]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/dma/ste_dma40.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[mv-sheeva.git] / drivers / dma / ste_dma40.c
1 /*
2  * driver/dma/ste_dma40.c
3  *
4  * Copyright (C) ST-Ericsson 2007-2010
5  * License terms: GNU General Public License (GPL) version 2
6  * Author: Per Friden <per.friden@stericsson.com>
7  * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
8  *
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17
18 #include <plat/ste_dma40.h>
19
20 #include "ste_dma40_ll.h"
21
22 #define D40_NAME "dma40"
23
24 #define D40_PHY_CHAN -1
25
26 /* For masking out/in 2 bit channel positions */
27 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
28 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
29
30 /* Maximum iterations taken before giving up suspending a channel */
31 #define D40_SUSPEND_MAX_IT 500
32
33 /* Hardware requirement on LCLA alignment */
34 #define LCLA_ALIGNMENT 0x40000
35 /* Attempts before giving up to trying to get pages that are aligned */
36 #define MAX_LCLA_ALLOC_ATTEMPTS 256
37
38 /* Bit markings for allocation map */
39 #define D40_ALLOC_FREE          (1 << 31)
40 #define D40_ALLOC_PHY           (1 << 30)
41 #define D40_ALLOC_LOG_FREE      0
42
43 /* Hardware designer of the block */
44 #define D40_PERIPHID2_DESIGNER 0x8
45
46 /**
47  * enum 40_command - The different commands and/or statuses.
48  *
49  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
50  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
51  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
52  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
53  */
54 enum d40_command {
55         D40_DMA_STOP            = 0,
56         D40_DMA_RUN             = 1,
57         D40_DMA_SUSPEND_REQ     = 2,
58         D40_DMA_SUSPENDED       = 3
59 };
60
61 /**
62  * struct d40_lli_pool - Structure for keeping LLIs in memory
63  *
64  * @base: Pointer to memory area when the pre_alloc_lli's are not large
65  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
66  * pre_alloc_lli is used.
67  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
68  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
69  * one buffer to one buffer.
70  */
71 struct d40_lli_pool {
72         void    *base;
73         int      size;
74         /* Space for dst and src, plus an extra for padding */
75         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
76 };
77
78 /**
79  * struct d40_desc - A descriptor is one DMA job.
80  *
81  * @lli_phy: LLI settings for physical channel. Both src and dst=
82  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
83  * lli_len equals one.
84  * @lli_log: Same as above but for logical channels.
85  * @lli_pool: The pool with two entries pre-allocated.
86  * @lli_len: Number of llis of current descriptor.
87  * @lli_count: Number of transfered llis.
88  * @lli_tx_len: Max number of LLIs per transfer, there can be
89  * many transfer for one descriptor.
90  * @txd: DMA engine struct. Used for among other things for communication
91  * during a transfer.
92  * @node: List entry.
93  * @dir: The transfer direction of this job.
94  * @is_in_client_list: true if the client owns this descriptor.
95  *
96  * This descriptor is used for both logical and physical transfers.
97  */
98
99 struct d40_desc {
100         /* LLI physical */
101         struct d40_phy_lli_bidir         lli_phy;
102         /* LLI logical */
103         struct d40_log_lli_bidir         lli_log;
104
105         struct d40_lli_pool              lli_pool;
106         int                              lli_len;
107         int                              lli_count;
108         u32                              lli_tx_len;
109
110         struct dma_async_tx_descriptor   txd;
111         struct list_head                 node;
112
113         enum dma_data_direction          dir;
114         bool                             is_in_client_list;
115 };
116
117 /**
118  * struct d40_lcla_pool - LCLA pool settings and data.
119  *
120  * @base: The virtual address of LCLA. 18 bit aligned.
121  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
122  * This pointer is only there for clean-up on error.
123  * @pages: The number of pages needed for all physical channels.
124  * Only used later for clean-up on error
125  * @lock: Lock to protect the content in this struct.
126  * @alloc_map: Bitmap mapping between physical channel and LCLA entries.
127  * @num_blocks: The number of entries of alloc_map. Equals to the
128  * number of physical channels.
129  */
130 struct d40_lcla_pool {
131         void            *base;
132         void            *base_unaligned;
133         int              pages;
134         spinlock_t       lock;
135         u32             *alloc_map;
136         int              num_blocks;
137 };
138
139 /**
140  * struct d40_phy_res - struct for handling eventlines mapped to physical
141  * channels.
142  *
143  * @lock: A lock protection this entity.
144  * @num: The physical channel number of this entity.
145  * @allocated_src: Bit mapped to show which src event line's are mapped to
146  * this physical channel. Can also be free or physically allocated.
147  * @allocated_dst: Same as for src but is dst.
148  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
149  * event line number. Both allocated_src and allocated_dst can not be
150  * allocated to a physical channel, since the interrupt handler has then
151  * no way of figure out which one the interrupt belongs to.
152  */
153 struct d40_phy_res {
154         spinlock_t lock;
155         int        num;
156         u32        allocated_src;
157         u32        allocated_dst;
158 };
159
160 struct d40_base;
161
162 /**
163  * struct d40_chan - Struct that describes a channel.
164  *
165  * @lock: A spinlock to protect this struct.
166  * @log_num: The logical number, if any of this channel.
167  * @completed: Starts with 1, after first interrupt it is set to dma engine's
168  * current cookie.
169  * @pending_tx: The number of pending transfers. Used between interrupt handler
170  * and tasklet.
171  * @busy: Set to true when transfer is ongoing on this channel.
172  * @phy_chan: Pointer to physical channel which this instance runs on. If this
173  * point is NULL, then the channel is not allocated.
174  * @chan: DMA engine handle.
175  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
176  * transfer and call client callback.
177  * @client: Cliented owned descriptor list.
178  * @active: Active descriptor.
179  * @queue: Queued jobs.
180  * @dma_cfg: The client configuration of this dma channel.
181  * @base: Pointer to the device instance struct.
182  * @src_def_cfg: Default cfg register setting for src.
183  * @dst_def_cfg: Default cfg register setting for dst.
184  * @log_def: Default logical channel settings.
185  * @lcla: Space for one dst src pair for logical channel transfers.
186  * @lcpa: Pointer to dst and src lcpa settings.
187  *
188  * This struct can either "be" a logical or a physical channel.
189  */
190 struct d40_chan {
191         spinlock_t                       lock;
192         int                              log_num;
193         /* ID of the most recent completed transfer */
194         int                              completed;
195         int                              pending_tx;
196         bool                             busy;
197         struct d40_phy_res              *phy_chan;
198         struct dma_chan                  chan;
199         struct tasklet_struct            tasklet;
200         struct list_head                 client;
201         struct list_head                 active;
202         struct list_head                 queue;
203         struct stedma40_chan_cfg         dma_cfg;
204         struct d40_base                 *base;
205         /* Default register configurations */
206         u32                              src_def_cfg;
207         u32                              dst_def_cfg;
208         struct d40_def_lcsp              log_def;
209         struct d40_lcla_elem             lcla;
210         struct d40_log_lli_full         *lcpa;
211         /* Runtime reconfiguration */
212         dma_addr_t                      runtime_addr;
213         enum dma_data_direction         runtime_direction;
214 };
215
216 /**
217  * struct d40_base - The big global struct, one for each probe'd instance.
218  *
219  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
220  * @execmd_lock: Lock for execute command usage since several channels share
221  * the same physical register.
222  * @dev: The device structure.
223  * @virtbase: The virtual base address of the DMA's register.
224  * @rev: silicon revision detected.
225  * @clk: Pointer to the DMA clock structure.
226  * @phy_start: Physical memory start of the DMA registers.
227  * @phy_size: Size of the DMA register map.
228  * @irq: The IRQ number.
229  * @num_phy_chans: The number of physical channels. Read from HW. This
230  * is the number of available channels for this driver, not counting "Secure
231  * mode" allocated physical channels.
232  * @num_log_chans: The number of logical channels. Calculated from
233  * num_phy_chans.
234  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
235  * @dma_slave: dma_device channels that can do only do slave transfers.
236  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
237  * @phy_chans: Room for all possible physical channels in system.
238  * @log_chans: Room for all possible logical channels in system.
239  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
240  * to log_chans entries.
241  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
242  * to phy_chans entries.
243  * @plat_data: Pointer to provided platform_data which is the driver
244  * configuration.
245  * @phy_res: Vector containing all physical channels.
246  * @lcla_pool: lcla pool settings and data.
247  * @lcpa_base: The virtual mapped address of LCPA.
248  * @phy_lcpa: The physical address of the LCPA.
249  * @lcpa_size: The size of the LCPA area.
250  * @desc_slab: cache for descriptors.
251  */
252 struct d40_base {
253         spinlock_t                       interrupt_lock;
254         spinlock_t                       execmd_lock;
255         struct device                    *dev;
256         void __iomem                     *virtbase;
257         u8                                rev:4;
258         struct clk                       *clk;
259         phys_addr_t                       phy_start;
260         resource_size_t                   phy_size;
261         int                               irq;
262         int                               num_phy_chans;
263         int                               num_log_chans;
264         struct dma_device                 dma_both;
265         struct dma_device                 dma_slave;
266         struct dma_device                 dma_memcpy;
267         struct d40_chan                  *phy_chans;
268         struct d40_chan                  *log_chans;
269         struct d40_chan                 **lookup_log_chans;
270         struct d40_chan                 **lookup_phy_chans;
271         struct stedma40_platform_data    *plat_data;
272         /* Physical half channels */
273         struct d40_phy_res               *phy_res;
274         struct d40_lcla_pool              lcla_pool;
275         void                             *lcpa_base;
276         dma_addr_t                        phy_lcpa;
277         resource_size_t                   lcpa_size;
278         struct kmem_cache                *desc_slab;
279 };
280
281 /**
282  * struct d40_interrupt_lookup - lookup table for interrupt handler
283  *
284  * @src: Interrupt mask register.
285  * @clr: Interrupt clear register.
286  * @is_error: true if this is an error interrupt.
287  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
288  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
289  */
290 struct d40_interrupt_lookup {
291         u32 src;
292         u32 clr;
293         bool is_error;
294         int offset;
295 };
296
297 /**
298  * struct d40_reg_val - simple lookup struct
299  *
300  * @reg: The register.
301  * @val: The value that belongs to the register in reg.
