gReg[0] = sdmac->event_mask[1];
880         context->gReg[1] = sdmac->event_mask[0];
881         context->gReg[2] = sdmac->per_addr;
882         context->gReg[6] = sdmac->shp_addr;
883         context->gReg[7] = sdmac->watermark_level;
884
885         bd0->mode.command = C0_SETDM;
886         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
887         bd0->mode.count = sizeof(*context) / 4;
888         bd0->buffer_addr = sdma->context_phys;
889         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
890         ret = sdma_run_channel0(sdma);
891
892         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
893
894         return ret;
895 }
896
897 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
898 {
899         return container_of(chan, struct sdma_channel, chan);
900 }
901
902 static int sdma_disable_channel(struct dma_chan *chan)
903 {
904         struct sdma_channel *sdmac = to_sdma_chan(chan);
905         struct sdma_engine *sdma = sdmac->sdma;
906         int channel = sdmac->channel;
907
908         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
909         sdmac->status = DMA_ERROR;
910
911         return 0;
912 }
913
914 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
915 {
916         struct sdma_engine *sdma = sdmac->sdma;
917
918         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
919         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
920
921         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
922         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
923
924         if (sdmac->event_id0 > 31)
925                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
926
927         if (sdmac->event_id1 > 31)
928                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
929
930         /*
931          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
932          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
933          * r0(event_mask[1]) and r1(event_mask[0]).
934          */
935         if (lwml > hwml) {
936                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
937                                                 SDMA_WATERMARK_LEVEL_HWML);
938                 sdmac->watermark_level |= hwml;
939                 sdmac->watermark_level |= lwml << 16;
940                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
941         }
942
943         if (sdmac->per_address2 >= sdma->spba_start_addr &&
944                         sdmac->per_address2 <= sdma->spba_end_addr)
945                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
946
947         if (sdmac->per_address >= sdma->spba_start_addr &&
948                         sdmac->per_address <= sdma->spba_end_addr)
949                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
950
951         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
952 }
953
954 static int sdma_config_channel(struct dma_chan *chan)
955 {
956         struct sdma_channel *sdmac = to_sdma_chan(chan);
957         int ret;
958
959         sdma_disable_channel(chan);
960
961         sdmac->event_mask[0] = 0;
962         sdmac->event_mask[1] = 0;
963         sdmac->shp_addr = 0;
964         sdmac->per_addr = 0;
965
966         if (sdmac->event_id0) {
967                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
968                         return -EINVAL;
969                 sdma_event_enable(sdmac, sdmac->event_id0);
970         }
971
972         if (sdmac->event_id1) {
973                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
974                         return -EINVAL;
975                 sdma_event_enable(sdmac, sdmac->event_id1);
976         }
977
978         switch (sdmac->peripheral_type) {
979         case IMX_DMATYPE_DSP:
980                 sdma_config_ownership(sdmac, false, true, true);
981                 break;
982         case IMX_DMATYPE_MEMORY:
983                 sdma_config_ownership(sdmac, false, true, false);
984                 break;
985         default:
986                 sdma_config_ownership(sdmac, true, true, false);
987                 break;
988         }
989
990         sdma_get_pc(sdmac, sdmac->peripheral_type);
991
992         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
993                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
994                 /* Handle multiple event channels differently */
995                 if (sdmac->event_id1) {
996                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
997                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
998                                 sdma_set_watermarklevel_for_p2p(sdmac);
999                 } else
1000                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1001
1002                 /* Watermark Level */
1003                 sdmac->watermark_level |= sdmac->watermark_level;
1004                 /* Address */
1005                 sdmac->shp_addr = sdmac->per_address;
1006                 sdmac->per_addr = sdmac->per_address2;
1007         } else {
1008                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1009         }
1010
1011         ret = sdma_load_context(sdmac);
1012
1013         return ret;
1014 }
1015
1016 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1017                 unsigned int priority)
1018 {
1019         struct sdma_engine *sdma = sdmac->sdma;
