]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/dma/imx-sdma.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mv-sheeva.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/clk.h>
26 #include <linux/wait.h>
27 #include <linux/sched.h>
28 #include <linux/semaphore.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/firmware.h>
33 #include <linux/slab.h>
34 #include <linux/platform_device.h>
35 #include <linux/dmaengine.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/module.h>
39
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44
45 /* SDMA registers */
46 #define SDMA_H_C0PTR            0x000
47 #define SDMA_H_INTR             0x004
48 #define SDMA_H_STATSTOP         0x008
49 #define SDMA_H_START            0x00c
50 #define SDMA_H_EVTOVR           0x010
51 #define SDMA_H_DSPOVR           0x014
52 #define SDMA_H_HOSTOVR          0x018
53 #define SDMA_H_EVTPEND          0x01c
54 #define SDMA_H_DSPENBL          0x020
55 #define SDMA_H_RESET            0x024
56 #define SDMA_H_EVTERR           0x028
57 #define SDMA_H_INTRMSK          0x02c
58 #define SDMA_H_PSW              0x030
59 #define SDMA_H_EVTERRDBG        0x034
60 #define SDMA_H_CONFIG           0x038
61 #define SDMA_ONCE_ENB           0x040
62 #define SDMA_ONCE_DATA          0x044
63 #define SDMA_ONCE_INSTR         0x048
64 #define SDMA_ONCE_STAT          0x04c
65 #define SDMA_ONCE_CMD           0x050
66 #define SDMA_EVT_MIRROR         0x054
67 #define SDMA_ILLINSTADDR        0x058
68 #define SDMA_CHN0ADDR           0x05c
69 #define SDMA_ONCE_RTB           0x060
70 #define SDMA_XTRIG_CONF1        0x070
71 #define SDMA_XTRIG_CONF2        0x074
72 #define SDMA_CHNENBL0_IMX35     0x200
73 #define SDMA_CHNENBL0_IMX31     0x080
74 #define SDMA_CHNPRI_0           0x100
75
76 /*
77  * Buffer descriptor status values.
78  */
79 #define BD_DONE  0x01
80 #define BD_WRAP  0x02
81 #define BD_CONT  0x04
82 #define BD_INTR  0x08
83 #define BD_RROR  0x10
84 #define BD_LAST  0x20
85 #define BD_EXTD  0x80
86
87 /*
88  * Data Node descriptor status values.
89  */
90 #define DND_END_OF_FRAME  0x80
91 #define DND_END_OF_XFER   0x40
92 #define DND_DONE          0x20
93 #define DND_UNUSED        0x01
94
95 /*
96  * IPCV2 descriptor status values.
97  */
98 #define BD_IPCV2_END_OF_FRAME  0x40
99
100 #define IPCV2_MAX_NODES        50
101 /*
102  * Error bit set in the CCB status field by the SDMA,
103  * in setbd routine, in case of a transfer error
104  */
105 #define DATA_ERROR  0x10000000
106
107 /*
108  * Buffer descriptor commands.
109  */
110 #define C0_ADDR             0x01
111 #define C0_LOAD             0x02
112 #define C0_DUMP             0x03
113 #define C0_SETCTX           0x07
114 #define C0_GETCTX           0x03
115 #define C0_SETDM            0x01
116 #define C0_SETPM            0x04
117 #define C0_GETDM            0x02
118 #define C0_GETPM            0x08
119 /*
120  * Change endianness indicator in the BD command field
121  */
122 #define CHANGE_ENDIANNESS   0x80
123
124 /*
125  * Mode/Count of data node descriptors - IPCv2
126  */
127 struct sdma_mode_count {
128         u32 count   : 16; /* size of the buffer pointed by this BD */
129         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
130         u32 command :  8; /* command mostlky used for channel 0 */
131 };
132
133 /*
134  * Buffer descriptor
135  */
136 struct sdma_buffer_descriptor {
137         struct sdma_mode_count  mode;
138         u32 buffer_addr;        /* address of the buffer described */
139         u32 ext_buffer_addr;    /* extended buffer address */
140 } __attribute__ ((packed));
141
142 /**
143  * struct sdma_channel_control - Channel control Block
144  *
145  * @current_bd_ptr      current buffer descriptor processed
146  * @base_bd_ptr         first element of buffer descriptor array
147  * @unused              padding. The SDMA engine expects an array of 128 byte
148  *                      control blocks
149  */
150 struct sdma_channel_control {
151         u32 current_bd_ptr;
152         u32 base_bd_ptr;
153         u32 unused[2];
154 } __attribute__ ((packed));
155
156 /**
157  * struct sdma_state_registers - SDMA context for a channel
158  *
159  * @pc:         program counter
160  * @t:          test bit: status of arithmetic & test instruction
161  * @rpc:        return program counter
162  * @sf:         source fault while loading data
163  * @spc:        loop start program counter
164  * @df:         destination fault while storing data
165  * @epc:        loop end program counter
166  * @lm:         loop mode
167  */
168 struct sdma_state_registers {
169         u32 pc     :14;
170         u32 unused1: 1;
171         u32 t      : 1;
172         u32 rpc    :14;
173         u32 unused0: 1;
174         u32 sf     : 1;
175         u32 spc    :14;
176         u32 unused2: 1;
177         u32 df     : 1;
178         u32 epc    :14;
179         u32 lm     : 2;
180 } __attribute__ ((packed));
181
182 /**
183  * struct sdma_context_data - sdma context specific to a channel
184  *
185  * @channel_state:      channel state bits
186  * @gReg:               general registers
187  * @mda:                burst dma destination address register
188  * @msa:                burst dma source address register
189  * @ms:                 burst dma status register
190  * @md:                 burst dma data register