302  */
303 struct d40_reg_val {
304         unsigned int reg;
305         unsigned int val;
306 };
307
308 static int d40_pool_lli_alloc(struct d40_desc *d40d,
309                               int lli_len, bool is_log)
310 {
311         u32 align;
312         void *base;
313
314         if (is_log)
315                 align = sizeof(struct d40_log_lli);
316         else
317                 align = sizeof(struct d40_phy_lli);
318
319         if (lli_len == 1) {
320                 base = d40d->lli_pool.pre_alloc_lli;
321                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
322                 d40d->lli_pool.base = NULL;
323         } else {
324                 d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
325
326                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
327                 d40d->lli_pool.base = base;
328
329                 if (d40d->lli_pool.base == NULL)
330                         return -ENOMEM;
331         }
332
333         if (is_log) {
334                 d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
335                                               align);
336                 d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
337                                               align);
338         } else {
339                 d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
340                                               align);
341                 d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
342                                               align);
343
344                 d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
345                 d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
346         }
347
348         return 0;
349 }
350
351 static void d40_pool_lli_free(struct d40_desc *d40d)
352 {
353         kfree(d40d->lli_pool.base);
354         d40d->lli_pool.base = NULL;
355         d40d->lli_pool.size = 0;
356         d40d->lli_log.src = NULL;
357         d40d->lli_log.dst = NULL;
358         d40d->lli_phy.src = NULL;
359         d40d->lli_phy.dst = NULL;
360         d40d->lli_phy.src_addr = 0;
361         d40d->lli_phy.dst_addr = 0;
362 }
363
364 static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
365                                       struct d40_desc *desc)
366 {
367         dma_cookie_t cookie = d40c->chan.cookie;
368
369         if (++cookie < 0)
370                 cookie = 1;
371
372         d40c->chan.cookie = cookie;
373         desc->txd.cookie = cookie;
374
375         return cookie;
376 }
377
378 static void d40_desc_remove(struct d40_desc *d40d)
379 {
380         list_del(&d40d->node);
381 }
382
383 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
384 {
385         struct d40_desc *d;
386         struct d40_desc *_d;
387
388         if (!list_empty(&d40c->client)) {
389                 list_for_each_entry_safe(d, _d, &d40c->client, node)
390                         if (async_tx_test_ack(&d->txd)) {
391                                 d40_pool_lli_free(d);
392                                 d40_desc_remove(d);
393                                 break;
394                         }
395         } else {
396                 d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
397                 if (d != NULL) {
398                         memset(d, 0, sizeof(struct d40_desc));
399                         INIT_LIST_HEAD(&d->node);
400                 }
401         }
402         return d;
403 }
404
405 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
406 {
407         kmem_cache_free(d40c->base->desc_slab, d40d);
408 }
409
410 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
411 {
412         list_add_tail(&desc->node, &d40c->active);
413 }
414
415 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
416 {
417         struct d40_desc *d;
418
419         if (list_empty(&d40c->active))
420                 return NULL;
421
422         d = list_first_entry(&d40c->active,
423                              struct d40_desc,
424                              node);
425         return d;
426 }
427
428 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
429 {
430         list_add_tail(&desc->node, &d40c->queue);
431 }
432
433 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
434 {
435         struct d40_desc *d;
436
437         if (list_empty(&d40c->queue))
438                 return NULL;
439
440         d = list_first_entry(&d40c->queue,
441                              struct d40_desc,
442                              node);
443         return d;
444 }
445
446 /* Support functions for logical channels */
447
448 static int d40_lcla_id_get(struct d40_chan *d40c)
449 {
450         int src_id = 0;
451         int dst_id = 0;
452         struct d40_log_lli *lcla_lidx_base =
453                 d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024;
454         int i;
455         int lli_per_log = d40c->base->plat_data->llis_per_log;
456         unsigned long flags;
457
458         if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
459                 return 0;
460
461         if (d40c->base->lcla_pool.num_blocks > 32)
462                 return -EINVAL;
463
464         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
465
466         for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) {
467                 if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
468                       (0x1 << i))) {
469                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
470                                 (0x1 << i);
471                         break;
472                 }
473         }
474         src_id = i;
475         if (src_id >= d40c->base->lcla_pool.num_blocks)
476                 goto err;
477
478         for (; i < d40c->base->lcla_pool.num_blocks; i++) {
479                 if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
480                       (0x1 << i))) {
481                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
482                                 (0x1 << i);
483                         break;
484                 }
485         }
486
487         dst_id = i;
488         if (dst_id == src_id)
489                 goto err;
490
491         d40c->lcla.src_id = src_id;
492         d40c->lcla.dst_id = dst_id;
493         d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
494         d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
495
496         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
497         return 0;
498 err:
499         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
500         return -EINVAL;
501 }
502
503
504 static int d40_channel_execute_command(struct d40_chan *d40c,
505                                        enum d40_command command)
506 {
507         int status, i;
508         void __iomem *active_reg;
509         int ret = 0;
510         unsigned long flags;
511         u32 wmask;
512
513         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
514
515         if (d40c->phy_chan->num % 2 == 0)
516                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
517         else
518                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
519
520         if (command == D40_DMA_SUSPEND_REQ) {
521                 status = (readl(active_reg) &
522                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
523                         D40_CHAN_POS(d40c->phy_chan->num);
524
525                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
526                         goto done;
527         }
528
529         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
530         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
531                active_reg);
532
533         if (command == D40_DMA_SUSPEND_REQ) {
534
535                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
536                         status = (readl(active_reg) &
537                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
538                                 D40_CHAN_POS(d40c->phy_chan->num);
539
540                         cpu_relax();
541                         /*
542                          * Reduce the number of bus accesses while
543                          * waiting for the DMA to suspend.
544                          */
545                         udelay(3);
546
547                         if (status == D40_DMA_STOP ||
548                             status == D40_DMA_SUSPENDED)
549                                 break;
550                 }
551
552                 if (i == D40_SUSPEND_MAX_IT) {
553                         dev_err(&d40c->chan.dev->device,
554                                 "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
555                                 __func__, d40c->phy_chan->num, d40c->log_num,
556                                 status);
557                         dump_stack();
558                         ret = -EBUSY;
559                 }
560
561         }
562 done:
563         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
564         return ret;
565 }
566
567 static void d40_term_all(struct d40_chan *d40c)
568 {
569         struct d40_desc *d40d;
570         unsigned long flags;
571
572         /* Release active descriptors */
573         while ((d40d = d40_first_active_get(d40c))) {
574                 d40_desc_remove(d40d);
575
576                 /* Return desc to free-list */
577                 d40_desc_free(d40c, d40d);
578         }
579
580         /* Release queued descriptors waiting for transfer */
581         while ((d40d = d40_first_queued(d40c))) {
582                 d40_desc_remove(d40d);
583
584                 /* Return desc to free-list */
585                 d40_desc_free(d40c, d40d);
586         }
587
588         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
589
590         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
591                 (~(0x1 << d40c->lcla.dst_id));
592         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
593                 (~(0x1 << d40c->lcla.src_id));
594
595         d40c->lcla.src_id = -1;
596         d40c->lcla.dst_id = -1;
597
598         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
599
600         d40c->pending_tx = 0;
601         d40c->busy = false;
602 }
603
604 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
605 {
606         u32 val;
607         unsigned long flags;
608
609         /* Notice, that disable requires the physical channel to be stopped */
610         if (do_enable)
611                 val = D40_ACTIVATE_EVENTLINE;
612         else
613                 val = D40_DEACTIVATE_EVENTLINE;
614
615         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
616
617         /* Enable event line connected to device (or memcpy) */
618         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
619             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
620                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
621
622                 writel((val << D40_EVENTLINE_POS(event)) |
623                        ~D40_EVENTLINE_MASK(event),
624                        d40c->base->virtbase + D40_DREG_PCBASE +
625                        d40c->phy_chan->num * D40_DREG_PCDELTA +
626                        D40_CHAN_REG_SSLNK);
627         }
628         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
629                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
630
631                 writel((val << D40_EVENTLINE_POS(event)) |
632                        ~D40_EVENTLINE_MASK(event),
633                        d40c->base->virtbase + D40_DREG_PCBASE +
634                        d40c->phy_chan->num * D40_DREG_PCDELTA +
635                        D40_CHAN_REG_SDLNK);
636         }
637
638         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
639 }
640
641 static u32 d40_chan_has_events(struct d40_chan *d40c)
642 {
643         u32 val = 0;
644
645         /* If SSLNK or SDLNK is zero all events are disabled */
646         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
647             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
648                 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
649                             d40c->phy_chan->num * D40_DREG_PCDELTA +
650                             D40_CHAN_REG_SSLNK);
651
652         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM)
653                 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
654                             d40c->phy_chan->num * D40_DREG_PCDELTA +
655                             D40_CHAN_REG_SDLNK);
656         return val;
657 }
658
659 static void d40_config_enable_lidx(struct d40_chan *d40c)
660 {
661         /* Set LIDX for lcla */
662         writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
663                D40_SREG_ELEM_LOG_LIDX_MASK,
664                d40c->base->virtbase + D40_DREG_PCBASE +
665                d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
666
667         writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
668                D40_SREG_ELEM_LOG_LIDX_MASK,
669                d40c->base->virtbase + D40_DREG_PCBASE +
670                d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
671 }
672
673 static int d40_config_write(struct d40_chan *d40c)
674 {
675         u32 addr_base;
676         u32 var;
677         int res;
678
679         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
680         if (res)
681                 return res;
682
683         /* Odd addresses are even addresses + 4 */
684         addr_base = (d40c->phy_chan->num % 2) * 4;
685         /* Setup channel mode to logical or physical */
686         var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
687                 D40_CHAN_POS(d40c->phy_chan->num);
688         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
689
690         /* Setup operational mode option register */
691         var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
692                0x3) << D40_CHAN_POS(d40c->phy_chan->num);
693
694         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
695
696         if (d40c->log_num != D40_PHY_CHAN) {
697                 /* Set default config for CFG reg */
698                 writel(d40c->src_def_cfg,
699                        d40c->base->virtbase + D40_DREG_PCBASE +
700                        d40c->phy_chan->num * D40_DREG_PCDELTA +
701                        D40_CHAN_REG_SSCFG);
702                 writel(d40c->dst_def_cfg,
703                        d40c->base->virtbase + D40_DREG_PCBASE +
704                        d40c->phy_chan->num * D40_DREG_PCDELTA +
705                        D40_CHAN_REG_SDCFG);
706
707                 d40_config_enable_lidx(d40c);
708         }
709         return res;
710 }
711
712 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
713 {
714         if (d40d->lli_phy.dst && d40d->lli_phy.src) {
715                 d40_phy_lli_write(d40c->base->virtbase,
716                                   d40c->phy_chan->num,
717                                   d40d->lli_phy.dst,
718                                   d40d->lli_phy.src);
719         } else if (d40d->lli_log.dst && d40d->lli_log.src) {
720                 struct d40_log_lli *src = d40d->lli_log.src;
721                 struct d40_log_lli *dst = d40d->lli_log.dst;
722                 int s;
723
724                 src += d40d->lli_count;
725                 dst += d40d->lli_count;
726                 s = d40_log_lli_write(d40c->lcpa,
727                                       d40c->lcla.src, d40c->lcla.dst,
728                                       dst, src,
729                                       d40c->base->plat_data->llis_per_log);
730
731                 /* If s equals to zero, the job is not linked */
732                 if (s > 0) {
733                         (void) dma_map_single(d40c->base->dev, d40c->lcla.src,
734                                               s * sizeof(struct d40_log_lli),
735                                               DMA_TO_DEVICE);
736                         (void) dma_map_single(d40c->base->dev, d40c->lcla.dst,
737                                               s * sizeof(struct d40_log_lli),
738                                               DMA_TO_DEVICE);
739                 }
