2 * Renesas SuperH DMA Engine support
4 * base is drivers/dma/flsdma.c
6 * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
7 * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
8 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
10 * This is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * - DMA of SuperH does not have Hardware DMA chain mode.
16 * - MAX DMA size is 16MB.
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
30 #include <linux/notifier.h>
31 #include <linux/kdebug.h>
32 #include <linux/spinlock.h>
33 #include <linux/rculist.h>
36 /* DMA descriptor control */
37 enum sh_dmae_desc_status {
41 DESC_COMPLETED, /* completed, have to call callback */
42 DESC_WAITING, /* callback called, waiting for ack / re-submit */
45 #define NR_DESCS_PER_CHANNEL 32
46 /* Default MEMCPY transfer size = 2^2 = 4 bytes */
47 #define LOG2_DEFAULT_XFER_SIZE 2
50 * Used for write-side mutual exclusion for the global device list,
51 * read-side synchronization by way of RCU.
53 static DEFINE_SPINLOCK(sh_dmae_lock);
54 static LIST_HEAD(sh_dmae_devices);
56 /* A bitmask with bits enough for enum sh_dmae_slave_chan_id */
57 static unsigned long sh_dmae_slave_used[BITS_TO_LONGS(SH_DMA_SLAVE_NUMBER)];
59 static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all);
61 static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg)
63 __raw_writel(data, sh_dc->base + reg / sizeof(u32));
66 static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg)
68 return __raw_readl(sh_dc->base + reg / sizeof(u32));
71 static u16 dmaor_read(struct sh_dmae_device *shdev)
73 return __raw_readw(shdev->chan_reg + DMAOR / sizeof(u32));
76 static void dmaor_write(struct sh_dmae_device *shdev, u16 data)
78 __raw_writew(data, shdev->chan_reg + DMAOR / sizeof(u32));
82 * Reset DMA controller
84 * SH7780 has two DMAOR register
86 static void sh_dmae_ctl_stop(struct sh_dmae_device *shdev)
88 unsigned short dmaor = dmaor_read(shdev);
90 dmaor_write(shdev, dmaor & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME));
93 static int sh_dmae_rst(struct sh_dmae_device *shdev)
97 sh_dmae_ctl_stop(shdev);
98 dmaor = dmaor_read(shdev) | shdev->pdata->dmaor_init;
100 dmaor_write(shdev, dmaor);
101 if (dmaor_read(shdev) & (DMAOR_AE | DMAOR_NMIF)) {
102 pr_warning("dma-sh: Can't initialize DMAOR.\n");
108 static bool dmae_is_busy(struct sh_dmae_chan *sh_chan)
110 u32 chcr = sh_dmae_readl(sh_chan, CHCR);
112 if ((chcr & (CHCR_DE | CHCR_TE)) == CHCR_DE)
113 return true; /* working */
115 return false; /* waiting */
118 static unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan, u32 chcr)
120 struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
121 struct sh_dmae_device, common);
122 struct sh_dmae_pdata *pdata = shdev->pdata;
123 int cnt = ((chcr & pdata->ts_low_mask) >> pdata->ts_low_shift) |
124 ((chcr & pdata->ts_high_mask) >> pdata->ts_high_shift);
126 if (cnt >= pdata->ts_shift_num)
129 return pdata->ts_shift[cnt];
132 static u32 log2size_to_chcr(struct sh_dmae_chan *sh_chan, int l2size)
134 struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
135 struct sh_dmae_device, common);
136 struct sh_dmae_pdata *pdata = shdev->pdata;
139 for (i = 0; i < pdata->ts_shift_num; i++)
140 if (pdata->ts_shift[i] == l2size)
143 if (i == pdata->ts_shift_num)
146 return ((i << pdata->ts_low_shift) & pdata->ts_low_mask) |
147 ((i << pdata->ts_high_shift) & pdata->ts_high_mask);
150 static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs *hw)
152 sh_dmae_writel(sh_chan, hw->sar, SAR);
153 sh_dmae_writel(sh_chan, hw->dar, DAR);
154 sh_dmae_writel(sh_chan, hw->tcr >> sh_chan->xmit_shift, TCR);
157 static void dmae_start(struct sh_dmae_chan *sh_chan)
159 u32 chcr = sh_dmae_readl(sh_chan, CHCR);
161 chcr |= CHCR_DE | CHCR_IE;
162 sh_dmae_writel(sh_chan, chcr & ~CHCR_TE, CHCR);
165 static void dmae_halt(struct sh_dmae_chan *sh_chan)
167 u32 chcr = sh_dmae_readl(sh_chan, CHCR);
169 chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE);
170 sh_dmae_writel(sh_chan, chcr, CHCR);
173 static void dmae_init(struct sh_dmae_chan *sh_chan)
176 * Default configuration for dual address memory-memory transfer.