191  * @pda:                peripheral dma destination address register
192  * @psa:                peripheral dma source address register
193  * @ps:                 peripheral dma status register
194  * @pd:                 peripheral dma data register
195  * @ca:                 CRC polynomial register
196  * @cs:                 CRC accumulator register
197  * @dda:                dedicated core destination address register
198  * @dsa:                dedicated core source address register
199  * @ds:                 dedicated core status register
200  * @dd:                 dedicated core data register
201  */
202 struct sdma_context_data {
203         struct sdma_state_registers  channel_state;
204         u32  gReg[8];
205         u32  mda;
206         u32  msa;
207         u32  ms;
208         u32  md;
209         u32  pda;
210         u32  psa;
211         u32  ps;
212         u32  pd;
213         u32  ca;
214         u32  cs;
215         u32  dda;
216         u32  dsa;
217         u32  ds;
218         u32  dd;
219         u32  scratch0;
220         u32  scratch1;
221         u32  scratch2;
222         u32  scratch3;
223         u32  scratch4;
224         u32  scratch5;
225         u32  scratch6;
226         u32  scratch7;
227 } __attribute__ ((packed));
228
229 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
230
231 struct sdma_engine;
232
233 /**
234  * struct sdma_channel - housekeeping for a SDMA channel
235  *
236  * @sdma                pointer to the SDMA engine for this channel
237  * @channel             the channel number, matches dmaengine chan_id + 1
238  * @direction           transfer type. Needed for setting SDMA script
239  * @peripheral_type     Peripheral type. Needed for setting SDMA script
240  * @event_id0           aka dma request line
241  * @event_id1           for channels that use 2 events
242  * @word_size           peripheral access size
243  * @buf_tail            ID of the buffer that was processed
244  * @done                channel completion
245  * @num_bd              max NUM_BD. number of descriptors currently handling
246  */
247 struct sdma_channel {
248         struct sdma_engine              *sdma;
249         unsigned int                    channel;
250         enum dma_data_direction         direction;
251         enum sdma_peripheral_type       peripheral_type;
252         unsigned int                    event_id0;
253         unsigned int                    event_id1;
254         enum dma_slave_buswidth         word_size;
255         unsigned int                    buf_tail;
256         struct completion               done;
257         unsigned int                    num_bd;
258         struct sdma_buffer_descriptor   *bd;
259         dma_addr_t                      bd_phys;
260         unsigned int                    pc_from_device, pc_to_device;
261         unsigned long                   flags;
262         dma_addr_t                      per_address;
263         u32                             event_mask0, event_mask1;
264         u32                             watermark_level;
265         u32                             shp_addr, per_addr;
266         struct dma_chan                 chan;
267         spinlock_t                      lock;
268         struct dma_async_tx_descriptor  desc;
269         dma_cookie_t                    last_completed;
270         enum dma_status                 status;
271 };
272
273 #define IMX_DMA_SG_LOOP         (1 << 0)
274
275 #define MAX_DMA_CHANNELS 32
276 #define MXC_SDMA_DEFAULT_PRIORITY 1
277 #define MXC_SDMA_MIN_PRIORITY 1
278 #define MXC_SDMA_MAX_PRIORITY 7
279
280 #define SDMA_FIRMWARE_MAGIC 0x414d4453
281
282 /**
283  * struct sdma_firmware_header - Layout of the firmware image
284  *
285  * @magic               "SDMA"
286  * @version_major       increased whenever layout of struct sdma_script_start_addrs
287  *                      changes.
288  * @version_minor       firmware minor version (for binary compatible changes)
289  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
290  * @num_script_addrs    Number of script addresses in this image
291  * @ram_code_start      offset of SDMA ram image in this firmware image
292  * @ram_code_size       size of SDMA ram image
293  * @script_addrs        Stores the start address of the SDMA scripts
294  *                      (in SDMA memory space)
295  */
296 struct sdma_firmware_header {
297         u32     magic;
298         u32     version_major;
299         u32     version_minor;
300         u32     script_addrs_start;
301         u32     num_script_addrs;
302         u32     ram_code_start;
303         u32     ram_code_size;
304 };
305
306 enum sdma_devtype {
307         IMX31_SDMA,     /* runs on i.mx31 */
308         IMX35_SDMA,     /* runs on i.mx35 and later */
309 };
310
311 struct sdma_engine {
312         struct device                   *dev;
313         struct device_dma_parameters    dma_parms;
314         struct sdma_channel             channel[MAX_DMA_CHANNELS];
315         struct sdma_channel_control     *channel_control;
316         void __iomem                    *regs;
317         enum sdma_devtype               devtype;
318         unsigned int                    num_events;
319         struct sdma_context_data        *context;
320         dma_addr_t                      context_phys;