740         }
741         d40d->lli_count += d40d->lli_tx_len;
742 }
743
744 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
745 {
746         struct d40_chan *d40c = container_of(tx->chan,
747                                              struct d40_chan,
748                                              chan);
749         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
750         unsigned long flags;
751
752         spin_lock_irqsave(&d40c->lock, flags);
753
754         tx->cookie = d40_assign_cookie(d40c, d40d);
755
756         d40_desc_queue(d40c, d40d);
757
758         spin_unlock_irqrestore(&d40c->lock, flags);
759
760         return tx->cookie;
761 }
762
763 static int d40_start(struct d40_chan *d40c)
764 {
765         if (d40c->base->rev == 0) {
766                 int err;
767
768                 if (d40c->log_num != D40_PHY_CHAN) {
769                         err = d40_channel_execute_command(d40c,
770                                                           D40_DMA_SUSPEND_REQ);
771                         if (err)
772                                 return err;
773                 }
774         }
775
776         if (d40c->log_num != D40_PHY_CHAN)
777                 d40_config_set_event(d40c, true);
778
779         return d40_channel_execute_command(d40c, D40_DMA_RUN);
780 }
781
782 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
783 {
784         struct d40_desc *d40d;
785         int err;
786
787         /* Start queued jobs, if any */
788         d40d = d40_first_queued(d40c);
789
790         if (d40d != NULL) {
791                 d40c->busy = true;
792
793                 /* Remove from queue */
794                 d40_desc_remove(d40d);
795
796                 /* Add to active queue */
797                 d40_desc_submit(d40c, d40d);
798
799                 /* Initiate DMA job */
800                 d40_desc_load(d40c, d40d);
801
802                 /* Start dma job */
803                 err = d40_start(d40c);
804
805                 if (err)
806                         return NULL;
807         }
808
809         return d40d;
810 }
811
812 /* called from interrupt context */
813 static void dma_tc_handle(struct d40_chan *d40c)
814 {
815         struct d40_desc *d40d;
816
817         if (!d40c->phy_chan)
818                 return;
819
820         /* Get first active entry from list */
821         d40d = d40_first_active_get(d40c);
822
823         if (d40d == NULL)
824                 return;
825
826         if (d40d->lli_count < d40d->lli_len) {
827
828                 d40_desc_load(d40c, d40d);
829                 /* Start dma job */
830                 (void) d40_start(d40c);
831                 return;
832         }
833
834         if (d40_queue_start(d40c) == NULL)
835                 d40c->busy = false;
836
837         d40c->pending_tx++;
838         tasklet_schedule(&d40c->tasklet);
839
840 }
841
842 static void dma_tasklet(unsigned long data)
843 {
844         struct d40_chan *d40c = (struct d40_chan *) data;
845         struct d40_desc *d40d_fin;
846         unsigned long flags;
847         dma_async_tx_callback callback;
848         void *callback_param;
849
850         spin_lock_irqsave(&d40c->lock, flags);
851
852         /* Get first active entry from list */
853         d40d_fin = d40_first_active_get(d40c);
854
855         if (d40d_fin == NULL)
856                 goto err;
857
858         d40c->completed = d40d_fin->txd.cookie;
859
860         /*
861          * If terminating a channel pending_tx is set to zero.
862          * This prevents any finished active jobs to return to the client.
863          */
864         if (d40c->pending_tx == 0) {
865                 spin_unlock_irqrestore(&d40c->lock, flags);
866                 return;
867         }
868
869         /* Callback to client */
870         callback = d40d_fin->txd.callback;
871         callback_param = d40d_fin->txd.callback_param;
872
873         if (async_tx_test_ack(&d40d_fin->txd)) {
874                 d40_pool_lli_free(d40d_fin);
875                 d40_desc_remove(d40d_fin);
876                 /* Return desc to free-list */
877                 d40_desc_free(d40c, d40d_fin);
878         } else {
879                 if (!d40d_fin->is_in_client_list) {
880                         d40_desc_remove(d40d_fin);
881                         list_add_tail(&d40d_fin->node, &d40c->client);
882                         d40d_fin->is_in_client_list = true;
883                 }
884         }
885
886         d40c->pending_tx--;
887
888         if (d40c->pending_tx)
889                 tasklet_schedule(&d40c->tasklet);
890
891         spin_unlock_irqrestore(&d40c->lock, flags);
892
893         if (callback)
894                 callback(callback_param);
895
896         return;
897
898  err:
899         /* Rescue manouver if receiving double interrupts */
900         if (d40c->pending_tx > 0)
901                 d40c->pending_tx--;
902         spin_unlock_irqrestore(&d40c->lock, flags);
903 }
904
905 static irqreturn_t d40_handle_interrupt(int irq, void *data)
906 {
907         static const struct d40_interrupt_lookup il[] = {
908                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
909                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
910                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
911                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
912                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
913                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
914                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
915                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
916                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
917                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
918         };
919
920         int i;
921         u32 regs[ARRAY_SIZE(il)];
922         u32 tmp;
923         u32 idx;
924         u32 row;
925         long chan = -1;
926         struct d40_chan *d40c;
927         unsigned long flags;
928         struct d40_base *base = data;
929
930         spin_lock_irqsave(&base->interrupt_lock, flags);
931
932         /* Read interrupt status of both logical and physical channels */
933         for (i = 0; i < ARRAY_SIZE(il); i++)
934                 regs[i] = readl(base->virtbase + il[i].src);
935
936         for (;;) {
937
938                 chan = find_next_bit((unsigned long *)regs,
939                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
940
941                 /* No more set bits found? */
942                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
943                         break;
944
945                 row = chan / BITS_PER_LONG;
946                 idx = chan & (BITS_PER_LONG - 1);
947
948                 /* ACK interrupt */
949                 tmp = readl(base->virtbase + il[row].clr);
950                 tmp |= 1 << idx;
951                 writel(tmp, base->virtbase + il[row].clr);
952
953                 if (il[row].offset == D40_PHY_CHAN)
954                         d40c = base->lookup_phy_chans[idx];
955                 else
956                         d40c = base->lookup_log_chans[il[row].offset + idx];
957                 spin_lock(&d40c->lock);
958
959                 if (!il[row].is_error)
960                         dma_tc_handle(d40c);
961                 else
962                         dev_err(base->dev,
963                                 "[%s] IRQ chan: %ld offset %d idx %d\n",
964                                 __func__, chan, il[row].offset, idx);
965
966                 spin_unlock(&d40c->lock);
967         }
968
969         spin_unlock_irqrestore(&base->interrupt_lock, flags);
970
971         return IRQ_HANDLED;
972 }
973
974
975 static int d40_validate_conf(struct d40_chan *d40c,
976                              struct stedma40_chan_cfg *conf)
977 {
978         int res = 0;
979         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
980         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
981         bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
982                 == STEDMA40_CHANNEL_IN_LOG_MODE;
983
984         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH &&
985             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
986                 dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
987                         __func__);
988                 res = -EINVAL;
989         }
990
991         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM &&
992             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
993                 dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
994                         __func__);
995                 res = -EINVAL;
996         }
997
998         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
999             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1000                 dev_err(&d40c->chan.dev->device,
1001                         "[%s] No event line\n", __func__);
1002                 res = -EINVAL;
1003         }
1004
1005         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1006             (src_event_group != dst_event_group)) {
1007                 dev_err(&d40c->chan.dev->device,
1008                         "[%s] Invalid event group\n", __func__);
1009                 res = -EINVAL;
1010         }
1011
1012         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1013                 /*
1014                  * DMAC HW supports it. Will be added to this driver,
1015                  * in case any dma client requires it.
1016                  */
1017                 dev_err(&d40c->chan.dev->device,
1018                         "[%s] periph to periph not supported\n",
1019                         __func__);
1020                 res = -EINVAL;
1021         }
1022
1023         return res;
1024 }
1025
1026 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1027                                int log_event_line, bool is_log)
1028 {
1029         unsigned long flags;
1030         spin_lock_irqsave(&phy->lock, flags);
1031         if (!is_log) {
1032                 /* Physical interrupts are masked per physical full channel */
1033                 if (phy->allocated_src == D40_ALLOC_FREE &&
1034                     phy->allocated_dst == D40_ALLOC_FREE) {
1035                         phy->allocated_dst = D40_ALLOC_PHY;
1036                         phy->allocated_src = D40_ALLOC_PHY;
1037                         goto found;
1038                 } else
1039                         goto not_found;
1040         }
1041
1042         /* Logical channel */
1043         if (is_src) {
1044                 if (phy->allocated_src == D40_ALLOC_PHY)
1045                         goto not_found;
1046
1047                 if (phy->allocated_src == D40_ALLOC_FREE)
1048                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1049
1050                 if (!(phy->allocated_src & (1 << log_event_line))) {
1051                         phy->allocated_src |= 1 << log_event_line;
1052                         goto found;
1053                 } else
1054                         goto not_found;
1055         } else {
1056                 if (phy->allocated_dst == D40_ALLOC_PHY)
1057                         goto not_found;
1058
1059                 if (phy->allocated_dst == D40_ALLOC_FREE)
1060                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1061
1062                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1063                         phy->allocated_dst |= 1 << log_event_line;
1064                         goto found;
1065                 } else
1066                         goto not_found;
1067         }
1068
1069 not_found:
1070         spin_unlock_irqrestore(&phy->lock, flags);
1071         return false;
1072 found:
1073         spin_unlock_irqrestore(&phy->lock, flags);
1074         return true;
1075 }
1076
1077 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1078                                int log_event_line)
1079 {
1080         unsigned long flags;
1081         bool is_free = false;
1082
1083         spin_lock_irqsave(&phy->lock, flags);
1084         if (!log_event_line) {
1085                 /* Physical interrupts are masked per physical full channel */
1086                 phy->allocated_dst = D40_ALLOC_FREE;
1087                 phy->allocated_src = D40_ALLOC_FREE;
1088                 is_free = true;
1089                 goto out;
1090         }
1091
1092         /* Logical channel */
1093         if (is_src) {
1094                 phy->allocated_src &= ~(1 << log_event_line);
1095                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1096                         phy->allocated_src = D40_ALLOC_FREE;
1097         } else {
1098                 phy->allocated_dst &= ~(1 << log_event_line);
1099                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1100                         phy->allocated_dst = D40_ALLOC_FREE;
1101         }
1102
1103         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1104                    D40_ALLOC_FREE);
1105
1106 out:
1107         spin_unlock_irqrestore(&phy->lock, flags);
1108
1109         return is_free;
1110 }
1111
1112 static int d40_allocate_channel(struct d40_chan *d40c)
1113 {
1114         int dev_type;
1115         int event_group;
1116         int event_line;
1117         struct d40_phy_res *phys;
1118         int i;
1119         int j;
1120         int log_num;
1121         bool is_src;
1122         bool is_log = (d40c->dma_cfg.channel_type &
1123                        STEDMA40_CHANNEL_IN_OPER_MODE)
1124                 == STEDMA40_CHANNEL_IN_LOG_MODE;
1125
1126
1127         phys = d40c->base->phy_res;
1128
1129         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1130                 dev_type = d40c->dma_cfg.src_dev_type;
1131                 log_num = 2 * dev_type;
1132                 is_src = true;
1133         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1134                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1135                 /* dst event lines are used for logical memcpy */
1136                 dev_type = d40c->dma_cfg.dst_dev_type;
1137                 log_num = 2 * dev_type + 1;
1138                 is_src = false;
1139         } else
1140                 return -EINVAL;
1141
1142         event_group = D40_TYPE_TO_GROUP(dev_type);
1143         event_line = D40_TYPE_TO_EVENT(dev_type);
1144
1145         if (!is_log) {
1146                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1147                         /* Find physical half channel */
1148                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1149
1150                                 if (d40_alloc_mask_set(&phys[i], is_src,
1151                                                        0, is_log))
1152                                         goto found_phy;
1153                         }
1154                 } else
1155                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1156                                 int phy_num = j  + event_group * 2;
1157                                 for (i = phy_num; i < phy_num + 2; i++) {
1158                                         if (d40_alloc_mask_set(&phys[i],
1159                                                                is_src,
1160                                                                0,
1161                                                                is_log))
1162                                                 goto found_phy;
1163                                 }
1164                         }
1165                 return -EINVAL;
1166 found_phy:
1167                 d40c->phy_chan = &phys[i];
1168                 d40c->log_num = D40_PHY_CHAN;
1169                 goto out;
1170         }
1171         if (dev_type == -1)
1172                 return -EINVAL;
1173
1174         /* Find logical channel */
1175         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1176                 int phy_num = j + event_group * 2;
1177                 /*
1178                  * Spread logical channels across all available physical rather
1179                  * than pack every logical channel at the first available phy
1180                  * channels.