1020         int channel = sdmac->channel;
1021
1022         if (priority < MXC_SDMA_MIN_PRIORITY
1023             || priority > MXC_SDMA_MAX_PRIORITY) {
1024                 return -EINVAL;
1025         }
1026
1027         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1028
1029         return 0;
1030 }
1031
1032 static int sdma_request_channel(struct sdma_channel *sdmac)
1033 {
1034         struct sdma_engine *sdma = sdmac->sdma;
1035         int channel = sdmac->channel;
1036         int ret = -EBUSY;
1037
1038         sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1039                                         GFP_KERNEL);
1040         if (!sdmac->bd) {
1041                 ret = -ENOMEM;
1042                 goto out;
1043         }
1044
1045         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1046         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1047
1048         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1049         return 0;
1050 out:
1051
1052         return ret;
1053 }
1054
1055 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1056 {
1057         unsigned long flags;
1058         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1059         dma_cookie_t cookie;
1060
1061         spin_lock_irqsave(&sdmac->lock, flags);
1062
1063         cookie = dma_cookie_assign(tx);
1064
1065         spin_unlock_irqrestore(&sdmac->lock, flags);
1066
1067         return cookie;
1068 }
1069
1070 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1071 {
1072         struct sdma_channel *sdmac = to_sdma_chan(chan);
1073         struct imx_dma_data *data = chan->private;
1074         int prio, ret;
1075
1076         if (!data)
1077                 return -EINVAL;
1078
1079         switch (data->priority) {
1080         case DMA_PRIO_HIGH:
1081                 prio = 3;
1082                 break;
1083         case DMA_PRIO_MEDIUM:
1084                 prio = 2;
1085                 break;
1086         case DMA_PRIO_LOW:
1087         default:
1088                 prio = 1;
1089                 break;
1090         }
1091
1092         sdmac->peripheral_type = data->peripheral_type;
1093         sdmac->event_id0 = data->dma_request;
1094         sdmac->event_id1 = data->dma_request2;
1095
1096         ret = clk_enable(sdmac->sdma->clk_ipg);
1097         if (ret)
1098                 return ret;
1099         ret = clk_enable(sdmac->sdma->clk_ahb);
1100         if (ret)
1101                 goto disable_clk_ipg;
1102
1103         ret = sdma_request_channel(sdmac);
1104         if (ret)
1105                 goto disable_clk_ahb;
1106
1107         ret = sdma_set_channel_priority(sdmac, prio);
1108         if (ret)
1109                 goto disable_clk_ahb;
1110
1111         dma_async_tx_descriptor_init(&sdmac->desc, chan);
1112         sdmac->desc.tx_submit = sdma_tx_submit;
1113         /* txd.flags will be overwritten in prep funcs */
1114         sdmac->desc.flags = DMA_CTRL_ACK;
1115
1116         return 0;
1117
1118 disable_clk_ahb:
1119         clk_disable(sdmac->sdma->clk_ahb);
1120 disable_clk_ipg:
1121         clk_disable(sdmac->sdma->clk_ipg);
1122         return ret;
1123 }
1124
1125 static void sdma_free_chan_resources(struct dma_chan *chan)
1126 {
1127         struct sdma_channel *sdmac = to_sdma_chan(chan);
1128         struct sdma_engine *sdma = sdmac->sdma;
1129
1130         sdma_disable_channel(chan);
1131
1132         if (sdmac->event_id0)
1133                 sdma_event_disable(sdmac, sdmac->event_id0);
1134         if (sdmac->event_id1)
1135                 sdma_event_disable(sdmac, sdmac->event_id1);
1136
1137         sdmac->event_id0 = 0;
1138         sdmac->event_id1 = 0;
1139
1140         sdma_set_channel_priority(sdmac, 0);
1141
1142         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1143
1144         clk_disable(sdma->clk_ipg);
1145         clk_disable(sdma->clk_ahb);
1146 }
1147
1148 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1149                 struct dma_chan *chan, struct scatterlist *sgl,
1150                 unsigned int sg_len, enum dma_transfer_direction direction,
1151                 unsigned long flags, void *context)
1152 {
1153         struct sdma_channel *sdmac = to_sdma_chan(chan);
1154         struct sdma_engine *sdma = sdmac->sdma;
1155         int ret, i, count;
1156         int channel = sdmac->channel;
1157         struct scatterlist *sg;
1158
1159         if (sdmac->status == DMA_IN_PROGRESS)
1160                 return NULL;
1161         sdmac->status = DMA_IN_PROGRESS;
1162
1163         sdmac->flags = 0;
1164
1165         sdmac->buf_tail = 0;
1166
1167         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1168                         sg_len, channel);
1169
1170         sdmac->direction = direction;
1171         ret = sdma_load_context(sdmac);
1172         if (ret)
1173                 goto err_out;
1174
1175         if (sg_len > NUM_BD) {
1176                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1177                                 channel, sg_len, NUM_BD);
1178                 ret = -EINVAL;
1179                 goto err_out;
1180         }
1181
1182         sdmac->chn_count = 0;
1183         for_each_sg(sgl, sg, sg_len, i) {
1184                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1185                 int param;
1186
1187                 bd->buffer_addr = sg->dma_address;