321         struct dma_device               dma_device;
322         struct clk                      *clk;
323         struct mutex                    channel_0_lock;
324         struct sdma_script_start_addrs  *script_addrs;
325 };
326
327 static struct platform_device_id sdma_devtypes[] = {
328         {
329                 .name = "imx31-sdma",
330                 .driver_data = IMX31_SDMA,
331         }, {
332                 .name = "imx35-sdma",
333                 .driver_data = IMX35_SDMA,
334         }, {
335                 /* sentinel */
336         }
337 };
338 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
339
340 static const struct of_device_id sdma_dt_ids[] = {
341         { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
342         { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
343         { /* sentinel */ }
344 };
345 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
346
347 #define SDMA_H_CONFIG_DSPDMA    (1 << 12) /* indicates if the DSPDMA is used */
348 #define SDMA_H_CONFIG_RTD_PINS  (1 << 11) /* indicates if Real-Time Debug pins are enabled */
349 #define SDMA_H_CONFIG_ACR       (1 << 4)  /* indicates if AHB freq /core freq = 2 or 1 */
350 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
351
352 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
353 {
354         u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
355                                                       SDMA_CHNENBL0_IMX35);
356         return chnenbl0 + event * 4;
357 }
358
359 static int sdma_config_ownership(struct sdma_channel *sdmac,
360                 bool event_override, bool mcu_override, bool dsp_override)
361 {
362         struct sdma_engine *sdma = sdmac->sdma;
363         int channel = sdmac->channel;
364         u32 evt, mcu, dsp;
365
366         if (event_override && mcu_override && dsp_override)
367                 return -EINVAL;
368
369         evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
370         mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
371         dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
372
373         if (dsp_override)
374                 dsp &= ~(1 << channel);
375         else
376                 dsp |= (1 << channel);
377
378         if (event_override)
379                 evt &= ~(1 << channel);
380         else
381                 evt |= (1 << channel);
382
383         if (mcu_override)
384                 mcu &= ~(1 << channel);
385         else
386                 mcu |= (1 << channel);
387
388         __raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
389         __raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
390         __raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
391
392         return 0;
393 }
394
395 /*
396  * sdma_run_channel - run a channel and wait till it's done
397  */
398 static int sdma_run_channel(struct sdma_channel *sdmac)
399 {
400         struct sdma_engine *sdma = sdmac->sdma;
401         int channel = sdmac->channel;
402         int ret;
403
404         init_completion(&sdmac->done);
405
406         __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
407
408         ret = wait_for_completion_timeout(&sdmac->done, HZ);
409
410         return ret ? 0 : -ETIMEDOUT;
411 }
412
413 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
414                 u32 address)
415 {
416         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
417         void *buf_virt;
418         dma_addr_t buf_phys;
419         int ret;
420
421         mutex_lock(&sdma->channel_0_lock);
422
423         buf_virt = dma_alloc_coherent(NULL,
424                         size,
425                         &buf_phys, GFP_KERNEL);
426         if (!buf_virt) {
427                 ret = -ENOMEM;
428                 goto err_out;
429         }
430
431         bd0->mode.command = C0_SETPM;
432         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
433         bd0->mode.count = size / 2;
434         bd0->buffer_addr = buf_phys;
435         bd0->ext_buffer_addr = address;
436
437         memcpy(buf_virt, buf, size);
438
439         ret = sdma_run_channel(&sdma->channel[0]);
440
441         dma_free_coherent(NULL, size, buf_virt, buf_phys);
442
443 err_out:
444         mutex_unlock(&sdma->channel_0_lock);
445
446         return ret;
447 }
448
449 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
450 {
451         struct sdma_engine *sdma = sdmac->sdma;
452         int channel = sdmac->channel;
453         u32 val;
454         u32 chnenbl = chnenbl_ofs(sdma, event);
455
456         val = __raw_readl(sdma->regs + chnenbl);
457         val |= (1 << channel);
458         __raw_writel(val, sdma->regs + chnenbl);
459 }
460
461 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
462 {
463         struct sdma_engine *sdma = sdmac->sdma;
464         int channel = sdmac->channel;
465         u32 chnenbl = chnenbl_ofs(sdma, event);
466         u32 val;
467
468         val = __raw_readl(sdma->regs + chnenbl);
469         val &= ~(1 << channel);
470         __raw_writel(val, sdma->regs + chnenbl);
471 }
472
473 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
474 {
475         struct sdma_buffer_descriptor *bd;
476
477         /*
478          * loop mode. Iterate over descriptors, re-setup them and
479          * call callback function.