1181                  */
1182                 if (is_src) {
1183                         for (i = phy_num; i < phy_num + 2; i++) {
1184                                 if (d40_alloc_mask_set(&phys[i], is_src,
1185                                                        event_line, is_log))
1186                                         goto found_log;
1187                         }
1188                 } else {
1189                         for (i = phy_num + 1; i >= phy_num; i--) {
1190                                 if (d40_alloc_mask_set(&phys[i], is_src,
1191                                                        event_line, is_log))
1192                                         goto found_log;
1193                         }
1194                 }
1195         }
1196         return -EINVAL;
1197
1198 found_log:
1199         d40c->phy_chan = &phys[i];
1200         d40c->log_num = log_num;
1201 out:
1202
1203         if (is_log)
1204                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1205         else
1206                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1207
1208         return 0;
1209
1210 }
1211
1212 static int d40_config_memcpy(struct d40_chan *d40c)
1213 {
1214         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1215
1216         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1217                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1218                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1219                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1220                         memcpy[d40c->chan.chan_id];
1221
1222         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1223                    dma_has_cap(DMA_SLAVE, cap)) {
1224                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1225         } else {
1226                 dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
1227                         __func__);
1228                 return -EINVAL;
1229         }
1230
1231         return 0;
1232 }
1233
1234
1235 static int d40_free_dma(struct d40_chan *d40c)
1236 {
1237
1238         int res = 0;
1239         u32 event;
1240         struct d40_phy_res *phy = d40c->phy_chan;
1241         bool is_src;
1242         struct d40_desc *d;
1243         struct d40_desc *_d;
1244
1245
1246         /* Terminate all queued and active transfers */
1247         d40_term_all(d40c);
1248
1249         /* Release client owned descriptors */
1250         if (!list_empty(&d40c->client))
1251                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1252                         d40_pool_lli_free(d);
1253                         d40_desc_remove(d);
1254                         /* Return desc to free-list */
1255                         d40_desc_free(d40c, d);
1256                 }
1257
1258         if (phy == NULL) {
1259                 dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
1260                         __func__);
1261                 return -EINVAL;
1262         }
1263
1264         if (phy->allocated_src == D40_ALLOC_FREE &&
1265             phy->allocated_dst == D40_ALLOC_FREE) {
1266                 dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
1267                         __func__);
1268                 return -EINVAL;
1269         }
1270
1271         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1272             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1273                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1274                 is_src = false;
1275         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1276                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1277                 is_src = true;
1278         } else {
1279                 dev_err(&d40c->chan.dev->device,
1280                         "[%s] Unknown direction\n", __func__);
1281                 return -EINVAL;
1282         }
1283
1284         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1285         if (res) {
1286                 dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
1287                         __func__);
1288                 return res;
1289         }
1290
1291         if (d40c->log_num != D40_PHY_CHAN) {
1292                 /* Release logical channel, deactivate the event line */
1293
1294                 d40_config_set_event(d40c, false);
1295                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1296
1297                 /*
1298                  * Check if there are more logical allocation
1299                  * on this phy channel.
1300                  */
1301                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1302                         /* Resume the other logical channels if any */
1303                         if (d40_chan_has_events(d40c)) {
1304                                 res = d40_channel_execute_command(d40c,
1305                                                                   D40_DMA_RUN);
1306                                 if (res) {
1307                                         dev_err(&d40c->chan.dev->device,
1308                                                 "[%s] Executing RUN command\n",
1309                                                 __func__);
1310                                         return res;
1311                                 }
1312                         }
1313                         return 0;
1314                 }
1315         } else {
1316                 (void) d40_alloc_mask_free(phy, is_src, 0);
1317         }
1318
1319         /* Release physical channel */
1320         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1321         if (res) {
1322                 dev_err(&d40c->chan.dev->device,
1323                         "[%s] Failed to stop channel\n", __func__);
1324                 return res;
1325         }
1326         d40c->phy_chan = NULL;
1327         /* Invalidate channel type */
1328         d40c->dma_cfg.channel_type = 0;
1329         d40c->base->lookup_phy_chans[phy->num] = NULL;
1330
1331         return 0;
1332 }
1333
1334 static int d40_pause(struct dma_chan *chan)
1335 {
1336         struct d40_chan *d40c =
1337                 container_of(chan, struct d40_chan, chan);
1338         int res;
1339         unsigned long flags;
1340
1341         spin_lock_irqsave(&d40c->lock, flags);
1342
1343         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1344         if (res == 0) {
1345                 if (d40c->log_num != D40_PHY_CHAN) {
1346                         d40_config_set_event(d40c, false);
1347                         /* Resume the other logical channels if any */
1348                         if (d40_chan_has_events(d40c))
1349                                 res = d40_channel_execute_command(d40c,
1350                                                                   D40_DMA_RUN);
1351                 }
1352         }
1353
1354         spin_unlock_irqrestore(&d40c->lock, flags);
1355         return res;
1356 }
1357
1358 static bool d40_is_paused(struct d40_chan *d40c)
1359 {
1360         bool is_paused = false;
1361         unsigned long flags;
1362         void __iomem *active_reg;
1363         u32 status;
1364         u32 event;
1365
1366         spin_lock_irqsave(&d40c->lock, flags);
1367
1368         if (d40c->log_num == D40_PHY_CHAN) {
1369                 if (d40c->phy_chan->num % 2 == 0)
1370                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1371                 else
1372                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1373
1374                 status = (readl(active_reg) &
1375                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1376                         D40_CHAN_POS(d40c->phy_chan->num);
1377                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1378                         is_paused = true;
1379
1380                 goto _exit;
1381         }
1382
1383         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1384             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
1385                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1386         else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1387                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1388         else {
1389                 dev_err(&d40c->chan.dev->device,
1390                         "[%s] Unknown direction\n", __func__);
1391                 goto _exit;
1392         }
1393         status = d40_chan_has_events(d40c);
1394         status = (status & D40_EVENTLINE_MASK(event)) >>
1395                 D40_EVENTLINE_POS(event);
1396
1397         if (status != D40_DMA_RUN)
1398                 is_paused = true;
1399 _exit:
1400         spin_unlock_irqrestore(&d40c->lock, flags);
1401         return is_paused;
1402
1403 }
1404
1405
1406 static bool d40_tx_is_linked(struct d40_chan *d40c)
1407 {
1408         bool is_link;
1409
1410         if (d40c->log_num != D40_PHY_CHAN)
1411                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1412         else
1413                 is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1414                                 d40c->phy_chan->num * D40_DREG_PCDELTA +
1415                                 D40_CHAN_REG_SDLNK) &
1416                         D40_SREG_LNK_PHYS_LNK_MASK;
1417         return is_link;
1418 }
1419
1420 static u32 d40_residue(struct d40_chan *d40c)
1421 {
1422         u32 num_elt;
1423
1424         if (d40c->log_num != D40_PHY_CHAN)
1425                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1426                         >> D40_MEM_LCSP2_ECNT_POS;
1427         else
1428                 num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
1429                                  d40c->phy_chan->num * D40_DREG_PCDELTA +
1430                                  D40_CHAN_REG_SDELT) &
1431                            D40_SREG_ELEM_PHY_ECNT_MASK) >>
1432                         D40_SREG_ELEM_PHY_ECNT_POS;
1433         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1434 }
1435
1436 static int d40_resume(struct dma_chan *chan)
1437 {
1438         struct d40_chan *d40c =
1439                 container_of(chan, struct d40_chan, chan);
1440         int res = 0;
1441         unsigned long flags;
1442
1443         spin_lock_irqsave(&d40c->lock, flags);
1444
1445         if (d40c->base->rev == 0)
1446                 if (d40c->log_num != D40_PHY_CHAN) {
1447                         res = d40_channel_execute_command(d40c,
1448                                                           D40_DMA_SUSPEND_REQ);
1449                         goto no_suspend;
1450                 }
1451
1452         /* If bytes left to transfer or linked tx resume job */
1453         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1454                 if (d40c->log_num != D40_PHY_CHAN)
1455                         d40_config_set_event(d40c, true);
1456                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1457         }
1458
1459 no_suspend:
1460         spin_unlock_irqrestore(&d40c->lock, flags);
1461         return res;
1462 }
1463
1464 static u32 stedma40_residue(struct dma_chan *chan)
1465 {
1466         struct d40_chan *d40c =
1467                 container_of(chan, struct d40_chan, chan);
1468         u32 bytes_left;
1469         unsigned long flags;
1470
1471         spin_lock_irqsave(&d40c->lock, flags);
1472         bytes_left = d40_residue(d40c);
1473         spin_unlock_irqrestore(&d40c->lock, flags);
1474
1475         return bytes_left;
1476 }
1477
1478 /* Public DMA functions in addition to the DMA engine framework */
1479
1480 int stedma40_set_psize(struct dma_chan *chan,
1481                        int src_psize,
1482                        int dst_psize)
1483 {
1484         struct d40_chan *d40c =
1485                 container_of(chan, struct d40_chan, chan);
1486         unsigned long flags;
1487
1488         spin_lock_irqsave(&d40c->lock, flags);
1489
1490         if (d40c->log_num != D40_PHY_CHAN) {
1491                 d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1492                 d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1493                 d40c->log_def.lcsp1 |= src_psize <<
1494                         D40_MEM_LCSP1_SCFG_PSIZE_POS;
1495                 d40c->log_def.lcsp3 |= dst_psize <<
1496                         D40_MEM_LCSP1_SCFG_PSIZE_POS;
1497                 goto out;
1498         }
1499
1500         if (src_psize == STEDMA40_PSIZE_PHY_1)
1501                 d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1502         else {
1503                 d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1504                 d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1505                                        D40_SREG_CFG_PSIZE_POS);
1506                 d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
1507         }
1508
1509         if (dst_psize == STEDMA40_PSIZE_PHY_1)
1510                 d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1511         else {
1512                 d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1513                 d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1514                                        D40_SREG_CFG_PSIZE_POS);
1515                 d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
1516         }
1517 out:
1518         spin_unlock_irqrestore(&d40c->lock, flags);
1519         return 0;
1520 }
1521 EXPORT_SYMBOL(stedma40_set_psize);
1522
1523 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1524                                                    struct scatterlist *sgl_dst,
1525                                                    struct scatterlist *sgl_src,
1526                                                    unsigned int sgl_len,
1527                                                    unsigned long dma_flags)
1528 {
1529         int res;
1530         struct d40_desc *d40d;
1531         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1532                                              chan);
1533         unsigned long flags;
1534
1535         if (d40c->phy_chan == NULL) {
1536                 dev_err(&d40c->chan.dev->device,
1537                         "[%s] Unallocated channel.\n", __func__);
1538                 return ERR_PTR(-EINVAL);
1539         }
1540
1541         spin_lock_irqsave(&d40c->lock, flags);
1542         d40d = d40_desc_get(d40c);
1543
1544         if (d40d == NULL)
1545                 goto err;
1546
1547         d40d->lli_len = sgl_len;
1548         d40d->lli_tx_len = d40d->lli_len;
1549         d40d->txd.flags = dma_flags;
1550
1551         if (d40c->log_num != D40_PHY_CHAN) {
1552                 if (d40d->lli_len > d40c->base->plat_data->llis_per_log)
1553                         d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
1554
1555                 if (sgl_len > 1)
1556                         /*
1557                          * Check if there is space available in lcla. If not,
1558                          * split list into 1-length and run only in lcpa
1559                          * space.