1188
1189                 count = sg_dma_len(sg);
1190
1191                 if (count > 0xffff) {
1192                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1193                                         channel, count, 0xffff);
1194                         ret = -EINVAL;
1195                         goto err_out;
1196                 }
1197
1198                 bd->mode.count = count;
1199                 sdmac->chn_count += count;
1200
1201                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1202                         ret =  -EINVAL;
1203                         goto err_out;
1204                 }
1205
1206                 switch (sdmac->word_size) {
1207                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1208                         bd->mode.command = 0;
1209                         if (count & 3 || sg->dma_address & 3)
1210                                 return NULL;
1211                         break;
1212                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1213                         bd->mode.command = 2;
1214                         if (count & 1 || sg->dma_address & 1)
1215                                 return NULL;
1216                         break;
1217                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1218                         bd->mode.command = 1;
1219                         break;
1220                 default:
1221                         return NULL;
1222                 }
1223
1224                 param = BD_DONE | BD_EXTD | BD_CONT;
1225
1226                 if (i + 1 == sg_len) {
1227                         param |= BD_INTR;
1228                         param |= BD_LAST;
1229                         param &= ~BD_CONT;
1230                 }
1231
1232                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1233                                 i, count, (u64)sg->dma_address,
1234                                 param & BD_WRAP ? "wrap" : "",
1235                                 param & BD_INTR ? " intr" : "");
1236
1237                 bd->mode.status = param;
1238         }
1239
1240         sdmac->num_bd = sg_len;
1241         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1242
1243         return &sdmac->desc;
1244 err_out:
1245         sdmac->status = DMA_ERROR;
1246         return NULL;
1247 }
1248
1249 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1250                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1251                 size_t period_len, enum dma_transfer_direction direction,
1252                 unsigned long flags)
1253 {
1254         struct sdma_channel *sdmac = to_sdma_chan(chan);
1255         struct sdma_engine *sdma = sdmac->sdma;
1256         int num_periods = buf_len / period_len;
1257         int channel = sdmac->channel;
1258         int ret, i = 0, buf = 0;
1259
1260         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1261
1262         if (sdmac->status == DMA_IN_PROGRESS)
1263                 return NULL;
1264
1265         sdmac->status = DMA_IN_PROGRESS;
1266
1267         sdmac->buf_tail = 0;
1268         sdmac->period_len = period_len;
1269
1270         sdmac->flags |= IMX_DMA_SG_LOOP;
1271         sdmac->direction = direction;
1272         ret = sdma_load_context(sdmac);
1273         if (ret)
1274                 goto err_out;
1275
1276         if (num_periods > NUM_BD) {
1277                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1278                                 channel, num_periods, NUM_BD);
1279                 goto err_out;
1280         }
1281
1282         if (period_len > 0xffff) {
1283                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1284                                 channel, period_len, 0xffff);
1285                 goto err_out;
1286         }
1287
1288         while (buf < buf_len) {
1289                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1290                 int param;
1291
1292                 bd->buffer_addr = dma_addr;
1293
1294                 bd->mode.count = period_len;
1295
1296                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1297                         goto err_out;
1298                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1299                         bd->mode.command = 0;
1300                 else
1301                         bd->mode.command = sdmac->word_size;
1302
1303                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1304                 if (i + 1 == num_periods)
1305                         param |= BD_WRAP;
1306
1307                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1308                                 i, period_len, (u64)dma_addr,
1309                                 param & BD_WRAP ? "wrap" : "",
1310                                 param & BD_INTR ? " intr" : "");
1311
1312                 bd->mode.status = param;
1313
1314                 dma_addr += period_len;
1315                 buf += period_len;
1316
1317                 i++;
1318         }
1319
1320         sdmac->num_bd = num_periods;
1321         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1322
1323         return &sdmac->desc;
1324 err_out:
1325         sdmac->status = DMA_ERROR;
1326         return NULL;
1327 }
1328
1329 static int sdma_config(struct dma_chan *chan,
1330                        struct dma_slave_config *dmaengine_cfg)