480          */
481         while (1) {
482                 bd = &sdmac->bd[sdmac->buf_tail];
483
484                 if (bd->mode.status & BD_DONE)
485                         break;
486
487                 if (bd->mode.status & BD_RROR)
488                         sdmac->status = DMA_ERROR;
489                 else
490                         sdmac->status = DMA_IN_PROGRESS;
491
492                 bd->mode.status |= BD_DONE;
493                 sdmac->buf_tail++;
494                 sdmac->buf_tail %= sdmac->num_bd;
495
496                 if (sdmac->desc.callback)
497                         sdmac->desc.callback(sdmac->desc.callback_param);
498         }
499 }
500
501 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
502 {
503         struct sdma_buffer_descriptor *bd;
504         int i, error = 0;
505
506         /*
507          * non loop mode. Iterate over all descriptors, collect
508          * errors and call callback function
509          */
510         for (i = 0; i < sdmac->num_bd; i++) {
511                 bd = &sdmac->bd[i];
512
513                  if (bd->mode.status & (BD_DONE | BD_RROR))
514                         error = -EIO;
515         }
516
517         if (error)
518                 sdmac->status = DMA_ERROR;
519         else
520                 sdmac->status = DMA_SUCCESS;
521
522         if (sdmac->desc.callback)
523                 sdmac->desc.callback(sdmac->desc.callback_param);
524         sdmac->last_completed = sdmac->desc.cookie;
525 }
526
527 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
528 {
529         complete(&sdmac->done);
530
531         /* not interested in channel 0 interrupts */
532         if (sdmac->channel == 0)
533                 return;
534
535         if (sdmac->flags & IMX_DMA_SG_LOOP)
536                 sdma_handle_channel_loop(sdmac);
537         else
538                 mxc_sdma_handle_channel_normal(sdmac);
539 }
540
541 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
542 {
543         struct sdma_engine *sdma = dev_id;
544         u32 stat;
545
546         stat = __raw_readl(sdma->regs + SDMA_H_INTR);
547         __raw_writel(stat, sdma->regs + SDMA_H_INTR);
548
549         while (stat) {
550                 int channel = fls(stat) - 1;
551                 struct sdma_channel *sdmac = &sdma->channel[channel];
552
553                 mxc_sdma_handle_channel(sdmac);
554
555                 stat &= ~(1 << channel);
556         }
557
558         return IRQ_HANDLED;
559 }
560
561 /*
562  * sets the pc of SDMA script according to the peripheral type
563  */
564 static void sdma_get_pc(struct sdma_channel *sdmac,
565                 enum sdma_peripheral_type peripheral_type)
566 {
567         struct sdma_engine *sdma = sdmac->sdma;
568         int per_2_emi = 0, emi_2_per = 0;
569         /*
570          * These are needed once we start to support transfers between
571          * two peripherals or memory-to-memory transfers
572          */
573         int per_2_per = 0, emi_2_emi = 0;
574
575         sdmac->pc_from_device = 0;
576         sdmac->pc_to_device = 0;
577
578         switch (peripheral_type) {
579         case IMX_DMATYPE_MEMORY:
580                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
581                 break;
582         case IMX_DMATYPE_DSP:
583                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
584                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
585                 break;
586         case IMX_DMATYPE_FIRI:
587                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
588                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
589                 break;
590         case IMX_DMATYPE_UART:
591                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
592                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
593                 break;
594         case IMX_DMATYPE_UART_SP:
595                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
596                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
597                 break;
598         case IMX_DMATYPE_ATA:
599                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
600                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
601                 break;
602         case IMX_DMATYPE_CSPI:
603         case IMX_DMATYPE_EXT:
604         case IMX_DMATYPE_SSI:
605                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
606                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
607                 break;
608         case IMX_DMATYPE_SSI_SP:
609         case IMX_DMATYPE_MMC:
610         case IMX_DMATYPE_SDHC:
611         case IMX_DMATYPE_CSPI_SP:
612         case IMX_DMATYPE_ESAI:
613         case IMX_DMATYPE_MSHC_SP:
614                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
615                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
616                 break;
617         case IMX_DMATYPE_ASRC:
618                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
619                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
620                 per_2_per = sdma->script_addrs->per_2_per_addr;
621                 break;
622         case IMX_DMATYPE_MSHC:
623                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
624                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
625                 break;
626         case IMX_DMATYPE_CCM:
627                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
628                 break;
629         case IMX_DMATYPE_SPDIF:
630                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
631                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
632                 break;
633         case IMX_DMATYPE_IPU_MEMORY:
634                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
635                 break;
636         default:
637                 break;
638         }
639
640         sdmac->pc_from_device = per_2_emi;
641         sdmac->pc_to_device = emi_2_per;
642 }
643
644 static int sdma_load_context(struct sdma_channel *sdmac)
645 {
646         struct sdma_engine *sdma = sdmac->sdma;
647         int channel = sdmac->channel;
648         int load_address;
649         struct sdma_context_data *context = sdma->context;
650         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
651         int ret;
652
653         if (sdmac->direction == DMA_FROM_DEVICE) {
654                 load_address = sdmac->pc_from_device;
655         } else {
656                 load_address = sdmac->pc_to_device;
657         }
658
659         if (load_address < 0)
660                 return load_address;
661
662         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
663         dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
664         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
665         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
666         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