1560                          */
1561                         if (d40_lcla_id_get(d40c) != 0)
1562                                 d40d->lli_tx_len = 1;
1563
1564                 if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
1565                         dev_err(&d40c->chan.dev->device,
1566                                 "[%s] Out of memory\n", __func__);
1567                         goto err;
1568                 }
1569
1570                 (void) d40_log_sg_to_lli(d40c->lcla.src_id,
1571                                          sgl_src,
1572                                          sgl_len,
1573                                          d40d->lli_log.src,
1574                                          d40c->log_def.lcsp1,
1575                                          d40c->dma_cfg.src_info.data_width,
1576                                          dma_flags & DMA_PREP_INTERRUPT,
1577                                          d40d->lli_tx_len,
1578                                          d40c->base->plat_data->llis_per_log);
1579
1580                 (void) d40_log_sg_to_lli(d40c->lcla.dst_id,
1581                                          sgl_dst,
1582                                          sgl_len,
1583                                          d40d->lli_log.dst,
1584                                          d40c->log_def.lcsp3,
1585                                          d40c->dma_cfg.dst_info.data_width,
1586                                          dma_flags & DMA_PREP_INTERRUPT,
1587                                          d40d->lli_tx_len,
1588                                          d40c->base->plat_data->llis_per_log);
1589
1590
1591         } else {
1592                 if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1593                         dev_err(&d40c->chan.dev->device,
1594                                 "[%s] Out of memory\n", __func__);
1595                         goto err;
1596                 }
1597
1598                 res = d40_phy_sg_to_lli(sgl_src,
1599                                         sgl_len,
1600                                         0,
1601                                         d40d->lli_phy.src,
1602                                         d40d->lli_phy.src_addr,
1603                                         d40c->src_def_cfg,
1604                                         d40c->dma_cfg.src_info.data_width,
1605                                         d40c->dma_cfg.src_info.psize,
1606                                         true);
1607
1608                 if (res < 0)
1609                         goto err;
1610
1611                 res = d40_phy_sg_to_lli(sgl_dst,
1612                                         sgl_len,
1613                                         0,
1614                                         d40d->lli_phy.dst,
1615                                         d40d->lli_phy.dst_addr,
1616                                         d40c->dst_def_cfg,
1617                                         d40c->dma_cfg.dst_info.data_width,
1618                                         d40c->dma_cfg.dst_info.psize,
1619                                         true);
1620
1621                 if (res < 0)
1622                         goto err;
1623
1624                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1625                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1626         }
1627
1628         dma_async_tx_descriptor_init(&d40d->txd, chan);
1629
1630         d40d->txd.tx_submit = d40_tx_submit;
1631
1632         spin_unlock_irqrestore(&d40c->lock, flags);
1633
1634         return &d40d->txd;
1635 err:
1636         spin_unlock_irqrestore(&d40c->lock, flags);
1637         return NULL;
1638 }
1639 EXPORT_SYMBOL(stedma40_memcpy_sg);
1640
1641 bool stedma40_filter(struct dma_chan *chan, void *data)
1642 {
1643         struct stedma40_chan_cfg *info = data;
1644         struct d40_chan *d40c =
1645                 container_of(chan, struct d40_chan, chan);
1646         int err;
1647
1648         if (data) {
1649                 err = d40_validate_conf(d40c, info);
1650                 if (!err)
1651                         d40c->dma_cfg = *info;
1652         } else
1653                 err = d40_config_memcpy(d40c);
1654
1655         return err == 0;
1656 }
1657 EXPORT_SYMBOL(stedma40_filter);
1658
1659 /* DMA ENGINE functions */
1660 static int d40_alloc_chan_resources(struct dma_chan *chan)
1661 {
1662         int err;
1663         unsigned long flags;
1664         struct d40_chan *d40c =
1665                 container_of(chan, struct d40_chan, chan);
1666         bool is_free_phy;
1667         spin_lock_irqsave(&d40c->lock, flags);
1668
1669         d40c->completed = chan->cookie = 1;
1670
1671         /*
1672          * If no dma configuration is set (channel_type == 0)
1673          * use default configuration (memcpy)
1674          */
1675         if (d40c->dma_cfg.channel_type == 0) {
1676                 err = d40_config_memcpy(d40c);
1677                 if (err) {
1678                         dev_err(&d40c->chan.dev->device,
1679                                 "[%s] Failed to configure memcpy channel\n",
1680                                 __func__);
1681                         goto fail;
1682                 }
1683         }
1684         is_free_phy = (d40c->phy_chan == NULL);
1685
1686         err = d40_allocate_channel(d40c);
1687         if (err) {
1688                 dev_err(&d40c->chan.dev->device,
1689                         "[%s] Failed to allocate channel\n", __func__);
1690                 goto fail;
1691         }
1692
1693         /* Fill in basic CFG register values */
1694         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1695                     &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
1696
1697         if (d40c->log_num != D40_PHY_CHAN) {
1698                 d40_log_cfg(&d40c->dma_cfg,
1699                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1700
1701                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1702                         d40c->lcpa = d40c->base->lcpa_base +
1703                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1704                 else
1705                         d40c->lcpa = d40c->base->lcpa_base +
1706                           d40c->dma_cfg.dst_dev_type *
1707                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1708         }
1709
1710         /*
1711          * Only write channel configuration to the DMA if the physical
1712          * resource is free. In case of multiple logical channels
1713          * on the same physical resource, only the first write is necessary.
1714          */
1715         if (is_free_phy) {
1716                 err = d40_config_write(d40c);
1717                 if (err) {
1718                         dev_err(&d40c->chan.dev->device,
1719                                 "[%s] Failed to configure channel\n",
1720                                 __func__);
1721                 }
1722         }
1723 fail:
1724         spin_unlock_irqrestore(&d40c->lock, flags);
1725         return err;
1726 }
1727
1728 static void d40_free_chan_resources(struct dma_chan *chan)
1729 {
1730         struct d40_chan *d40c =
1731                 container_of(chan, struct d40_chan, chan);
1732         int err;
1733         unsigned long flags;
1734
1735         if (d40c->phy_chan == NULL) {
1736                 dev_err(&d40c->chan.dev->device,
1737                         "[%s] Cannot free unallocated channel\n", __func__);
1738                 return;
1739         }
1740
1741
1742         spin_lock_irqsave(&d40c->lock, flags);
1743
1744         err = d40_free_dma(d40c);
1745
1746         if (err)
1747                 dev_err(&d40c->chan.dev->device,
1748                         "[%s] Failed to free channel\n", __func__);
1749         spin_unlock_irqrestore(&d40c->lock, flags);
1750 }
1751
1752 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1753                                                        dma_addr_t dst,
1754                                                        dma_addr_t src,
1755                                                        size_t size,
1756                                                        unsigned long dma_flags)
1757 {
1758         struct d40_desc *d40d;
1759         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1760                                              chan);
1761         unsigned long flags;
1762         int err = 0;
1763
1764         if (d40c->phy_chan == NULL) {
1765                 dev_err(&d40c->chan.dev->device,
1766                         "[%s] Channel is not allocated.\n", __func__);
1767                 return ERR_PTR(-EINVAL);
1768         }
1769
1770         spin_lock_irqsave(&d40c->lock, flags);
1771         d40d = d40_desc_get(d40c);
1772
1773         if (d40d == NULL) {
1774                 dev_err(&d40c->chan.dev->device,
1775                         "[%s] Descriptor is NULL\n", __func__);
1776                 goto err;
1777         }
1778
1779         d40d->txd.flags = dma_flags;
1780
1781         dma_async_tx_descriptor_init(&d40d->txd, chan);
1782
1783         d40d->txd.tx_submit = d40_tx_submit;
1784
1785         if (d40c->log_num != D40_PHY_CHAN) {
1786
1787                 if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
1788                         dev_err(&d40c->chan.dev->device,
1789                                 "[%s] Out of memory\n", __func__);
1790                         goto err;
1791                 }
1792                 d40d->lli_len = 1;
1793                 d40d->lli_tx_len = 1;
1794
1795                 d40_log_fill_lli(d40d->lli_log.src,
1796                                  src,
1797                                  size,
1798                                  0,
1799                                  d40c->log_def.lcsp1,
1800                                  d40c->dma_cfg.src_info.data_width,
1801                                  false, true);
1802
1803                 d40_log_fill_lli(d40d->lli_log.dst,
1804                                  dst,
1805                                  size,
1806                                  0,
1807                                  d40c->log_def.lcsp3,
1808                                  d40c->dma_cfg.dst_info.data_width,
1809                                  true, true);
1810
1811         } else {
1812
1813                 if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
1814                         dev_err(&d40c->chan.dev->device,
1815                                 "[%s] Out of memory\n", __func__);
1816                         goto err;
1817                 }
1818
1819                 err = d40_phy_fill_lli(d40d->lli_phy.src,
1820                                        src,
1821                                        size,
1822                                        d40c->dma_cfg.src_info.psize,
1823                                        0,
1824                                        d40c->src_def_cfg,
1825                                        true,
1826                                        d40c->dma_cfg.src_info.data_width,
1827                                        false);
1828                 if (err)
1829                         goto err_fill_lli;
1830
1831                 err = d40_phy_fill_lli(d40d->lli_phy.dst,
1832                                        dst,
1833                                        size,
1834                                        d40c->dma_cfg.dst_info.psize,
1835                                        0,
1836                                        d40c->dst_def_cfg,
1837                                        true,
1838                                        d40c->dma_cfg.dst_info.data_width,
1839                                        false);
1840
1841                 if (err)
1842                         goto err_fill_lli;
1843
1844                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1845                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1846         }
1847
1848         spin_unlock_irqrestore(&d40c->lock, flags);
1849         return &d40d->txd;
1850
1851 err_fill_lli:
1852         dev_err(&d40c->chan.dev->device,
1853                 "[%s] Failed filling in PHY LLI\n", __func__);
1854         d40_pool_lli_free(d40d);
1855 err:
1856         spin_unlock_irqrestore(&d40c->lock, flags);
1857         return NULL;
1858 }
1859
1860 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1861                                  struct d40_chan *d40c,
1862                                  struct scatterlist *sgl,
1863                                  unsigned int sg_len,
1864                                  enum dma_data_direction direction,
1865                                  unsigned long dma_flags)
1866 {
1867         dma_addr_t dev_addr = 0;
1868         int total_size;
1869
1870         if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
1871                 dev_err(&d40c->chan.dev->device,
1872                         "[%s] Out of memory\n", __func__);
1873                 return -ENOMEM;
1874         }
1875
1876         d40d->lli_len = sg_len;
1877         if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
1878                 d40d->lli_tx_len = d40d->lli_len;
1879         else
1880                 d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
1881
1882         if (sg_len > 1)
1883                 /*
1884                  * Check if there is space available in lcla.