177 * 0x400 represents auto-request.
179 u32 chcr = DM_INC | SM_INC | 0x400 | log2size_to_chcr(sh_chan,
180 LOG2_DEFAULT_XFER_SIZE);
181 sh_chan->xmit_shift = calc_xmit_shift(sh_chan, chcr);
182 sh_dmae_writel(sh_chan, chcr, CHCR);
185 static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val)
187 /* When DMA was working, can not set data to CHCR */
188 if (dmae_is_busy(sh_chan))
191 sh_chan->xmit_shift = calc_xmit_shift(sh_chan, val);
192 sh_dmae_writel(sh_chan, val, CHCR);
197 static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val)
199 struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
200 struct sh_dmae_device, common);
201 struct sh_dmae_pdata *pdata = shdev->pdata;
202 const struct sh_dmae_channel *chan_pdata = &pdata->channel[sh_chan->id];
203 u16 __iomem *addr = shdev->dmars + chan_pdata->dmars / sizeof(u16);
204 int shift = chan_pdata->dmars_bit;
206 if (dmae_is_busy(sh_chan))
209 __raw_writew((__raw_readw(addr) & (0xff00 >> shift)) | (val << shift),
215 static dma_cookie_t sh_dmae_tx_submit(struct dma_async_tx_descriptor *tx)
217 struct sh_desc *desc = tx_to_sh_desc(tx), *chunk, *last = desc, *c;
218 struct sh_dmae_chan *sh_chan = to_sh_chan(tx->chan);
219 dma_async_tx_callback callback = tx->callback;
222 spin_lock_bh(&sh_chan->desc_lock);
224 cookie = sh_chan->common.cookie;
229 sh_chan->common.cookie = cookie;
232 /* Mark all chunks of this descriptor as submitted, move to the queue */
233 list_for_each_entry_safe(chunk, c, desc->node.prev, node) {
235 * All chunks are on the global ld_free, so, we have to find
236 * the end of the chain ourselves
238 if (chunk != desc && (chunk->mark == DESC_IDLE ||
239 chunk->async_tx.cookie > 0 ||
240 chunk->async_tx.cookie == -EBUSY ||
241 &chunk->node == &sh_chan->ld_free))
243 chunk->mark = DESC_SUBMITTED;
244 /* Callback goes to the last chunk */
245 chunk->async_tx.callback = NULL;
246 chunk->cookie = cookie;
247 list_move_tail(&chunk->node, &sh_chan->ld_queue);
251 last->async_tx.callback = callback;
252 last->async_tx.callback_param = tx->callback_param;
254 dev_dbg(sh_chan->dev, "submit #%d@%p on %d: %x[%d] -> %x\n",
255 tx->cookie, &last->async_tx, sh_chan->id,
256 desc->hw.sar, desc->hw.tcr, desc->hw.dar);
258 spin_unlock_bh(&sh_chan->desc_lock);
263 /* Called with desc_lock held */
264 static struct sh_desc *sh_dmae_get_desc(struct sh_dmae_chan *sh_chan)
266 struct sh_desc *desc;
268 list_for_each_entry(desc, &sh_chan->ld_free, node)
269 if (desc->mark != DESC_PREPARED) {
270 BUG_ON(desc->mark != DESC_IDLE);
271 list_del(&desc->node);
278 static const struct sh_dmae_slave_config *sh_dmae_find_slave(
279 struct sh_dmae_chan *sh_chan, struct sh_dmae_slave *param)
281 struct dma_device *dma_dev = sh_chan->common.device;
282 struct sh_dmae_device *shdev = container_of(dma_dev,
283 struct sh_dmae_device, common);
284 struct sh_dmae_pdata *pdata = shdev->pdata;
287 if (param->slave_id >= SH_DMA_SLAVE_NUMBER)
290 for (i = 0; i < pdata->slave_num; i++)
291 if (pdata->slave[i].slave_id == param->slave_id)
292 return pdata->slave + i;
297 static int sh_dmae_alloc_chan_resources(struct dma_chan *chan)
299 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
300 struct sh_desc *desc;
301 struct sh_dmae_slave *param = chan->private;
304 pm_runtime_get_sync(sh_chan->dev);
307 * This relies on the guarantee from dmaengine that alloc_chan_resources
308 * never runs concurrently with itself or free_chan_resources.