667         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
668
669         mutex_lock(&sdma->channel_0_lock);
670
671         memset(context, 0, sizeof(*context));
672         context->channel_state.pc = load_address;
673
674         /* Send by context the event mask,base address for peripheral
675          * and watermark level
676          */
677         context->gReg[0] = sdmac->event_mask1;
678         context->gReg[1] = sdmac->event_mask0;
679         context->gReg[2] = sdmac->per_addr;
680         context->gReg[6] = sdmac->shp_addr;
681         context->gReg[7] = sdmac->watermark_level;
682
683         bd0->mode.command = C0_SETDM;
684         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
685         bd0->mode.count = sizeof(*context) / 4;
686         bd0->buffer_addr = sdma->context_phys;
687         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
688
689         ret = sdma_run_channel(&sdma->channel[0]);
690
691         mutex_unlock(&sdma->channel_0_lock);
692
693         return ret;
694 }
695
696 static void sdma_disable_channel(struct sdma_channel *sdmac)
697 {
698         struct sdma_engine *sdma = sdmac->sdma;
699         int channel = sdmac->channel;
700
701         __raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
702         sdmac->status = DMA_ERROR;
703 }
704
705 static int sdma_config_channel(struct sdma_channel *sdmac)
706 {
707         int ret;
708
709         sdma_disable_channel(sdmac);
710
711         sdmac->event_mask0 = 0;
712         sdmac->event_mask1 = 0;
713         sdmac->shp_addr = 0;
714         sdmac->per_addr = 0;
715
716         if (sdmac->event_id0) {
717                 if (sdmac->event_id0 > 32)
718                         return -EINVAL;
719                 sdma_event_enable(sdmac, sdmac->event_id0);
720         }
721
722         switch (sdmac->peripheral_type) {
723         case IMX_DMATYPE_DSP:
724                 sdma_config_ownership(sdmac, false, true, true);
725                 break;
726         case IMX_DMATYPE_MEMORY:
727                 sdma_config_ownership(sdmac, false, true, false);
728                 break;
729         default:
730                 sdma_config_ownership(sdmac, true, true, false);
731                 break;
732         }
733
734         sdma_get_pc(sdmac, sdmac->peripheral_type);
735
736         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
737                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
738                 /* Handle multiple event channels differently */
739                 if (sdmac->event_id1) {
740                         sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
741                         if (sdmac->event_id1 > 31)
742                                 sdmac->watermark_level |= 1 << 31;
743                         sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
744                         if (sdmac->event_id0 > 31)
745                                 sdmac->watermark_level |= 1 << 30;
746                 } else {
747                         sdmac->event_mask0 = 1 << sdmac->event_id0;
748                         sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
749                 }
750                 /* Watermark Level */
751                 sdmac->watermark_level |= sdmac->watermark_level;
752                 /* Address */
753                 sdmac->shp_addr = sdmac->per_address;
754         } else {
755                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
756         }
757
758         ret = sdma_load_context(sdmac);
759
760         return ret;
761 }
762
763 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
764                 unsigned int priority)
765 {
766         struct sdma_engine *sdma = sdmac->sdma;
767         int channel = sdmac->channel;
768
769         if (priority < MXC_SDMA_MIN_PRIORITY
770             || priority > MXC_SDMA_MAX_PRIORITY) {
771                 return -EINVAL;
772         }
773
774         __raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
775
776         return 0;
777 }
778
779 static int sdma_request_channel(struct sdma_channel *sdmac)
780 {
781         struct sdma_engine *sdma = sdmac->sdma;
782         int channel = sdmac->channel;
783         int ret = -EBUSY;
784
785         sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
786         if (!sdmac->bd) {
787                 ret = -ENOMEM;
788                 goto out;
789         }
790
791         memset(sdmac->bd, 0, PAGE_SIZE);
792
793         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
794         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
795
796         clk_enable(sdma->clk);
797
798         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
799
800         init_completion(&sdmac->done);
801
802         sdmac->buf_tail = 0;
803
804         return 0;
805 out:
806
807         return ret;
808 }
809
810 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
811 {
812         __raw_writel(1 << channel, sdma->regs + SDMA_H_START);
813 }
814
815 static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
816 {
817         dma_cookie_t cookie = sdmac->chan.cookie;
818
819         if (++cookie < 0)
820                 cookie = 1;
821
822         sdmac->chan.cookie = cookie;
823         sdmac->desc.cookie = cookie;
824
825         return cookie;
826 }
827
828 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
829 {
830         return container_of(chan, struct sdma_channel, chan);
831 }
832
833 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
834 {
835         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
836         struct sdma_engine *sdma = sdmac->sdma;
837         dma_cookie_t cookie;
838
839         spin_lock_irq(&sdmac->lock);
840
841         cookie = sdma_assign_cookie(sdmac);
842
843         sdma_enable_channel(sdma, sdmac->channel);
844
845         spin_unlock_irq(&sdmac->lock);
846
847         return cookie;
848 }
849
850 static int sdma_alloc_chan_resources(struct dma_chan *chan)
851 {
852         struct sdma_channel *sdmac = to_sdma_chan(chan);
853         struct imx_dma_data *data = chan->private;
854         int prio, ret;
855
856         if (!data)
857                 return -EINVAL;
858
859         switch (data->priority) {
860         case DMA_PRIO_HIGH:
861                 prio = 3;
862                 break;
863         case DMA_PRIO_MEDIUM:
864                 prio = 2;
865                 break;
866         case DMA_PRIO_LOW:
867         default:
868                 prio = 1;
869                 break;
870         }
871
872         sdmac->peripheral_type = data->peripheral_type;
873         sdmac->event_id0 = data->dma_request;
874         ret = sdma_set_channel_priority(sdmac, prio);
875         if (ret)
876                 return ret;
877
878         ret = sdma_request_channel(sdmac);
879         if (ret)
880                 return ret;
881
882         dma_async_tx_descriptor_init(&sdmac->desc, chan);
883         sdmac->desc.tx_submit = sdma_tx_submit;
