2 * Copyright (C) 2014 Emilio López
3 * Emilio López <emilio@elopez.com.ar>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dmapool.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/of_dma.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
25 /** Common macros to normal and dedicated DMA registers **/
27 #define SUN4I_DMA_CFG_LOADING BIT(31)
28 #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 25)
29 #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len) ((len) << 23)
30 #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode) ((mode) << 21)
31 #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type) ((type) << 16)
32 #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9)
33 #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7)
34 #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5)
35 #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type)
37 /** Normal DMA register values **/
39 /* Normal DMA source/destination data request type values */
40 #define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16
41 #define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1)
43 /** Normal DMA register layout **/
45 /* Dedicated DMA source/destination address mode values */
46 #define SUN4I_NDMA_ADDR_MODE_LINEAR 0
47 #define SUN4I_NDMA_ADDR_MODE_IO 1
49 /* Normal DMA configuration register layout */
50 #define SUN4I_NDMA_CFG_CONT_MODE BIT(30)
51 #define SUN4I_NDMA_CFG_WAIT_STATE(n) ((n) << 27)
52 #define SUN4I_NDMA_CFG_DST_NON_SECURE BIT(22)
53 #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
54 #define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6)
56 /** Dedicated DMA register values **/
58 /* Dedicated DMA source/destination address mode values */
59 #define SUN4I_DDMA_ADDR_MODE_LINEAR 0
60 #define SUN4I_DDMA_ADDR_MODE_IO 1
61 #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE 2
62 #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE 3
64 /* Dedicated DMA source/destination data request type values */
65 #define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1
66 #define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1)
68 /** Dedicated DMA register layout **/
70 /* Dedicated DMA configuration register layout */
71 #define SUN4I_DDMA_CFG_BUSY BIT(30)
72 #define SUN4I_DDMA_CFG_CONT_MODE BIT(29)
73 #define SUN4I_DDMA_CFG_DST_NON_SECURE BIT(28)
74 #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
75 #define SUN4I_DDMA_CFG_SRC_NON_SECURE BIT(12)
77 /* Dedicated DMA parameter register layout */
78 #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n) (((n) - 1) << 24)
79 #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n) (((n) - 1) << 16)
80 #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8)
81 #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0)
83 /** DMA register offsets **/
85 /* General register offsets */
86 #define SUN4I_DMA_IRQ_ENABLE_REG 0x0
87 #define SUN4I_DMA_IRQ_PENDING_STATUS_REG 0x4
89 /* Normal DMA register offsets */
90 #define SUN4I_NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20)
91 #define SUN4I_NDMA_CFG_REG 0x0
92 #define SUN4I_NDMA_SRC_ADDR_REG 0x4
93 #define SUN4I_NDMA_DST_ADDR_REG 0x8
94 #define SUN4I_NDMA_BYTE_COUNT_REG 0xC
96 /* Dedicated DMA register offsets */
97 #define SUN4I_DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20)
98 #define SUN4I_DDMA_CFG_REG 0x0
99 #define SUN4I_DDMA_SRC_ADDR_REG 0x4
100 #define SUN4I_DDMA_DST_ADDR_REG 0x8
101 #define SUN4I_DDMA_BYTE_COUNT_REG 0xC
102 #define SUN4I_DDMA_PARA_REG 0x18
107 * Normal DMA has 8 channels, and Dedicated DMA has another 8, so
108 * that's 16 channels. As for endpoints, there's 29 and 21
109 * respectively. Given that the Normal DMA endpoints (other than
110 * SDRAM) can be used as tx/rx, we need 78 vchans in total
112 #define SUN4I_NDMA_NR_MAX_CHANNELS 8
113 #define SUN4I_DDMA_NR_MAX_CHANNELS 8
114 #define SUN4I_DMA_NR_MAX_CHANNELS \
115 (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
116 #define SUN4I_NDMA_NR_MAX_VCHANS (29 * 2 - 1)
117 #define SUN4I_DDMA_NR_MAX_VCHANS 21
118 #define SUN4I_DMA_NR_MAX_VCHANS \
119 (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
121 /* This set of SUN4I_DDMA timing parameters were found experimentally while
122 * working with the SPI driver and seem to make it behave correctly */
123 #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
124 (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) | \
125 SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \
126 SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) | \
127 SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
129 struct sun4i_dma_pchan {
130 /* Register base of channel */
132 /* vchan currently being serviced */
133 struct sun4i_dma_vchan *vchan;
134 /* Is this a dedicated pchan? */
138 struct sun4i_dma_vchan {
139 struct virt_dma_chan vc;
140 struct dma_slave_config cfg;
141 struct sun4i_dma_pchan *pchan;
142 struct sun4i_dma_promise *processing;
143 struct sun4i_dma_contract *contract;
148 struct sun4i_dma_promise {
154 struct list_head list;
157 /* A contract is a set of promises */
158 struct sun4i_dma_contract {
159 struct virt_dma_desc vd;
160 struct list_head demands;
161 struct list_head completed_demands;
165 struct sun4i_dma_dev {