311 const struct sh_dmae_slave_config *cfg;
313 cfg = sh_dmae_find_slave(sh_chan, param);
319 if (test_and_set_bit(param->slave_id, sh_dmae_slave_used)) {
326 dmae_set_dmars(sh_chan, cfg->mid_rid);
327 dmae_set_chcr(sh_chan, cfg->chcr);
328 } else if ((sh_dmae_readl(sh_chan, CHCR) & 0xf00) != 0x400) {
332 spin_lock_bh(&sh_chan->desc_lock);
333 while (sh_chan->descs_allocated < NR_DESCS_PER_CHANNEL) {
334 spin_unlock_bh(&sh_chan->desc_lock);
335 desc = kzalloc(sizeof(struct sh_desc), GFP_KERNEL);
337 spin_lock_bh(&sh_chan->desc_lock);
340 dma_async_tx_descriptor_init(&desc->async_tx,
342 desc->async_tx.tx_submit = sh_dmae_tx_submit;
343 desc->mark = DESC_IDLE;
345 spin_lock_bh(&sh_chan->desc_lock);
346 list_add(&desc->node, &sh_chan->ld_free);
347 sh_chan->descs_allocated++;
349 spin_unlock_bh(&sh_chan->desc_lock);
351 if (!sh_chan->descs_allocated) {
356 return sh_chan->descs_allocated;
360 clear_bit(param->slave_id, sh_dmae_slave_used);
363 pm_runtime_put(sh_chan->dev);
368 * sh_dma_free_chan_resources - Free all resources of the channel.
370 static void sh_dmae_free_chan_resources(struct dma_chan *chan)
372 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
373 struct sh_desc *desc, *_desc;
375 int descs = sh_chan->descs_allocated;
379 /* Prepared and not submitted descriptors can still be on the queue */
380 if (!list_empty(&sh_chan->ld_queue))
381 sh_dmae_chan_ld_cleanup(sh_chan, true);
384 /* The caller is holding dma_list_mutex */
385 struct sh_dmae_slave *param = chan->private;
386 clear_bit(param->slave_id, sh_dmae_slave_used);
389 spin_lock_bh(&sh_chan->desc_lock);
391 list_splice_init(&sh_chan->ld_free, &list);
392 sh_chan->descs_allocated = 0;
394 spin_unlock_bh(&sh_chan->desc_lock);
397 pm_runtime_put(sh_chan->dev);
399 list_for_each_entry_safe(desc, _desc, &list, node)
404 * sh_dmae_add_desc - get, set up and return one transfer descriptor
405 * @sh_chan: DMA channel
406 * @flags: DMA transfer flags
407 * @dest: destination DMA address, incremented when direction equals
408 * DMA_FROM_DEVICE or DMA_BIDIRECTIONAL
409 * @src: source DMA address, incremented when direction equals
410 * DMA_TO_DEVICE or DMA_BIDIRECTIONAL
411 * @len: DMA transfer length
412 * @first: if NULL, set to the current descriptor and cookie set to -EBUSY
413 * @direction: needed for slave DMA to decide which address to keep constant,
414 * equals DMA_BIDIRECTIONAL for MEMCPY
415 * Returns 0 or an error
416 * Locks: called with desc_lock held
418 static struct sh_desc *sh_dmae_add_desc(struct sh_dmae_chan *sh_chan,
419 unsigned long flags, dma_addr_t *dest, dma_addr_t *src, size_t *len,
420 struct sh_desc **first, enum dma_data_direction direction)
428 /* Allocate the link descriptor from the free list */
429 new = sh_dmae_get_desc(sh_chan);
431 dev_err(sh_chan->dev, "No free link descriptor available\n");
435 copy_size = min(*len, (size_t)SH_DMA_TCR_MAX + 1);
439 new->hw.tcr = copy_size;
443 new->async_tx.cookie = -EBUSY;
446 /* Other desc - invisible to the user */
447 new->async_tx.cookie = -EINVAL;
450 dev_dbg(sh_chan->dev,
451 "chaining (%u/%u)@%x -> %x with %p, cookie %d, shift %d\n",
452 copy_size, *len, *src, *dest, &new->async_tx,
453 new->async_tx.cookie, sh_chan->xmit_shift);
455 new->mark = DESC_PREPARED;
456 new->async_tx.flags = flags;
457 new->direction = direction;
460 if (direction == DMA_BIDIRECTIONAL || direction == DMA_TO_DEVICE)
462 if (direction == DMA_BIDIRECTIONAL || direction == DMA_FROM_DEVICE)
469 * sh_dmae_prep_sg - prepare transfer descriptors from an SG list
471 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
472 * converted to scatter-gather to guarantee consistent locking and a correct
473 * list manipulation. For slave DMA direction carries the usual meaning, and,
474 * logically, the SG list is RAM and the addr variable contains slave address,
475 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_BIDIRECTIONAL
476 * and the SG list contains only one element and points at the source buffer.