1885                  * If not, split list into 1-length and run only
1886                  * in lcpa space.
1887                  */
1888                 if (d40_lcla_id_get(d40c) != 0)
1889                         d40d->lli_tx_len = 1;
1890
1891         if (direction == DMA_FROM_DEVICE)
1892                 if (d40c->runtime_addr)
1893                         dev_addr = d40c->runtime_addr;
1894                 else
1895                         dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1896         else if (direction == DMA_TO_DEVICE)
1897                 if (d40c->runtime_addr)
1898                         dev_addr = d40c->runtime_addr;
1899                 else
1900                         dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1901
1902         else
1903                 return -EINVAL;
1904
1905         total_size = d40_log_sg_to_dev(&d40c->lcla,
1906                                        sgl, sg_len,
1907                                        &d40d->lli_log,
1908                                        &d40c->log_def,
1909                                        d40c->dma_cfg.src_info.data_width,
1910                                        d40c->dma_cfg.dst_info.data_width,
1911                                        direction,
1912                                        dma_flags & DMA_PREP_INTERRUPT,
1913                                        dev_addr, d40d->lli_tx_len,
1914                                        d40c->base->plat_data->llis_per_log);
1915
1916         if (total_size < 0)
1917                 return -EINVAL;
1918
1919         return 0;
1920 }
1921
1922 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
1923                                  struct d40_chan *d40c,
1924                                  struct scatterlist *sgl,
1925                                  unsigned int sgl_len,
1926                                  enum dma_data_direction direction,
1927                                  unsigned long dma_flags)
1928 {
1929         dma_addr_t src_dev_addr;
1930         dma_addr_t dst_dev_addr;
1931         int res;
1932
1933         if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1934                 dev_err(&d40c->chan.dev->device,
1935                         "[%s] Out of memory\n", __func__);
1936                 return -ENOMEM;
1937         }
1938
1939         d40d->lli_len = sgl_len;
1940         d40d->lli_tx_len = sgl_len;
1941
1942         if (direction == DMA_FROM_DEVICE) {
1943                 dst_dev_addr = 0;
1944                 if (d40c->runtime_addr)
1945                         src_dev_addr = d40c->runtime_addr;
1946                 else
1947                         src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1948         } else if (direction == DMA_TO_DEVICE) {
1949                 if (d40c->runtime_addr)
1950                         dst_dev_addr = d40c->runtime_addr;
1951                 else
1952                         dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1953                 src_dev_addr = 0;
1954         } else
1955                 return -EINVAL;
1956
1957         res = d40_phy_sg_to_lli(sgl,
1958                                 sgl_len,
1959                                 src_dev_addr,
1960                                 d40d->lli_phy.src,
1961                                 d40d->lli_phy.src_addr,
1962                                 d40c->src_def_cfg,
1963                                 d40c->dma_cfg.src_info.data_width,
1964                                 d40c->dma_cfg.src_info.psize,
1965                                 true);
1966         if (res < 0)
1967                 return res;
1968
1969         res = d40_phy_sg_to_lli(sgl,
1970                                 sgl_len,
1971                                 dst_dev_addr,
1972                                 d40d->lli_phy.dst,
1973                                 d40d->lli_phy.dst_addr,
1974                                 d40c->dst_def_cfg,
1975                                 d40c->dma_cfg.dst_info.data_width,
1976                                 d40c->dma_cfg.dst_info.psize,
1977                                  true);
1978         if (res < 0)
1979                 return res;
1980
1981         (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1982                               d40d->lli_pool.size, DMA_TO_DEVICE);
1983         return 0;
1984 }
1985
1986 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
1987                                                          struct scatterlist *sgl,
1988                                                          unsigned int sg_len,
1989                                                          enum dma_data_direction direction,
1990                                                          unsigned long dma_flags)
1991 {
1992         struct d40_desc *d40d;
1993         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1994                                              chan);
1995         unsigned long flags;
1996         int err;
1997
1998         if (d40c->phy_chan == NULL) {
1999                 dev_err(&d40c->chan.dev->device,
2000                         "[%s] Cannot prepare unallocated channel\n", __func__);
2001                 return ERR_PTR(-EINVAL);
2002         }
2003
2004         if (d40c->dma_cfg.pre_transfer)
2005                 d40c->dma_cfg.pre_transfer(chan,
2006                                            d40c->dma_cfg.pre_transfer_data,
2007                                            sg_dma_len(sgl));
2008
2009         spin_lock_irqsave(&d40c->lock, flags);
2010         d40d = d40_desc_get(d40c);
2011         spin_unlock_irqrestore(&d40c->lock, flags);
2012
2013         if (d40d == NULL)
2014                 return NULL;
2015
2016         if (d40c->log_num != D40_PHY_CHAN)
2017                 err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2018                                             direction, dma_flags);
2019         else
2020                 err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2021                                             direction, dma_flags);
2022         if (err) {
2023                 dev_err(&d40c->chan.dev->device,
2024                         "[%s] Failed to prepare %s slave sg job: %d\n",
2025                         __func__,
2026                         d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
2027                 return NULL;
2028         }
2029
2030         d40d->txd.flags = dma_flags;
2031
2032         dma_async_tx_descriptor_init(&d40d->txd, chan);
2033
2034         d40d->txd.tx_submit = d40_tx_submit;
2035
2036         return &d40d->txd;
2037 }
2038
2039 static enum dma_status d40_tx_status(struct dma_chan *chan,
2040                                      dma_cookie_t cookie,
2041                                      struct dma_tx_state *txstate)
2042 {
2043         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2044         dma_cookie_t last_used;
2045         dma_cookie_t last_complete;
2046         int ret;
2047
2048         if (d40c->phy_chan == NULL) {
2049                 dev_err(&d40c->chan.dev->device,
2050                         "[%s] Cannot read status of unallocated channel\n",
2051                         __func__);
2052                 return -EINVAL;
2053         }
2054
2055         last_complete = d40c->completed;
2056         last_used = chan->cookie;
2057
2058         if (d40_is_paused(d40c))
2059                 ret = DMA_PAUSED;
2060         else
2061                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2062
2063         dma_set_tx_state(txstate, last_complete, last_used,
2064                          stedma40_residue(chan));
2065
2066         return ret;
2067 }
2068
2069 static void d40_issue_pending(struct dma_chan *chan)
2070 {
2071         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2072         unsigned long flags;
2073
2074         if (d40c->phy_chan == NULL) {
2075                 dev_err(&d40c->chan.dev->device,
2076                         "[%s] Channel is not allocated!\n", __func__);
2077                 return;
2078         }
2079
2080         spin_lock_irqsave(&d40c->lock, flags);
2081
2082         /* Busy means that pending jobs are already being processed */
2083         if (!d40c->busy)
2084                 (void) d40_queue_start(d40c);
2085
2086         spin_unlock_irqrestore(&d40c->lock, flags);
2087 }
2088
2089 /* Runtime reconfiguration extension */
2090 static void d40_set_runtime_config(struct dma_chan *chan,
2091                                struct dma_slave_config *config)
2092 {
2093         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2094         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2095         enum dma_slave_buswidth config_addr_width;
2096         dma_addr_t config_addr;
2097         u32 config_maxburst;
2098         enum stedma40_periph_data_width addr_width;
2099         int psize;
2100
2101         if (config->direction == DMA_FROM_DEVICE) {
2102                 dma_addr_t dev_addr_rx =
2103                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2104
2105                 config_addr = config->src_addr;
2106                 if (dev_addr_rx)
2107                         dev_dbg(d40c->base->dev,
2108                                 "channel has a pre-wired RX address %08x "
2109                                 "overriding with %08x\n",
2110                                 dev_addr_rx, config_addr);
2111                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2112                         dev_dbg(d40c->base->dev,
2113                                 "channel was not configured for peripheral "
2114                                 "to memory transfer (%d) overriding\n",
2115                                 cfg->dir);
2116                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2117
2118                 config_addr_width = config->src_addr_width;
2119                 config_maxburst = config->src_maxburst;
2120
2121         } else if (config->direction == DMA_TO_DEVICE) {
2122                 dma_addr_t dev_addr_tx =
2123                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2124
2125                 config_addr = config->dst_addr;
2126                 if (dev_addr_tx)
2127                         dev_dbg(d40c->base->dev,
2128                                 "channel has a pre-wired TX address %08x "
2129                                 "overriding with %08x\n",
2130                                 dev_addr_tx, config_addr);
2131                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2132                         dev_dbg(d40c->base->dev,
2133                                 "channel was not configured for memory "
2134                                 "to peripheral transfer (%d) overriding\n",
2135                                 cfg->dir);
2136                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2137
2138                 config_addr_width = config->dst_addr_width;
2139                 config_maxburst = config->dst_maxburst;
2140
2141         } else {
2142                 dev_err(d40c->base->dev,
2143                         "unrecognized channel direction %d\n",
2144                         config->direction);
2145                 return;
2146         }
2147
2148         switch (config_addr_width) {
2149         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2150                 addr_width = STEDMA40_BYTE_WIDTH;
2151                 break;
2152         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2153                 addr_width = STEDMA40_HALFWORD_WIDTH;
2154                 break;
2155         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2156                 addr_width = STEDMA40_WORD_WIDTH;
2157                 break;
2158         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2159                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2160                 break;
2161         default:
2162                 dev_err(d40c->base->dev,
2163                         "illegal peripheral address width "
2164                         "requested (%d)\n",
2165                         config->src_addr_width);
2166                 return;
2167         }
2168
2169         if (config_maxburst >= 16)
2170                 psize = STEDMA40_PSIZE_LOG_16;
2171         else if (config_maxburst >= 8)
2172                 psize = STEDMA40_PSIZE_LOG_8;
2173         else if (config_maxburst >= 4)
2174                 psize = STEDMA40_PSIZE_LOG_4;
2175         else
2176                 psize = STEDMA40_PSIZE_LOG_1;
2177
2178         /* Set up all the endpoint configs */
2179         cfg->src_info.data_width = addr_width;
2180         cfg->src_info.psize = psize;
2181         cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
2182         cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2183         cfg->dst_info.data_width = addr_width;
2184         cfg->dst_info.psize = psize;
2185         cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
2186         cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2187
2188         /* These settings will take precedence later */
2189         d40c->runtime_addr = config_addr;
2190         d40c->runtime_direction = config->direction;
2191         dev_dbg(d40c->base->dev,
2192                 "configured channel %s for %s, data width %d, "