884         /* txd.flags will be overwritten in prep funcs */
885         sdmac->desc.flags = DMA_CTRL_ACK;
886
887         return 0;
888 }
889
890 static void sdma_free_chan_resources(struct dma_chan *chan)
891 {
892         struct sdma_channel *sdmac = to_sdma_chan(chan);
893         struct sdma_engine *sdma = sdmac->sdma;
894
895         sdma_disable_channel(sdmac);
896
897         if (sdmac->event_id0)
898                 sdma_event_disable(sdmac, sdmac->event_id0);
899         if (sdmac->event_id1)
900                 sdma_event_disable(sdmac, sdmac->event_id1);
901
902         sdmac->event_id0 = 0;
903         sdmac->event_id1 = 0;
904
905         sdma_set_channel_priority(sdmac, 0);
906
907         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
908
909         clk_disable(sdma->clk);
910 }
911
912 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
913                 struct dma_chan *chan, struct scatterlist *sgl,
914                 unsigned int sg_len, enum dma_data_direction direction,
915                 unsigned long flags)
916 {
917         struct sdma_channel *sdmac = to_sdma_chan(chan);
918         struct sdma_engine *sdma = sdmac->sdma;
919         int ret, i, count;
920         int channel = sdmac->channel;
921         struct scatterlist *sg;
922
923         if (sdmac->status == DMA_IN_PROGRESS)
924                 return NULL;
925         sdmac->status = DMA_IN_PROGRESS;
926
927         sdmac->flags = 0;
928
929         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
930                         sg_len, channel);
931
932         sdmac->direction = direction;
933         ret = sdma_load_context(sdmac);
934         if (ret)
935                 goto err_out;
936
937         if (sg_len > NUM_BD) {
938                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
939                                 channel, sg_len, NUM_BD);
940                 ret = -EINVAL;
941                 goto err_out;
942         }
943
944         for_each_sg(sgl, sg, sg_len, i) {
945                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
946                 int param;
947
948                 bd->buffer_addr = sg->dma_address;
949
950                 count = sg->length;
951
952                 if (count > 0xffff) {
953                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
954                                         channel, count, 0xffff);
955                         ret = -EINVAL;
956                         goto err_out;
957                 }
958
959                 bd->mode.count = count;
960
961                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
962                         ret =  -EINVAL;
963                         goto err_out;
964                 }
965
966                 switch (sdmac->word_size) {
967                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
968                         bd->mode.command = 0;
969                         if (count & 3 || sg->dma_address & 3)
970                                 return NULL;
971                         break;
972                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
973                         bd->mode.command = 2;
974                         if (count & 1 || sg->dma_address & 1)
975                                 return NULL;
976                         break;
977                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
978                         bd->mode.command = 1;
979                         break;
980                 default:
981                         return NULL;
982                 }
983
984                 param = BD_DONE | BD_EXTD | BD_CONT;
985
986                 if (i + 1 == sg_len) {
987                         param |= BD_INTR;
988                         param |= BD_LAST;
989                         param &= ~BD_CONT;
990                 }
991
992                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
993                                 i, count, sg->dma_address,
994                                 param & BD_WRAP ? "wrap" : "",
995                                 param & BD_INTR ? " intr" : "");
996
997                 bd->mode.status = param;
998         }
999
1000         sdmac->num_bd = sg_len;
1001         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1002
1003         return &sdmac->desc;
1004 err_out:
1005         sdmac->status = DMA_ERROR;
1006         return NULL;
1007 }
1008
1009 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1010                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1011                 size_t period_len, enum dma_data_direction direction)
1012 {
1013         struct sdma_channel *sdmac = to_sdma_chan(chan);
1014         struct sdma_engine *sdma = sdmac->sdma;
1015         int num_periods = buf_len / period_len;
1016         int channel = sdmac->channel;
1017         int ret, i = 0, buf = 0;
1018
1019         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1020
1021         if (sdmac->status == DMA_IN_PROGRESS)
1022                 return NULL;
1023
1024         sdmac->status = DMA_IN_PROGRESS;
1025
1026         sdmac->flags |= IMX_DMA_SG_LOOP;
1027         sdmac->direction = direction;
1028         ret = sdma_load_context(sdmac);
1029         if (ret)
1030                 goto err_out;
1031
1032         if (num_periods > NUM_BD) {
1033                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1034                                 channel, num_periods, NUM_BD);
1035                 goto err_out;
1036         }
1037
1038         if (period_len > 0xffff) {
1039                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1040                                 channel, period_len, 0xffff);
1041                 goto err_out;
1042         }
1043
1044         while (buf < buf_len) {
1045                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1046                 int param;
1047
1048                 bd->buffer_addr = dma_addr;
1049
1050                 bd->mode.count = period_len;
1051
1052                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1053                         goto err_out;
1054                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1055                         bd->mode.command = 0;
1056                 else
1057                         bd->mode.command = sdmac->word_size;
1058
1059                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1060                 if (i + 1 == num_periods)
1061                         param |= BD_WRAP;
1062
1063                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1064                                 i, period_len, dma_addr,
1065                                 param & BD_WRAP ? "wrap" : "",
1066                                 param & BD_INTR ? " intr" : "");
1067
1068                 bd->mode.status = param;
1069
1070                 dma_addr += period_len;
1071                 buf += period_len;
1072
1073                 i++;
1074         }
1075
1076         sdmac->num_bd = num_periods;