478 static struct dma_async_tx_descriptor *sh_dmae_prep_sg(struct sh_dmae_chan *sh_chan,
479 struct scatterlist *sgl, unsigned int sg_len, dma_addr_t *addr,
480 enum dma_data_direction direction, unsigned long flags)
482 struct scatterlist *sg;
483 struct sh_desc *first = NULL, *new = NULL /* compiler... */;
491 for_each_sg(sgl, sg, sg_len, i)
492 chunks += (sg_dma_len(sg) + SH_DMA_TCR_MAX) /
493 (SH_DMA_TCR_MAX + 1);
495 /* Have to lock the whole loop to protect against concurrent release */
496 spin_lock_bh(&sh_chan->desc_lock);
500 * first descriptor is what user is dealing with in all API calls, its
501 * cookie is at first set to -EBUSY, at tx-submit to a positive
503 * if more than one chunk is needed further chunks have cookie = -EINVAL
504 * the last chunk, if not equal to the first, has cookie = -ENOSPC
505 * all chunks are linked onto the tx_list head with their .node heads
506 * only during this function, then they are immediately spliced
507 * back onto the free list in form of a chain
509 for_each_sg(sgl, sg, sg_len, i) {
510 dma_addr_t sg_addr = sg_dma_address(sg);
511 size_t len = sg_dma_len(sg);
517 dev_dbg(sh_chan->dev, "Add SG #%d@%p[%d], dma %llx\n",
518 i, sg, len, (unsigned long long)sg_addr);
520 if (direction == DMA_FROM_DEVICE)
521 new = sh_dmae_add_desc(sh_chan, flags,
522 &sg_addr, addr, &len, &first,
525 new = sh_dmae_add_desc(sh_chan, flags,
526 addr, &sg_addr, &len, &first,
531 new->chunks = chunks--;
532 list_add_tail(&new->node, &tx_list);
537 new->async_tx.cookie = -ENOSPC;
539 /* Put them back on the free list, so, they don't get lost */
540 list_splice_tail(&tx_list, &sh_chan->ld_free);
542 spin_unlock_bh(&sh_chan->desc_lock);
544 return &first->async_tx;
547 list_for_each_entry(new, &tx_list, node)
548 new->mark = DESC_IDLE;
549 list_splice(&tx_list, &sh_chan->ld_free);
551 spin_unlock_bh(&sh_chan->desc_lock);
556 static struct dma_async_tx_descriptor *sh_dmae_prep_memcpy(
557 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
558 size_t len, unsigned long flags)
560 struct sh_dmae_chan *sh_chan;
561 struct scatterlist sg;
566 chan->private = NULL;
568 sh_chan = to_sh_chan(chan);
570 sg_init_table(&sg, 1);
571 sg_set_page(&sg, pfn_to_page(PFN_DOWN(dma_src)), len,
572 offset_in_page(dma_src));
573 sg_dma_address(&sg) = dma_src;
574 sg_dma_len(&sg) = len;
576 return sh_dmae_prep_sg(sh_chan, &sg, 1, &dma_dest, DMA_BIDIRECTIONAL,
580 static struct dma_async_tx_descriptor *sh_dmae_prep_slave_sg(
581 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
582 enum dma_data_direction direction, unsigned long flags)
584 struct sh_dmae_slave *param;
585 struct sh_dmae_chan *sh_chan;
586 dma_addr_t slave_addr;
591 sh_chan = to_sh_chan(chan);
592 param = chan->private;
594 /* Someone calling slave DMA on a public channel? */
595 if (!param || !sg_len) {
596 dev_warn(sh_chan->dev, "%s: bad parameter: %p, %d, %d\n",
597 __func__, param, sg_len, param ? param->slave_id : -1);
601 slave_addr = param->config->addr;
604 * if (param != NULL), this is a successfully requested slave channel,
605 * therefore param->config != NULL too.