2193                 "maxburst %d bytes, LE, no flow control\n",
2194                 dma_chan_name(chan),
2195                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2196                 config_addr_width,
2197                 config_maxburst);
2198 }
2199
2200 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2201                        unsigned long arg)
2202 {
2203         unsigned long flags;
2204         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2205
2206         if (d40c->phy_chan == NULL) {
2207                 dev_err(&d40c->chan.dev->device,
2208                         "[%s] Channel is not allocated!\n", __func__);
2209                 return -EINVAL;
2210         }
2211
2212         switch (cmd) {
2213         case DMA_TERMINATE_ALL:
2214                 spin_lock_irqsave(&d40c->lock, flags);
2215                 d40_term_all(d40c);
2216                 spin_unlock_irqrestore(&d40c->lock, flags);
2217                 return 0;
2218         case DMA_PAUSE:
2219                 return d40_pause(chan);
2220         case DMA_RESUME:
2221                 return d40_resume(chan);
2222         case DMA_SLAVE_CONFIG:
2223                 d40_set_runtime_config(chan,
2224                         (struct dma_slave_config *) arg);
2225                 return 0;
2226         default:
2227                 break;
2228         }
2229
2230         /* Other commands are unimplemented */
2231         return -ENXIO;
2232 }
2233
2234 /* Initialization functions */
2235
2236 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2237                                  struct d40_chan *chans, int offset,
2238                                  int num_chans)
2239 {
2240         int i = 0;
2241         struct d40_chan *d40c;
2242
2243         INIT_LIST_HEAD(&dma->channels);
2244
2245         for (i = offset; i < offset + num_chans; i++) {
2246                 d40c = &chans[i];
2247                 d40c->base = base;
2248                 d40c->chan.device = dma;
2249
2250                 /* Invalidate lcla element */
2251                 d40c->lcla.src_id = -1;
2252                 d40c->lcla.dst_id = -1;
2253
2254                 spin_lock_init(&d40c->lock);
2255
2256                 d40c->log_num = D40_PHY_CHAN;
2257
2258                 INIT_LIST_HEAD(&d40c->active);
2259                 INIT_LIST_HEAD(&d40c->queue);
2260                 INIT_LIST_HEAD(&d40c->client);
2261
2262                 tasklet_init(&d40c->tasklet, dma_tasklet,
2263                              (unsigned long) d40c);
2264
2265                 list_add_tail(&d40c->chan.device_node,
2266                               &dma->channels);
2267         }
2268 }
2269
2270 static int __init d40_dmaengine_init(struct d40_base *base,
2271                                      int num_reserved_chans)
2272 {
2273         int err ;
2274
2275         d40_chan_init(base, &base->dma_slave, base->log_chans,
2276                       0, base->num_log_chans);
2277
2278         dma_cap_zero(base->dma_slave.cap_mask);
2279         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2280
2281         base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2282         base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2283         base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2284         base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2285         base->dma_slave.device_tx_status = d40_tx_status;
2286         base->dma_slave.device_issue_pending = d40_issue_pending;
2287         base->dma_slave.device_control = d40_control;
2288         base->dma_slave.dev = base->dev;
2289
2290         err = dma_async_device_register(&base->dma_slave);
2291
2292         if (err) {
2293                 dev_err(base->dev,
2294                         "[%s] Failed to register slave channels\n",
2295                         __func__);
2296                 goto failure1;
2297         }
2298
2299         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2300                       base->num_log_chans, base->plat_data->memcpy_len);
2301
2302         dma_cap_zero(base->dma_memcpy.cap_mask);
2303         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2304
2305         base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2306         base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2307         base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2308         base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2309         base->dma_memcpy.device_tx_status = d40_tx_status;
2310         base->dma_memcpy.device_issue_pending = d40_issue_pending;
2311         base->dma_memcpy.device_control = d40_control;
2312         base->dma_memcpy.dev = base->dev;
2313         /*
2314          * This controller can only access address at even
2315          * 32bit boundaries, i.e. 2^2
2316          */
2317         base->dma_memcpy.copy_align = 2;
2318
2319         err = dma_async_device_register(&base->dma_memcpy);
2320
2321         if (err) {
2322                 dev_err(base->dev,
2323                         "[%s] Failed to regsiter memcpy only channels\n",
2324                         __func__);
2325                 goto failure2;
2326         }
2327
2328         d40_chan_init(base, &base->dma_both, base->phy_chans,
2329                       0, num_reserved_chans);
2330
2331         dma_cap_zero(base->dma_both.cap_mask);
2332         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2333         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2334
2335         base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2336         base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2337         base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2338         base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2339         base->dma_both.device_tx_status = d40_tx_status;
2340         base->dma_both.device_issue_pending = d40_issue_pending;
2341         base->dma_both.device_control = d40_control;
2342         base->dma_both.dev = base->dev;
2343         base->dma_both.copy_align = 2;
2344         err = dma_async_device_register(&base->dma_both);
2345
2346         if (err) {
2347                 dev_err(base->dev,
2348                         "[%s] Failed to register logical and physical capable channels\n",
2349                         __func__);
2350                 goto failure3;
2351         }
2352         return 0;
2353 failure3:
2354         dma_async_device_unregister(&base->dma_memcpy);
2355 failure2:
2356         dma_async_device_unregister(&base->dma_slave);
2357 failure1:
2358         return err;
2359 }
2360
2361 /* Initialization functions. */
2362
2363 static int __init d40_phy_res_init(struct d40_base *base)
2364 {
2365         int i;
2366         int num_phy_chans_avail = 0;
2367         u32 val[2];
2368         int odd_even_bit = -2;
2369
2370         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2371         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2372
2373         for (i = 0; i < base->num_phy_chans; i++) {
2374                 base->phy_res[i].num = i;
2375                 odd_even_bit += 2 * ((i % 2) == 0);
2376                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2377                         /* Mark security only channels as occupied */
2378                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2379                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2380                 } else {
2381                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2382                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2383                         num_phy_chans_avail++;
2384                 }
2385                 spin_lock_init(&base->phy_res[i].lock);
2386         }
2387
2388         /* Mark disabled channels as occupied */
2389         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2390                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2391                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2392                         num_phy_chans_avail--;
2393         }
2394
2395         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2396                  num_phy_chans_avail, base->num_phy_chans);
2397
2398         /* Verify settings extended vs standard */
2399         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2400
2401         for (i = 0; i < base->num_phy_chans; i++) {
2402
2403                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2404                     (val[0] & 0x3) != 1)
2405                         dev_info(base->dev,
2406                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2407                                  __func__, i, val[0] & 0x3);
2408
2409                 val[0] = val[0] >> 2;
2410         }
2411
2412         return num_phy_chans_avail;
2413 }
2414
2415 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2416 {
2417         static const struct d40_reg_val dma_id_regs[] = {
2418                 /* Peripheral Id */
2419                 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2420                 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2421                 /*
2422                  * D40_DREG_PERIPHID2 Depends on HW revision:
2423                  *  MOP500/HREF ED has 0x0008,
2424                  *  ? has 0x0018,
2425                  *  HREF V1 has 0x0028
2426                  */
2427                 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2428
2429                 /* PCell Id */
2430                 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2431                 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2432                 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2433                 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2434         };
2435         struct stedma40_platform_data *plat_data;
2436         struct clk *clk = NULL;
2437         void __iomem *virtbase = NULL;
2438         struct resource *res = NULL;
2439         struct d40_base *base = NULL;
2440         int num_log_chans = 0;
2441         int num_phy_chans;
2442         int i;
2443         u32 val;
2444
2445         clk = clk_get(&pdev->dev, NULL);
2446
2447         if (IS_ERR(clk)) {
2448                 dev_err(&pdev->dev, "[%s] No matching clock found\n",
2449                         __func__);
2450                 goto failure;
2451         }
2452
2453         clk_enable(clk);
2454
2455         /* Get IO for DMAC base address */
2456         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2457         if (!res)
2458                 goto failure;
2459
2460         if (request_mem_region(res->start, resource_size(res),
2461                                D40_NAME " I/O base") == NULL)
2462                 goto failure;
2463
2464         virtbase = ioremap(res->start, resource_size(res));
2465         if (!virtbase)
2466                 goto failure;
2467
2468         /* HW version check */
2469         for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2470                 if (dma_id_regs[i].val !=
2471                     readl(virtbase + dma_id_regs[i].reg)) {
2472                         dev_err(&pdev->dev,
2473                                 "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2474                                 __func__,
2475                                 dma_id_regs[i].val,
2476                                 dma_id_regs[i].reg,
2477                                 readl(virtbase + dma_id_regs[i].reg));
2478                         goto failure;
2479                 }
2480         }
2481
2482         /* Get silicon revision */
2483         val = readl(virtbase + D40_DREG_PERIPHID2);
2484
2485         if ((val & 0xf) != D40_PERIPHID2_DESIGNER) {
2486                 dev_err(&pdev->dev,
2487                         "[%s] Unknown designer! Got %x wanted %x\n",
2488                         __func__, val & 0xf, D40_PERIPHID2_DESIGNER);
2489                 goto failure;
2490         }
2491
2492         /* The number of physical channels on this HW */
2493         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2494
2495         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2496                  (val >> 4) & 0xf, res->start);
2497
2498         plat_data = pdev->dev.platform_data;
2499
2500         /* Count the number of logical channels in use */
2501         for (i = 0; i < plat_data->dev_len; i++)
2502                 if (plat_data->dev_rx[i] != 0)
2503                         num_log_chans++;
2504
2505         for (i = 0; i < plat_data->dev_len; i++)
2506                 if (plat_data->dev_tx[i] != 0)
2507                         num_log_chans++;
2508
2509         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2510                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2511                        sizeof(struct d40_chan), GFP_KERNEL);
2512
2513         if (base == NULL) {
2514                 dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
2515                 goto failure;
2516         }
2517
2518         base->rev = (val >> 4) & 0xf;
2519         base->clk = clk;
2520         base->num_phy_chans = num_phy_chans;
2521         base->num_log_chans = num_log_chans;
2522         base->phy_start = res->start;
2523         base->phy_size = resource_size(res);
2524         base->virtbase = virtbase;