1331 {
1332         struct sdma_channel *sdmac = to_sdma_chan(chan);
1333
1334         if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1335                 sdmac->per_address = dmaengine_cfg->src_addr;
1336                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1337                         dmaengine_cfg->src_addr_width;
1338                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1339         } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1340                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1341                 sdmac->per_address = dmaengine_cfg->dst_addr;
1342                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1343                         SDMA_WATERMARK_LEVEL_LWML;
1344                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1345                         SDMA_WATERMARK_LEVEL_HWML;
1346                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1347         } else {
1348                 sdmac->per_address = dmaengine_cfg->dst_addr;
1349                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1350                         dmaengine_cfg->dst_addr_width;
1351                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1352         }
1353         sdmac->direction = dmaengine_cfg->direction;
1354         return sdma_config_channel(chan);
1355 }
1356
1357 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1358                                       dma_cookie_t cookie,
1359                                       struct dma_tx_state *txstate)
1360 {
1361         struct sdma_channel *sdmac = to_sdma_chan(chan);
1362         u32 residue;
1363
1364         if (sdmac->flags & IMX_DMA_SG_LOOP)
1365                 residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1366         else
1367                 residue = sdmac->chn_count - sdmac->chn_real_count;
1368
1369         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1370                          residue);
1371
1372         return sdmac->status;
1373 }
1374
1375 static void sdma_issue_pending(struct dma_chan *chan)
1376 {
1377         struct sdma_channel *sdmac = to_sdma_chan(chan);
1378         struct sdma_engine *sdma = sdmac->sdma;
1379
1380         if (sdmac->status == DMA_IN_PROGRESS)
1381                 sdma_enable_channel(sdma, sdmac->channel);
1382 }
1383
1384 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1385 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1386 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1387
1388 static void sdma_add_scripts(struct sdma_engine *sdma,
1389                 const struct sdma_script_start_addrs *addr)
1390 {
1391         s32 *addr_arr = (u32 *)addr;
1392         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1393         int i;
1394
1395         /* use the default firmware in ROM if missing external firmware */
1396         if (!sdma->script_number)
1397                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1398
1399         for (i = 0; i < sdma->script_number; i++)
1400                 if (addr_arr[i] > 0)
1401                         saddr_arr[i] = addr_arr[i];
1402 }
1403
1404 static void sdma_load_firmware(const struct firmware *fw, void *context)
1405 {
1406         struct sdma_engine *sdma = context;
1407         const struct sdma_firmware_header *header;
1408         const struct sdma_script_start_addrs *addr;
1409         unsigned short *ram_code;
1410
1411         if (!fw) {
1412                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1413                 /* In this case we just use the ROM firmware. */
1414                 return;
1415         }
1416
1417         if (fw->size < sizeof(*header))
1418                 goto err_firmware;
1419
1420         header = (struct sdma_firmware_header *)fw->data;
1421
1422         if (header->magic != SDMA_FIRMWARE_MAGIC)
1423                 goto err_firmware;
1424         if (header->ram_code_start + header->ram_code_size > fw->size)
1425                 goto err_firmware;
1426         switch (header->version_major) {
1427         case 1:
1428                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1429                 break;
1430         case 2:
1431                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1432                 break;
1433         case 3:
1434                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1435                 break;
1436         default:
1437                 dev_err(sdma->dev, "unknown firmware version\n");
1438                 goto err_firmware;
1439         }
1440
1441         addr = (void *)header + header->script_addrs_start;
1442         ram_code = (void *)header + header->ram_code_start;
1443
1444         clk_enable(sdma->clk_ipg);
1445         clk_enable(sdma->clk_ahb);
1446         /* download the RAM image for SDMA */
1447         sdma_load_script(sdma, ram_code,
1448                         header->ram_code_size,
1449                         addr->ram_code_start_addr);
1450         clk_disable(sdma->clk_ipg);
1451         clk_disable(sdma->clk_ahb);
1452
1453         sdma_add_scripts(sdma, addr);
1454
1455         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1456                         header->version_major,
1457                         header->version_minor);
1458
1459 err_firmware:
1460         release_firmware(fw);
1461 }
1462
1463 #define EVENT_REMAP_CELLS 3
1464
1465 static int sdma_event_remap(struct sdma_engine *sdma)
1466 {
1467         struct device_node *np = sdma->dev->of_node;
1468         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1469         struct property *event_remap;
1470         struct regmap *gpr;
1471         char propname[] = "fsl,sdma-event-remap";
1472         u32 reg, val, shift, num_map, i;
1473         int ret = 0;
1474
1475         if (IS_ERR(np) || IS_ERR(gpr_np))
1476                 goto out;
1477
1478         event_remap = of_find_property(np, propname, NULL);
1479         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1480         if (!num_map) {
1481                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1482                 goto out;
1483         } else if (num_map % EVENT_REMAP_CELLS) {
1484                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1485                                 propname, EVENT_REMAP_CELLS);
1486                 ret = -EINVAL;
1487                 goto out;
1488         }
1489
1490         gpr = syscon_node_to_regmap(gpr_np);
1491         if (IS_ERR(gpr)) {
1492                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1493                 ret = PTR_ERR(gpr);
1494                 goto out;
1495         }
1496
1497         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1498                 ret = of_property_read_u32_index(np, propname, i, &reg);
1499                 if (ret) {
1500                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1501                                         propname, i);
1502                         goto out;
1503                 }
1504
1505                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1506                 if (ret) {
1507                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1508                                         propname, i + 1);
1509                         goto out;
1510                 }
1511
1512                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1513                 if (ret) {
1514                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1515                                         propname, i + 2);
1516                         goto out;
1517                 }
1518
1519                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1520         }
1521
1522 out:
1523         if (!IS_ERR(gpr_np))
1524                 of_node_put(gpr_np);
1525
1526         return ret;
1527 }
1528
1529 static int sdma_get_firmware(struct sdma_engine *sdma,
1530                 const char *fw_name)
1531 {
1532         int ret;
1533
1534         ret = request_firmware_nowait(THIS_MODULE,
1535                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1536                         GFP_KERNEL, sdma, sdma_load_firmware);
1537
1538         return ret;
1539 }
1540
1541 static int sdma_init(struct sdma_engine *sdma)
1542 {
1543         int i, ret;
1544         dma_addr_t ccb_phys;
1545
1546         ret = clk_enable(sdma->clk_ipg);
1547         if (ret)
1548                 return ret;
1549         ret = clk_enable(sdma->clk_ahb);
1550         if (ret)
1551                 goto disable_clk_ipg;
1552
1553         /* Be sure SDMA has not started yet */
1554         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1555
1556         sdma->channel_control = dma_alloc_coherent(NULL,
1557                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1558                         sizeof(struct sdma_context_data),
1559                         &ccb_phys, GFP_KERNEL);
1560
1561         if (!sdma->channel_control) {
1562                 ret = -ENOMEM;
1563                 goto err_dma_alloc;
1564         }
1565
1566         sdma->context = (void *)sdma->channel_control +
1567                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1568         sdma->context_phys = ccb_phys +
1569                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1570
1571         /* Zero-out the CCB structures array just allocated */
1572         memset(sdma->channel_control, 0,
1573                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1574
1575         /* disable all channels */
1576         for (i = 0; i < sdma->drvdata->num_events; i++)
1577                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1578
1579         /* All channels have priority 0 */
1580         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1581                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1582
1583         ret = sdma_request_channel(&sdma->channel[0]);
1584         if (ret)
1585                 goto err_dma_alloc;
1586
1587         sdma_config_ownership(&sdma->channel[0], false, true, false);
1588
1589         /* Set Command Channel (Channel Zero) */
1590         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1591
1592         /* Set bits of CONFIG register but with static context switching */
1593         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1594         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1595
1596         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1597
1598         /* Initializes channel's priorities */
1599         sdma_set_channel_priority(&sdma->channel[0], 7);
1600
1601         clk_disable(sdma->clk_ipg);
1602         clk_disable(sdma->clk_ahb);