1077         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1078
1079         return &sdmac->desc;
1080 err_out:
1081         sdmac->status = DMA_ERROR;
1082         return NULL;
1083 }
1084
1085 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1086                 unsigned long arg)
1087 {
1088         struct sdma_channel *sdmac = to_sdma_chan(chan);
1089         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1090
1091         switch (cmd) {
1092         case DMA_TERMINATE_ALL:
1093                 sdma_disable_channel(sdmac);
1094                 return 0;
1095         case DMA_SLAVE_CONFIG:
1096                 if (dmaengine_cfg->direction == DMA_FROM_DEVICE) {
1097                         sdmac->per_address = dmaengine_cfg->src_addr;
1098                         sdmac->watermark_level = dmaengine_cfg->src_maxburst;
1099                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1100                 } else {
1101                         sdmac->per_address = dmaengine_cfg->dst_addr;
1102                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
1103                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1104                 }
1105                 return sdma_config_channel(sdmac);
1106         default:
1107                 return -ENOSYS;
1108         }
1109
1110         return -EINVAL;
1111 }
1112
1113 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1114                                             dma_cookie_t cookie,
1115                                             struct dma_tx_state *txstate)
1116 {
1117         struct sdma_channel *sdmac = to_sdma_chan(chan);
1118         dma_cookie_t last_used;
1119
1120         last_used = chan->cookie;
1121
1122         dma_set_tx_state(txstate, sdmac->last_completed, last_used, 0);
1123
1124         return sdmac->status;
1125 }
1126
1127 static void sdma_issue_pending(struct dma_chan *chan)
1128 {
1129         /*
1130          * Nothing to do. We only have a single descriptor
1131          */
1132 }
1133
1134 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1135
1136 static void sdma_add_scripts(struct sdma_engine *sdma,
1137                 const struct sdma_script_start_addrs *addr)
1138 {
1139         s32 *addr_arr = (u32 *)addr;
1140         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1141         int i;
1142
1143         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1144                 if (addr_arr[i] > 0)
1145                         saddr_arr[i] = addr_arr[i];
1146 }
1147
1148 static void sdma_load_firmware(const struct firmware *fw, void *context)
1149 {
1150         struct sdma_engine *sdma = context;
1151         const struct sdma_firmware_header *header;
1152         const struct sdma_script_start_addrs *addr;
1153         unsigned short *ram_code;
1154
1155         if (!fw) {
1156                 dev_err(sdma->dev, "firmware not found\n");
1157                 return;
1158         }
1159
1160         if (fw->size < sizeof(*header))
1161                 goto err_firmware;
1162
1163         header = (struct sdma_firmware_header *)fw->data;
1164
1165         if (header->magic != SDMA_FIRMWARE_MAGIC)
1166                 goto err_firmware;
1167         if (header->ram_code_start + header->ram_code_size > fw->size)
1168                 goto err_firmware;
1169
1170         addr = (void *)header + header->script_addrs_start;
1171         ram_code = (void *)header + header->ram_code_start;
1172
1173         clk_enable(sdma->clk);
1174         /* download the RAM image for SDMA */
1175         sdma_load_script(sdma, ram_code,
1176                         header->ram_code_size,
1177                         addr->ram_code_start_addr);
1178         clk_disable(sdma->clk);
1179
1180         sdma_add_scripts(sdma, addr);
1181
1182         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1183                         header->version_major,
1184                         header->version_minor);
1185
1186 err_firmware:
1187         release_firmware(fw);
1188 }
1189
1190 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1191                 const char *fw_name)
1192 {
1193         int ret;
1194
1195         ret = request_firmware_nowait(THIS_MODULE,
1196                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1197                         GFP_KERNEL, sdma, sdma_load_firmware);
1198
1199         return ret;
1200 }
1201
1202 static int __init sdma_init(struct sdma_engine *sdma)
1203 {
1204         int i, ret;
1205         dma_addr_t ccb_phys;
1206
1207         switch (sdma->devtype) {
1208         case IMX31_SDMA:
1209                 sdma->num_events = 32;
1210                 break;
1211         case IMX35_SDMA:
1212                 sdma->num_events = 48;
1213                 break;
1214         default:
1215                 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1216                         sdma->devtype);
1217                 return -ENODEV;
1218         }
1219
1220         clk_enable(sdma->clk);
1221
1222         /* Be sure SDMA has not started yet */
1223         __raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1224
1225         sdma->channel_control = dma_alloc_coherent(NULL,
1226                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1227                         sizeof(struct sdma_context_data),
1228                         &ccb_phys, GFP_KERNEL);
1229
1230         if (!sdma->channel_control) {
1231                 ret = -ENOMEM;
1232                 goto err_dma_alloc;
1233         }
1234
1235         sdma->context = (void *)sdma->channel_control +
1236                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1237         sdma->context_phys = ccb_phys +
1238                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1239
1240         /* Zero-out the CCB structures array just allocated */
1241         memset(sdma->channel_control, 0,
1242                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1243
1244         /* disable all channels */
1245         for (i = 0; i < sdma->num_events; i++)
1246                 __raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1247
1248         /* All channels have priority 0 */
1249         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1250                 __raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1251
1252         ret = sdma_request_channel(&sdma->channel[0]);
1253         if (ret)
1254                 goto err_dma_alloc;
1255
1256         sdma_config_ownership(&sdma->channel[0], false, true, false);
1257
1258         /* Set Command Channel (Channel Zero) */
1259         __raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1260
1261         /* Set bits of CONFIG register but with static context switching */
1262         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1263         __raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1264
1265         __raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1266