607 return sh_dmae_prep_sg(sh_chan, sgl, sg_len, &slave_addr,
611 static int sh_dmae_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
614 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
616 /* Only supports DMA_TERMINATE_ALL */
617 if (cmd != DMA_TERMINATE_ALL)
625 spin_lock_bh(&sh_chan->desc_lock);
626 if (!list_empty(&sh_chan->ld_queue)) {
627 /* Record partial transfer */
628 struct sh_desc *desc = list_entry(sh_chan->ld_queue.next,
629 struct sh_desc, node);
630 desc->partial = (desc->hw.tcr - sh_dmae_readl(sh_chan, TCR)) <<
634 spin_unlock_bh(&sh_chan->desc_lock);
636 sh_dmae_chan_ld_cleanup(sh_chan, true);
641 static dma_async_tx_callback __ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
643 struct sh_desc *desc, *_desc;
644 /* Is the "exposed" head of a chain acked? */
645 bool head_acked = false;
646 dma_cookie_t cookie = 0;
647 dma_async_tx_callback callback = NULL;
650 spin_lock_bh(&sh_chan->desc_lock);
651 list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) {
652 struct dma_async_tx_descriptor *tx = &desc->async_tx;
654 BUG_ON(tx->cookie > 0 && tx->cookie != desc->cookie);
655 BUG_ON(desc->mark != DESC_SUBMITTED &&
656 desc->mark != DESC_COMPLETED &&
657 desc->mark != DESC_WAITING);
660 * queue is ordered, and we use this loop to (1) clean up all
661 * completed descriptors, and to (2) update descriptor flags of
662 * any chunks in a (partially) completed chain
664 if (!all && desc->mark == DESC_SUBMITTED &&
665 desc->cookie != cookie)
671 if (desc->mark == DESC_COMPLETED && desc->chunks == 1) {
672 if (sh_chan->completed_cookie != desc->cookie - 1)
673 dev_dbg(sh_chan->dev,
674 "Completing cookie %d, expected %d\n",
676 sh_chan->completed_cookie + 1);
677 sh_chan->completed_cookie = desc->cookie;
680 /* Call callback on the last chunk */
681 if (desc->mark == DESC_COMPLETED && tx->callback) {
682 desc->mark = DESC_WAITING;
683 callback = tx->callback;
684 param = tx->callback_param;
685 dev_dbg(sh_chan->dev, "descriptor #%d@%p on %d callback\n",
686 tx->cookie, tx, sh_chan->id);
687 BUG_ON(desc->chunks != 1);
691 if (tx->cookie > 0 || tx->cookie == -EBUSY) {
692 if (desc->mark == DESC_COMPLETED) {
693 BUG_ON(tx->cookie < 0);
694 desc->mark = DESC_WAITING;
696 head_acked = async_tx_test_ack(tx);
698 switch (desc->mark) {
700 desc->mark = DESC_WAITING;
704 async_tx_ack(&desc->async_tx);
708 dev_dbg(sh_chan->dev, "descriptor %p #%d completed.\n",
711 if (((desc->mark == DESC_COMPLETED ||
712 desc->mark == DESC_WAITING) &&
713 async_tx_test_ack(&desc->async_tx)) || all) {
714 /* Remove from ld_queue list */
715 desc->mark = DESC_IDLE;
716 list_move(&desc->node, &sh_chan->ld_free);
719 spin_unlock_bh(&sh_chan->desc_lock);
728 * sh_chan_ld_cleanup - Clean up link descriptors
730 * This function cleans up the ld_queue of DMA channel.
732 static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
734 while (__ld_cleanup(sh_chan, all))
738 /* Terminating - forgive uncompleted cookies */
739 sh_chan->completed_cookie = sh_chan->common.cookie;
742 static void sh_chan_xfer_ld_queue(struct sh_dmae_chan *sh_chan)
744 struct sh_desc *desc;
746 spin_lock_bh(&sh_chan->desc_lock);
748 if (dmae_is_busy(sh_chan)) {
749 spin_unlock_bh(&sh_chan->desc_lock);
753 /* Find the first not transferred desciptor */
754 list_for_each_entry(desc, &sh_chan->ld_queue, node)
755 if (desc->mark == DESC_SUBMITTED) {
756 dev_dbg(sh_chan->dev, "Queue #%d to %d: %u@%x -> %x\n",
757 desc->async_tx.cookie, sh_chan->id,
758 desc->hw.tcr, desc->hw.sar, desc->hw.dar);
759 /* Get the ld start address from ld_queue */
760 dmae_set_reg(sh_chan, &desc->hw);
765 spin_unlock_bh(&sh_chan->desc_lock);
768 static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan)
770 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
771 sh_chan_xfer_ld_queue(sh_chan);
774 static enum dma_status sh_dmae_tx_status(struct dma_chan *chan,
776 struct dma_tx_state *txstate)
778 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
779 dma_cookie_t last_used;
780 dma_cookie_t last_complete;
781 enum dma_status status;
783 sh_dmae_chan_ld_cleanup(sh_chan, false);
785 last_used = chan->cookie;
786 last_complete = sh_chan->completed_cookie;