1603
1604         return 0;
1605
1606 err_dma_alloc:
1607         clk_disable(sdma->clk_ahb);
1608 disable_clk_ipg:
1609         clk_disable(sdma->clk_ipg);
1610         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1611         return ret;
1612 }
1613
1614 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1615 {
1616         struct sdma_channel *sdmac = to_sdma_chan(chan);
1617         struct imx_dma_data *data = fn_param;
1618
1619         if (!imx_dma_is_general_purpose(chan))
1620                 return false;
1621
1622         sdmac->data = *data;
1623         chan->private = &sdmac->data;
1624
1625         return true;
1626 }
1627
1628 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1629                                    struct of_dma *ofdma)
1630 {
1631         struct sdma_engine *sdma = ofdma->of_dma_data;
1632         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1633         struct imx_dma_data data;
1634
1635         if (dma_spec->args_count != 3)
1636                 return NULL;
1637
1638         data.dma_request = dma_spec->args[0];
1639         data.peripheral_type = dma_spec->args[1];
1640         data.priority = dma_spec->args[2];
1641         /*
1642          * init dma_request2 to zero, which is not used by the dts.
1643          * For P2P, dma_request2 is init from dma_request_channel(),
1644          * chan->private will point to the imx_dma_data, and in
1645          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1646          * be set to sdmac->event_id1.
1647          */
1648         data.dma_request2 = 0;
1649
1650         return dma_request_channel(mask, sdma_filter_fn, &data);
1651 }
1652
1653 static int sdma_probe(struct platform_device *pdev)
1654 {
1655         const struct of_device_id *of_id =
1656                         of_match_device(sdma_dt_ids, &pdev->dev);
1657         struct device_node *np = pdev->dev.of_node;
1658         struct device_node *spba_bus;
1659         const char *fw_name;
1660         int ret;
1661         int irq;
1662         struct resource *iores;
1663         struct resource spba_res;
1664         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1665         int i;
1666         struct sdma_engine *sdma;
1667         s32 *saddr_arr;
1668         const struct sdma_driver_data *drvdata = NULL;
1669
1670         if (of_id)
1671                 drvdata = of_id->data;
1672         else if (pdev->id_entry)
1673                 drvdata = (void *)pdev->id_entry->driver_data;
1674
1675         if (!drvdata) {
1676                 dev_err(&pdev->dev, "unable to find driver data\n");
1677                 return -EINVAL;
1678         }
1679
1680         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1681         if (ret)
1682                 return ret;
1683
1684         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1685         if (!sdma)
1686                 return -ENOMEM;
1687
1688         spin_lock_init(&sdma->channel_0_lock);
1689
1690         sdma->dev = &pdev->dev;
1691         sdma->drvdata = drvdata;
1692
1693         irq = platform_get_irq(pdev, 0);
1694         if (irq < 0)
1695                 return irq;
1696
1697         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1698         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1699         if (IS_ERR(sdma->regs))
1700                 return PTR_ERR(sdma->regs);
1701
1702         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1703         if (IS_ERR(sdma->clk_ipg))
1704                 return PTR_ERR(sdma->clk_ipg);
1705
1706         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1707         if (IS_ERR(sdma->clk_ahb))
1708                 return PTR_ERR(sdma->clk_ahb);
1709
1710         clk_prepare(sdma->clk_ipg);
1711         clk_prepare(sdma->clk_ahb);
1712
1713         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1714                                sdma);
1715         if (ret)
1716                 return ret;
1717
1718         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1719         if (!sdma->script_addrs)
1720                 return -ENOMEM;
1721
1722         /* initially no scripts available */
1723         saddr_arr = (s32 *)sdma->script_addrs;
1724         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1725                 saddr_arr[i] = -EINVAL;
1726
1727         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1728         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1729
1730         INIT_LIST_HEAD(&sdma->dma_device.channels);
1731         /* Initialize channel parameters */
1732         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1733                 struct sdma_channel *sdmac = &sdma->channel[i];
1734
1735                 sdmac->sdma = sdma;
1736                 spin_lock_init(&sdmac->lock);
1737
1738                 sdmac->chan.device = &sdma->dma_device;
1739                 dma_cookie_init(&sdmac->chan);
1740                 sdmac->channel = i;
1741
1742                 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1743                              (unsigned long) sdmac);
1744                 /*
1745                  * Add the channel to the DMAC list. Do not add channel 0 though
1746                  * because we need it internally in the SDMA driver. This also means
1747                  * that channel 0 in dmaengine counting matches sdma channel 1.