1267         /* Set bits of CONFIG register with given context switching mode */
1268         __raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1269
1270         /* Initializes channel's priorities */
1271         sdma_set_channel_priority(&sdma->channel[0], 7);
1272
1273         clk_disable(sdma->clk);
1274
1275         return 0;
1276
1277 err_dma_alloc:
1278         clk_disable(sdma->clk);
1279         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1280         return ret;
1281 }
1282
1283 static int __init sdma_probe(struct platform_device *pdev)
1284 {
1285         const struct of_device_id *of_id =
1286                         of_match_device(sdma_dt_ids, &pdev->dev);
1287         struct device_node *np = pdev->dev.of_node;
1288         const char *fw_name;
1289         int ret;
1290         int irq;
1291         struct resource *iores;
1292         struct sdma_platform_data *pdata = pdev->dev.platform_data;
1293         int i;
1294         struct sdma_engine *sdma;
1295         s32 *saddr_arr;
1296
1297         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1298         if (!sdma)
1299                 return -ENOMEM;
1300
1301         mutex_init(&sdma->channel_0_lock);
1302
1303         sdma->dev = &pdev->dev;
1304
1305         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1306         irq = platform_get_irq(pdev, 0);
1307         if (!iores || irq < 0) {
1308                 ret = -EINVAL;
1309                 goto err_irq;
1310         }
1311
1312         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1313                 ret = -EBUSY;
1314                 goto err_request_region;
1315         }
1316
1317         sdma->clk = clk_get(&pdev->dev, NULL);
1318         if (IS_ERR(sdma->clk)) {
1319                 ret = PTR_ERR(sdma->clk);
1320                 goto err_clk;
1321         }
1322
1323         sdma->regs = ioremap(iores->start, resource_size(iores));
1324         if (!sdma->regs) {
1325                 ret = -ENOMEM;
1326                 goto err_ioremap;
1327         }
1328
1329         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1330         if (ret)
1331                 goto err_request_irq;
1332
1333         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1334         if (!sdma->script_addrs) {
1335                 ret = -ENOMEM;
1336                 goto err_alloc;
1337         }
1338
1339         /* initially no scripts available */
1340         saddr_arr = (s32 *)sdma->script_addrs;
1341         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1342                 saddr_arr[i] = -EINVAL;
1343
1344         if (of_id)
1345                 pdev->id_entry = of_id->data;
1346         sdma->devtype = pdev->id_entry->driver_data;
1347
1348         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1349         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1350
1351         INIT_LIST_HEAD(&sdma->dma_device.channels);
1352         /* Initialize channel parameters */
1353         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1354                 struct sdma_channel *sdmac = &sdma->channel[i];
1355
1356                 sdmac->sdma = sdma;
1357                 spin_lock_init(&sdmac->lock);
1358
1359                 sdmac->chan.device = &sdma->dma_device;
1360                 sdmac->channel = i;
1361
1362                 /*
1363                  * Add the channel to the DMAC list. Do not add channel 0 though
1364                  * because we need it internally in the SDMA driver. This also means
1365                  * that channel 0 in dmaengine counting matches sdma channel 1.
1366                  */
1367                 if (i)
1368                         list_add_tail(&sdmac->chan.device_node,
1369                                         &sdma->dma_device.channels);
1370         }
1371
1372         ret = sdma_init(sdma);
1373         if (ret)
1374                 goto err_init;
1375
1376         if (pdata && pdata->script_addrs)
1377                 sdma_add_scripts(sdma, pdata->script_addrs);
1378
1379         if (pdata) {
1380                 sdma_get_firmware(sdma, pdata->fw_name);
1381         } else {
1382                 /*
1383                  * Because that device tree does not encode ROM script address,
1384                  * the RAM script in firmware is mandatory for device tree
1385                  * probe, otherwise it fails.
1386                  */
1387                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1388                                               &fw_name);
1389                 if (ret) {
1390                         dev_err(&pdev->dev, "failed to get firmware name\n");
1391                         goto err_init;
1392                 }
1393
1394                 ret = sdma_get_firmware(sdma, fw_name);
1395                 if (ret) {
1396                         dev_err(&pdev->dev, "failed to get firmware\n");
1397                         goto err_init;
1398                 }
1399         }
1400
1401         sdma->dma_device.dev = &pdev->dev;
1402
1403         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1404         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1405         sdma->dma_device.device_tx_status = sdma_tx_status;
1406         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1407         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1408         sdma->dma_device.device_control = sdma_control;
1409         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1410         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1411         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1412
1413         ret = dma_async_device_register(&sdma->dma_device);
1414         if (ret) {
1415                 dev_err(&pdev->dev, "unable to register\n");
1416                 goto err_init;
1417         }
1418
1419         dev_info(sdma->dev, "initialized\n");
1420
1421         return 0;
1422
1423 err_init:
1424         kfree(sdma->script_addrs);
1425 err_alloc:
1426         free_irq(irq, sdma);
1427 err_request_irq:
1428         iounmap(sdma->regs);
1429 err_ioremap:
1430         clk_put(sdma->clk);
1431 err_clk:
1432         release_mem_region(iores->start, resource_size(iores));
1433 err_request_region:
1434 err_irq:
1435         kfree(sdma);
1436         return ret;
1437 }
1438
1439 static int __exit sdma_remove(struct platform_device *pdev)
1440 {
1441         return -EBUSY;
1442 }
1443
1444 static struct platform_driver sdma_driver = {
1445         .driver         = {
1446                 .name   = "imx-sdma",
1447                 .of_match_table = sdma_dt_ids,
1448         },
1449         .id_table       = sdma_devtypes,
1450         .remove         = __exit_p(sdma_remove),
1451 };
1452
1453 static int __init sdma_module_init(void)
1454 {
1455         return platform_driver_probe(&sdma_driver, sdma_probe);
1456 }
1457 module_init(sdma_module_init);
1458
1459 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1460 MODULE_DESCRIPTION("i.MX SDMA driver");
1461 MODULE_LICENSE("GPL");