787 BUG_ON(last_complete < 0);
788 dma_set_tx_state(txstate, last_complete, last_used, 0);
790 spin_lock_bh(&sh_chan->desc_lock);
792 status = dma_async_is_complete(cookie, last_complete, last_used);
795 * If we don't find cookie on the queue, it has been aborted and we have
798 if (status != DMA_SUCCESS) {
799 struct sh_desc *desc;
801 list_for_each_entry(desc, &sh_chan->ld_queue, node)
802 if (desc->cookie == cookie) {
803 status = DMA_IN_PROGRESS;
808 spin_unlock_bh(&sh_chan->desc_lock);
813 static irqreturn_t sh_dmae_interrupt(int irq, void *data)
815 irqreturn_t ret = IRQ_NONE;
816 struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
817 u32 chcr = sh_dmae_readl(sh_chan, CHCR);
819 if (chcr & CHCR_TE) {
824 tasklet_schedule(&sh_chan->tasklet);
830 static unsigned int sh_dmae_reset(struct sh_dmae_device *shdev)
832 unsigned int handled = 0;
835 /* halt the dma controller */
836 sh_dmae_ctl_stop(shdev);
838 /* We cannot detect, which channel caused the error, have to reset all */
839 for (i = 0; i < SH_DMAC_MAX_CHANNELS; i++) {
840 struct sh_dmae_chan *sh_chan = shdev->chan[i];
841 struct sh_desc *desc;
846 /* Stop the channel */
850 list_for_each_entry(desc, &sh_chan->ld_queue, node) {
851 struct dma_async_tx_descriptor *tx = &desc->async_tx;
852 desc->mark = DESC_IDLE;
854 tx->callback(tx->callback_param);
857 list_splice_init(&sh_chan->ld_queue, &sh_chan->ld_free);
866 static irqreturn_t sh_dmae_err(int irq, void *data)
868 return IRQ_RETVAL(sh_dmae_reset(data));
871 static void dmae_do_tasklet(unsigned long data)
873 struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
874 struct sh_desc *desc;
875 u32 sar_buf = sh_dmae_readl(sh_chan, SAR);
876 u32 dar_buf = sh_dmae_readl(sh_chan, DAR);
878 spin_lock(&sh_chan->desc_lock);
879 list_for_each_entry(desc, &sh_chan->ld_queue, node) {
880 if (desc->mark == DESC_SUBMITTED &&
881 ((desc->direction == DMA_FROM_DEVICE &&
882 (desc->hw.dar + desc->hw.tcr) == dar_buf) ||
883 (desc->hw.sar + desc->hw.tcr) == sar_buf)) {
884 dev_dbg(sh_chan->dev, "done #%d@%p dst %u\n",
885 desc->async_tx.cookie, &desc->async_tx,
887 desc->mark = DESC_COMPLETED;
891 spin_unlock(&sh_chan->desc_lock);
894 sh_chan_xfer_ld_queue(sh_chan);
895 sh_dmae_chan_ld_cleanup(sh_chan, false);
898 static bool sh_dmae_nmi_notify(struct sh_dmae_device *shdev)
900 unsigned int handled;
902 /* Fast path out if NMIF is not asserted for this controller */
903 if ((dmaor_read(shdev) & DMAOR_NMIF) == 0)
906 handled = sh_dmae_reset(shdev);
913 static int sh_dmae_nmi_handler(struct notifier_block *self,
914 unsigned long cmd, void *data)
916 struct sh_dmae_device *shdev;
917 int ret = NOTIFY_DONE;
921 * Only concern ourselves with NMI events.
923 * Normally we would check the die chain value, but as this needs
924 * to be architecture independent, check for NMI context instead.
930 list_for_each_entry_rcu(shdev, &sh_dmae_devices, node) {
932 * Only stop if one of the controllers has NMIF asserted,
933 * we do not want to interfere with regular address error
934 * handling or NMI events that don't concern the DMACs.
936 triggered = sh_dmae_nmi_notify(shdev);
937 if (triggered == true)
945 static struct notifier_block sh_dmae_nmi_notifier __read_mostly = {
946 .notifier_call = sh_dmae_nmi_handler,
948 /* Run before NMI debug handler and KGDB */
952 static int __devinit sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id,
953 int irq, unsigned long flags)
956 const struct sh_dmae_channel *chan_pdata = &shdev->pdata->channel[id];
957 struct platform_device *pdev = to_platform_device(shdev->common.dev);
958 struct sh_dmae_chan *new_sh_chan;
961 new_sh_chan = kzalloc(sizeof(struct sh_dmae_chan), GFP_KERNEL);
963 dev_err(shdev->common.dev,
964 "No free memory for allocating dma channels!\n");
968 /* copy struct dma_device */
969 new_sh_chan->common.device = &shdev->common;
971 new_sh_chan->dev = shdev->common.dev;
972 new_sh_chan->id = id;
973 new_sh_chan->irq = irq;
974 new_sh_chan->base = shdev->chan_reg + chan_pdata->offset / sizeof(u32);
976 /* Init DMA tasklet */
977 tasklet_init(&new_sh_chan->tasklet, dmae_do_tasklet,
978 (unsigned long)new_sh_chan);
980 /* Init the channel */