1748                  */
1749                 if (i)
1750                         list_add_tail(&sdmac->chan.device_node,
1751                                         &sdma->dma_device.channels);
1752         }
1753
1754         ret = sdma_init(sdma);
1755         if (ret)
1756                 goto err_init;
1757
1758         ret = sdma_event_remap(sdma);
1759         if (ret)
1760                 goto err_init;
1761
1762         if (sdma->drvdata->script_addrs)
1763                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1764         if (pdata && pdata->script_addrs)
1765                 sdma_add_scripts(sdma, pdata->script_addrs);
1766
1767         if (pdata) {
1768                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1769                 if (ret)
1770                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1771         } else {
1772                 /*
1773                  * Because that device tree does not encode ROM script address,
1774                  * the RAM script in firmware is mandatory for device tree
1775                  * probe, otherwise it fails.
1776                  */
1777                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1778                                               &fw_name);
1779                 if (ret)
1780                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1781                 else {
1782                         ret = sdma_get_firmware(sdma, fw_name);
1783                         if (ret)
1784                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1785                 }
1786         }
1787
1788         sdma->dma_device.dev = &pdev->dev;
1789
1790         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1791         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1792         sdma->dma_device.device_tx_status = sdma_tx_status;
1793         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1794         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1795         sdma->dma_device.device_config = sdma_config;
1796         sdma->dma_device.device_terminate_all = sdma_disable_channel;
1797         sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1798         sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1799         sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1800         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1801         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1802         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1803         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1804
1805         platform_set_drvdata(pdev, sdma);
1806
1807         ret = dma_async_device_register(&sdma->dma_device);
1808         if (ret) {
1809                 dev_err(&pdev->dev, "unable to register\n");
1810                 goto err_init;
1811         }
1812
1813         if (np) {
1814                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1815                 if (ret) {
1816                         dev_err(&pdev->dev, "failed to register controller\n");
1817                         goto err_register;
1818                 }
1819
1820                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1821                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1822                 if (!ret) {
1823                         sdma->spba_start_addr = spba_res.start;
1824                         sdma->spba_end_addr = spba_res.end;
1825                 }
1826                 of_node_put(spba_bus);
1827         }
1828
1829         return 0;
1830
1831 err_register:
1832         dma_async_device_unregister(&sdma->dma_device);
1833 err_init:
1834         kfree(sdma->script_addrs);
1835         return ret;
1836 }
1837
1838 static int sdma_remove(struct platform_device *pdev)
1839 {
1840         struct sdma_engine *sdma = platform_get_drvdata(pdev);
1841         int i;
1842
1843         dma_async_device_unregister(&sdma->dma_device);
1844         kfree(sdma->script_addrs);
1845         /* Kill the tasklet */
1846         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1847                 struct sdma_channel *sdmac = &sdma->channel[i];
1848
1849                 tasklet_kill(&sdmac->tasklet);
1850         }
1851
1852         platform_set_drvdata(pdev, NULL);
1853         return 0;
1854 }
1855
1856 static struct platform_driver sdma_driver = {
1857         .driver         = {
1858                 .name   = "imx-sdma",
1859                 .of_match_table = sdma_dt_ids,
1860         },
1861         .id_table       = sdma_devtypes,
1862         .remove         = sdma_remove,
1863         .probe          = sdma_probe,
1864 };
1865
1866 module_platform_driver(sdma_driver);
1867
1868 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1869 MODULE_DESCRIPTION("i.MX SDMA driver");
1870 MODULE_LICENSE("GPL");