2525         base->plat_data = plat_data;
2526         base->dev = &pdev->dev;
2527         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2528         base->log_chans = &base->phy_chans[num_phy_chans];
2529
2530         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2531                                 GFP_KERNEL);
2532         if (!base->phy_res)
2533                 goto failure;
2534
2535         base->lookup_phy_chans = kzalloc(num_phy_chans *
2536                                          sizeof(struct d40_chan *),
2537                                          GFP_KERNEL);
2538         if (!base->lookup_phy_chans)
2539                 goto failure;
2540
2541         if (num_log_chans + plat_data->memcpy_len) {
2542                 /*
2543                  * The max number of logical channels are event lines for all
2544                  * src devices and dst devices
2545                  */
2546                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2547                                                  sizeof(struct d40_chan *),
2548                                                  GFP_KERNEL);
2549                 if (!base->lookup_log_chans)
2550                         goto failure;
2551         }
2552         base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
2553                                             GFP_KERNEL);
2554         if (!base->lcla_pool.alloc_map)
2555                 goto failure;
2556
2557         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2558                                             0, SLAB_HWCACHE_ALIGN,
2559                                             NULL);
2560         if (base->desc_slab == NULL)
2561                 goto failure;
2562
2563         return base;
2564
2565 failure:
2566         if (clk) {
2567                 clk_disable(clk);
2568                 clk_put(clk);
2569         }
2570         if (virtbase)
2571                 iounmap(virtbase);
2572         if (res)
2573                 release_mem_region(res->start,
2574                                    resource_size(res));
2575         if (virtbase)
2576                 iounmap(virtbase);
2577
2578         if (base) {
2579                 kfree(base->lcla_pool.alloc_map);
2580                 kfree(base->lookup_log_chans);
2581                 kfree(base->lookup_phy_chans);
2582                 kfree(base->phy_res);
2583                 kfree(base);
2584         }
2585
2586         return NULL;
2587 }
2588
2589 static void __init d40_hw_init(struct d40_base *base)
2590 {
2591
2592         static const struct d40_reg_val dma_init_reg[] = {
2593                 /* Clock every part of the DMA block from start */
2594                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2595
2596                 /* Interrupts on all logical channels */
2597                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2598                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2599                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2600                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2601                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2602                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2603                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2604                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2605                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2606                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2607                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2608                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2609         };
2610         int i;
2611         u32 prmseo[2] = {0, 0};
2612         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2613         u32 pcmis = 0;
2614         u32 pcicr = 0;
2615
2616         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2617                 writel(dma_init_reg[i].val,
2618                        base->virtbase + dma_init_reg[i].reg);
2619
2620         /* Configure all our dma channels to default settings */
2621         for (i = 0; i < base->num_phy_chans; i++) {
2622
2623                 activeo[i % 2] = activeo[i % 2] << 2;
2624
2625                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2626                     == D40_ALLOC_PHY) {
2627                         activeo[i % 2] |= 3;
2628                         continue;
2629                 }
2630
2631                 /* Enable interrupt # */
2632                 pcmis = (pcmis << 1) | 1;
2633
2634                 /* Clear interrupt # */
2635                 pcicr = (pcicr << 1) | 1;
2636
2637                 /* Set channel to physical mode */
2638                 prmseo[i % 2] = prmseo[i % 2] << 2;
2639                 prmseo[i % 2] |= 1;
2640
2641         }
2642
2643         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2644         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2645         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2646         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2647
2648         /* Write which interrupt to enable */
2649         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2650
2651         /* Write which interrupt to clear */
2652         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2653
2654 }
2655
2656 static int __init d40_lcla_allocate(struct d40_base *base)
2657 {
2658         unsigned long *page_list;
2659         int i, j;
2660         int ret = 0;
2661
2662         /*
2663          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2664          * To full fill this hardware requirement without wasting 256 kb
2665          * we allocate pages until we get an aligned one.
2666          */
2667         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2668                             GFP_KERNEL);
2669
2670         if (!page_list) {
2671                 ret = -ENOMEM;
2672                 goto failure;
2673         }
2674
2675         /* Calculating how many pages that are required */
2676         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2677
2678         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2679                 page_list[i] = __get_free_pages(GFP_KERNEL,
2680                                                 base->lcla_pool.pages);
2681                 if (!page_list[i]) {
2682
2683                         dev_err(base->dev,
2684                                 "[%s] Failed to allocate %d pages.\n",
2685                                 __func__, base->lcla_pool.pages);
2686
2687                         for (j = 0; j < i; j++)
2688                                 free_pages(page_list[j], base->lcla_pool.pages);
2689                         goto failure;
2690                 }
2691
2692                 if ((virt_to_phys((void *)page_list[i]) &
2693                      (LCLA_ALIGNMENT - 1)) == 0)
2694                         break;
2695         }
2696
2697         for (j = 0; j < i; j++)
2698                 free_pages(page_list[j], base->lcla_pool.pages);
2699
2700         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2701                 base->lcla_pool.base = (void *)page_list[i];
2702         } else {
2703                 /* After many attempts, no succees with finding the correct
2704                  * alignment try with allocating a big buffer */
2705                 dev_warn(base->dev,
2706                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2707                          __func__, base->lcla_pool.pages);
2708                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2709                                                          base->num_phy_chans +
2710                                                          LCLA_ALIGNMENT,
2711                                                          GFP_KERNEL);
2712                 if (!base->lcla_pool.base_unaligned) {
2713                         ret = -ENOMEM;
2714                         goto failure;
2715                 }
2716
2717                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2718                                                  LCLA_ALIGNMENT);
2719         }
2720
2721         writel(virt_to_phys(base->lcla_pool.base),
2722                base->virtbase + D40_DREG_LCLA);
2723 failure:
2724         kfree(page_list);
2725         return ret;
2726 }
2727
2728 static int __init d40_probe(struct platform_device *pdev)
2729 {
2730         int err;
2731         int ret = -ENOENT;
2732         struct d40_base *base;
2733         struct resource *res = NULL;
2734         int num_reserved_chans;
2735         u32 val;
2736
2737         base = d40_hw_detect_init(pdev);
2738
2739         if (!base)
2740                 goto failure;
2741
2742         num_reserved_chans = d40_phy_res_init(base);
2743
2744         platform_set_drvdata(pdev, base);
2745
2746         spin_lock_init(&base->interrupt_lock);
2747         spin_lock_init(&base->execmd_lock);
2748
2749         /* Get IO for logical channel parameter address */
2750         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2751         if (!res) {
2752                 ret = -ENOENT;
2753                 dev_err(&pdev->dev,
2754                         "[%s] No \"lcpa\" memory resource\n",
2755                         __func__);
2756                 goto failure;
2757         }
2758         base->lcpa_size = resource_size(res);
2759         base->phy_lcpa = res->start;
2760
2761         if (request_mem_region(res->start, resource_size(res),
2762                                D40_NAME " I/O lcpa") == NULL) {
2763                 ret = -EBUSY;
2764                 dev_err(&pdev->dev,
2765                         "[%s] Failed to request LCPA region 0x%x-0x%x\n",
2766                         __func__, res->start, res->end);
2767                 goto failure;
2768         }
2769
2770         /* We make use of ESRAM memory for this. */
2771         val = readl(base->virtbase + D40_DREG_LCPA);
2772         if (res->start != val && val != 0) {
2773                 dev_warn(&pdev->dev,
2774                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2775                          __func__, val, res->start);
2776         } else
2777                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2778
2779         base->lcpa_base = ioremap(res->start, resource_size(res));
2780         if (!base->lcpa_base) {
2781                 ret = -ENOMEM;
2782                 dev_err(&pdev->dev,
2783                         "[%s] Failed to ioremap LCPA region\n",
2784                         __func__);
2785                 goto failure;
2786         }
2787
2788         ret = d40_lcla_allocate(base);
2789         if (ret) {
2790                 dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
2791                         __func__);
2792                 goto failure;
2793         }
2794
2795         spin_lock_init(&base->lcla_pool.lock);
2796
2797         base->lcla_pool.num_blocks = base->num_phy_chans;
2798
2799         base->irq = platform_get_irq(pdev, 0);
2800
2801         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2802
2803         if (ret) {
2804                 dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
2805                 goto failure;
2806         }
2807
2808         err = d40_dmaengine_init(base, num_reserved_chans);
2809         if (err)
2810                 goto failure;
2811
2812         d40_hw_init(base);
2813
2814         dev_info(base->dev, "initialized\n");
2815         return 0;
2816
2817 failure:
2818         if (base) {
2819                 if (base->desc_slab)
2820                         kmem_cache_destroy(base->desc_slab);
2821                 if (base->virtbase)
2822                         iounmap(base->virtbase);
2823                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2824                         free_pages((unsigned long)base->lcla_pool.base,
2825                                    base->lcla_pool.pages);
2826                 if (base->lcla_pool.base_unaligned)
2827                         kfree(base->lcla_pool.base_unaligned);
2828                 if (base->phy_lcpa)
2829                         release_mem_region(base->phy_lcpa,
2830                                            base->lcpa_size);
2831                 if (base->phy_start)
2832                         release_mem_region(base->phy_start,
2833                                            base->phy_size);
2834                 if (base->clk) {
2835                         clk_disable(base->clk);
2836                         clk_put(base->clk);
2837                 }
2838
2839                 kfree(base->lcla_pool.alloc_map);
2840                 kfree(base->lookup_log_chans);
2841                 kfree(base->lookup_phy_chans);
2842                 kfree(base->phy_res);
2843                 kfree(base);
2844         }
2845
2846         dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
2847         return ret;
2848 }
2849
2850 static struct platform_driver d40_driver = {
2851         .driver = {
2852                 .owner = THIS_MODULE,
2853                 .name  = D40_NAME,
2854         },
2855 };
2856
2857 int __init stedma40_init(void)
2858 {
2859         return platform_driver_probe(&d40_driver, d40_probe);
2860 }
2861 arch_initcall(stedma40_init);