981 dmae_init(new_sh_chan);
983 spin_lock_init(&new_sh_chan->desc_lock);
985 /* Init descripter manage list */
986 INIT_LIST_HEAD(&new_sh_chan->ld_queue);
987 INIT_LIST_HEAD(&new_sh_chan->ld_free);
989 /* Add the channel to DMA device channel list */
990 list_add_tail(&new_sh_chan->common.device_node,
991 &shdev->common.channels);
992 shdev->common.chancnt++;
995 snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
996 "sh-dmae%d.%d", pdev->id, new_sh_chan->id);
998 snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
999 "sh-dma%d", new_sh_chan->id);
1001 /* set up channel irq */
1002 err = request_irq(irq, &sh_dmae_interrupt, flags,
1003 new_sh_chan->dev_id, new_sh_chan);
1005 dev_err(shdev->common.dev, "DMA channel %d request_irq error "
1006 "with return %d\n", id, err);
1010 shdev->chan[id] = new_sh_chan;
1014 /* remove from dmaengine device node */
1015 list_del(&new_sh_chan->common.device_node);
1020 static void sh_dmae_chan_remove(struct sh_dmae_device *shdev)
1024 for (i = shdev->common.chancnt - 1 ; i >= 0 ; i--) {
1025 if (shdev->chan[i]) {
1026 struct sh_dmae_chan *sh_chan = shdev->chan[i];
1028 free_irq(sh_chan->irq, sh_chan);
1030 list_del(&sh_chan->common.device_node);
1032 shdev->chan[i] = NULL;
1035 shdev->common.chancnt = 0;
1038 static int __init sh_dmae_probe(struct platform_device *pdev)
1040 struct sh_dmae_pdata *pdata = pdev->dev.platform_data;
1041 unsigned long irqflags = IRQF_DISABLED,
1042 chan_flag[SH_DMAC_MAX_CHANNELS] = {};
1043 unsigned long flags;
1044 int errirq, chan_irq[SH_DMAC_MAX_CHANNELS];
1045 int err, i, irq_cnt = 0, irqres = 0;
1046 struct sh_dmae_device *shdev;
1047 struct resource *chan, *dmars, *errirq_res, *chanirq_res;
1049 /* get platform data */
1050 if (!pdata || !pdata->channel_num)
1053 chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054 /* DMARS area is optional, if absent, this controller cannot do slave DMA */
1055 dmars = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1058 * 1. there always must be at least one IRQ IO-resource. On SH4 it is
1059 * the error IRQ, in which case it is the only IRQ in this resource:
1060 * start == end. If it is the only IRQ resource, all channels also
1062 * 2. DMA channel IRQ resources can be specified one per resource or in
1063 * ranges (start != end)
1064 * 3. iff all events (channels and, optionally, error) on this
1065 * controller use the same IRQ, only one IRQ resource can be
1066 * specified, otherwise there must be one IRQ per channel, even if
1067 * some of them are equal
1068 * 4. if all IRQs on this controller are equal or if some specific IRQs
1069 * specify IORESOURCE_IRQ_SHAREABLE in their resources, they will be
1070 * requested with the IRQF_SHARED flag
1072 errirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1073 if (!chan || !errirq_res)
1076 if (!request_mem_region(chan->start, resource_size(chan), pdev->name)) {
1077 dev_err(&pdev->dev, "DMAC register region already claimed\n");
1081 if (dmars && !request_mem_region(dmars->start, resource_size(dmars), pdev->name)) {
1082 dev_err(&pdev->dev, "DMAC DMARS region already claimed\n");
1088 shdev = kzalloc(sizeof(struct sh_dmae_device), GFP_KERNEL);
1090 dev_err(&pdev->dev, "Not enough memory\n");
1094 shdev->chan_reg = ioremap(chan->start, resource_size(chan));
1095 if (!shdev->chan_reg)
1098 shdev->dmars = ioremap(dmars->start, resource_size(dmars));
1104 shdev->pdata = pdata;
1106 pm_runtime_enable(&pdev->dev);
1107 pm_runtime_get_sync(&pdev->dev);
1109 spin_lock_irqsave(&sh_dmae_lock, flags);
1110 list_add_tail_rcu(&shdev->node, &sh_dmae_devices);
1111 spin_unlock_irqrestore(&sh_dmae_lock, flags);
1113 /* reset dma controller */
1114 err = sh_dmae_rst(shdev);
1118 INIT_LIST_HEAD(&shdev->common.channels);
1120 dma_cap_set(DMA_MEMCPY, shdev->common.cap_mask);
1122 dma_cap_set(DMA_SLAVE, shdev->common.cap_mask);
1124 shdev->common.device_alloc_chan_resources
1125 = sh_dmae_alloc_chan_resources;
1126 shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources;
1127 shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy;
1128 shdev->common.device_tx_status = sh_dmae_tx_status;
1129 shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending;
1131 /* Compulsory for DMA_SLAVE fields */
1132 shdev->common.device_prep_slave_sg = sh_dmae_prep_slave_sg;
1133 shdev->common.device_control = sh_dmae_control;
1135 shdev->common.dev = &pdev->dev;
1136 /* Default transfer size of 32 bytes requires 32-byte alignment */
1137 shdev->common.copy_align = LOG2_DEFAULT_XFER_SIZE;
1139 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
1140 chanirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1143 chanirq_res = errirq_res;
1147 if (chanirq_res == errirq_res ||
1148 (errirq_res->flags & IORESOURCE_BITS) == IORESOURCE_IRQ_SHAREABLE)
1149 irqflags = IRQF_SHARED;
1151 errirq = errirq_res->start;
1153 err = request_irq(errirq, sh_dmae_err, irqflags,
1154 "DMAC Address Error", shdev);
1157 "DMA failed requesting irq #%d, error %d\n",
1163 chanirq_res = errirq_res;
1164 #endif /* CONFIG_CPU_SH4 || CONFIG_ARCH_SHMOBILE */
1166 if (chanirq_res->start == chanirq_res->end &&
1167 !platform_get_resource(pdev, IORESOURCE_IRQ, 1)) {
1168 /* Special case - all multiplexed */
1169 for (; irq_cnt < pdata->channel_num; irq_cnt++) {
1170 chan_irq[irq_cnt] = chanirq_res->start;
1171 chan_flag[irq_cnt] = IRQF_SHARED;
1175 for (i = chanirq_res->start; i <= chanirq_res->end; i++) {
1176 if ((errirq_res->flags & IORESOURCE_BITS) ==
1177 IORESOURCE_IRQ_SHAREABLE)
1178 chan_flag[irq_cnt] = IRQF_SHARED;
1180 chan_flag[irq_cnt] = IRQF_DISABLED;
1182 "Found IRQ %d for channel %d\n",
1184 chan_irq[irq_cnt++] = i;
1186 chanirq_res = platform_get_resource(pdev,
1187 IORESOURCE_IRQ, ++irqres);
1188 } while (irq_cnt < pdata->channel_num && chanirq_res);
1191 if (irq_cnt < pdata->channel_num)
1194 /* Create DMA Channel */
1195 for (i = 0; i < pdata->channel_num; i++) {
1196 err = sh_dmae_chan_probe(shdev, i, chan_irq[i], chan_flag[i]);
1198 goto chan_probe_err;
1201 pm_runtime_put(&pdev->dev);
1203 platform_set_drvdata(pdev, shdev);
1204 dma_async_device_register(&shdev->common);
1209 sh_dmae_chan_remove(shdev);
1211 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
1212 free_irq(errirq, shdev);
1216 spin_lock_irqsave(&sh_dmae_lock, flags);
1217 list_del_rcu(&shdev->node);
1218 spin_unlock_irqrestore(&sh_dmae_lock, flags);
1220 pm_runtime_put(&pdev->dev);
1222 iounmap(shdev->dmars);
1224 iounmap(shdev->chan_reg);
1229 release_mem_region(dmars->start, resource_size(dmars));
1231 release_mem_region(chan->start, resource_size(chan));
1236 static int __exit sh_dmae_remove(struct platform_device *pdev)
1238 struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
1239 struct resource *res;
1240 unsigned long flags;
1241 int errirq = platform_get_irq(pdev, 0);
1243 dma_async_device_unregister(&shdev->common);
1246 free_irq(errirq, shdev);
1248 spin_lock_irqsave(&sh_dmae_lock, flags);
1249 list_del_rcu(&shdev->node);
1250 spin_unlock_irqrestore(&sh_dmae_lock, flags);
1252 /* channel data remove */
1253 sh_dmae_chan_remove(shdev);
1255 pm_runtime_disable(&pdev->dev);
1258 iounmap(shdev->dmars);
1259 iounmap(shdev->chan_reg);
1263 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1265 release_mem_region(res->start, resource_size(res));
1266 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1268 release_mem_region(res->start, resource_size(res));
1273 static void sh_dmae_shutdown(struct platform_device *pdev)
1275 struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
1276 sh_dmae_ctl_stop(shdev);
1279 static struct platform_driver sh_dmae_driver = {
1280 .remove = __exit_p(sh_dmae_remove),
1281 .shutdown = sh_dmae_shutdown,
1283 .owner = THIS_MODULE,
1284 .name = "sh-dma-engine",
1288 static int __init sh_dmae_init(void)
1290 /* Wire up NMI handling */
1291 int err = register_die_notifier(&sh_dmae_nmi_notifier);
1295 return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe);
1297 module_init(sh_dmae_init);
1299 static void __exit sh_dmae_exit(void)
1301 platform_driver_unregister(&sh_dmae_driver);
1303 unregister_die_notifier(&sh_dmae_nmi_notifier);
1305 module_exit(sh_dmae_exit);
1307 MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>");
1308 MODULE_DESCRIPTION("Renesas SH DMA Engine driver");
1309 MODULE_LICENSE("GPL");
1310 MODULE_ALIAS("platform:sh-dma-engine");