166 DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS);
167 struct dma_device slave;
168 struct sun4i_dma_pchan *pchans;
169 struct sun4i_dma_vchan *vchans;
176 static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
178 return container_of(dev, struct sun4i_dma_dev, slave);
181 static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan)
183 return container_of(chan, struct sun4i_dma_vchan, vc.chan);
186 static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd)
188 return container_of(vd, struct sun4i_dma_contract, vd);
191 static struct device *chan2dev(struct dma_chan *chan)
193 return &chan->dev->device;
196 static int convert_burst(u32 maxburst)
201 /* 1 -> 0, 4 -> 1, 8 -> 2 */
202 return (maxburst >> 2);
205 static int convert_buswidth(enum dma_slave_buswidth addr_width)
207 if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
210 /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
211 return (addr_width >> 1);
214 static void sun4i_dma_free_chan_resources(struct dma_chan *chan)
216 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
218 vchan_free_chan_resources(&vchan->vc);
221 static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
222 struct sun4i_dma_vchan *vchan)
224 struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans;
229 * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
230 * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
232 if (vchan->is_dedicated) {
233 i = SUN4I_NDMA_NR_MAX_CHANNELS;
234 max = SUN4I_DMA_NR_MAX_CHANNELS;
237 max = SUN4I_NDMA_NR_MAX_CHANNELS;
240 spin_lock_irqsave(&priv->lock, flags);
241 for_each_clear_bit_from(i, &priv->pchans_used, max) {
243 pchan->vchan = vchan;
244 set_bit(i, priv->pchans_used);
247 spin_unlock_irqrestore(&priv->lock, flags);
252 static void release_pchan(struct sun4i_dma_dev *priv,
253 struct sun4i_dma_pchan *pchan)
256 int nr = pchan - priv->pchans;
258 spin_lock_irqsave(&priv->lock, flags);
261 clear_bit(nr, priv->pchans_used);
263 spin_unlock_irqrestore(&priv->lock, flags);
266 static void configure_pchan(struct sun4i_dma_pchan *pchan,
267 struct sun4i_dma_promise *d)
270 * Configure addresses and misc parameters depending on type
271 * SUN4I_DDMA has an extra field with timing parameters
273 if (pchan->is_dedicated) {
274 writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG);
275 writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG);
276 writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
277 writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG);
278 writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG);
280 writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG);
281 writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG);
282 writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
283 writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG);
287 static void set_pchan_interrupt(struct sun4i_dma_dev *priv,
288 struct sun4i_dma_pchan *pchan,
292 int pchan_number = pchan - priv->pchans;
295 spin_lock_irqsave(&priv->lock, flags);
297 reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
300 reg |= BIT(pchan_number * 2);
302 reg &= ~BIT(pchan_number * 2);
305 reg |= BIT(pchan_number * 2 + 1);
307 reg &= ~BIT(pchan_number * 2 + 1);
309 writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
311 spin_unlock_irqrestore(&priv->lock, flags);
315 * Execute pending operations on a vchan
317 * When given a vchan, this function will try to acquire a suitable
318 * pchan and, if successful, will configure it to fulfill a promise
319 * from the next pending contract.
321 * This function must be called with &vchan->vc.lock held.
323 static int __execute_vchan_pending(struct sun4i_dma_dev *priv,
324 struct sun4i_dma_vchan *vchan)
326 struct sun4i_dma_promise *promise = NULL;
327 struct sun4i_dma_contract *contract = NULL;
328 struct sun4i_dma_pchan *pchan;
329 struct virt_dma_desc *vd;
332 lockdep_assert_held(&vchan->vc.lock);
334 /* We need a pchan to do anything, so secure one if available */
335 pchan = find_and_use_pchan(priv, vchan);
340 * Channel endpoints must not be repeated, so if this vchan
341 * has already submitted some work, we can't do anything else
343 if (vchan->processing) {
344 dev_dbg(chan2dev(&vchan->vc.chan),
345 "processing something to this endpoint already\n");
351 /* Figure out which contract we're working with today */
352 vd = vchan_next_desc(&vchan->vc);
354 dev_dbg(chan2dev(&vchan->vc.chan),
355 "No pending contract found");
360 contract = to_sun4i_dma_contract(vd);
361 if (list_empty(&contract->demands)) {
362 /* The contract has been completed so mark it as such */
363 list_del(&contract->vd.node);
364 vchan_cookie_complete(&contract->vd);
365 dev_dbg(chan2dev(&vchan->vc.chan),
366 "Empty contract found and marked complete");
368 } while (list_empty(&contract->demands));
370 /* Now find out what we need to do */
371 promise = list_first_entry(&contract->demands,
372 struct sun4i_dma_promise, list);
373 vchan->processing = promise;
375 /* ... and make it reality */
377 vchan->contract = contract;
378 vchan->pchan = pchan;
379 set_pchan_interrupt(priv, pchan, contract->is_cyclic, 1);
380 configure_pchan(pchan, promise);
386 release_pchan(priv, pchan);
390 static int sanitize_config(struct dma_slave_config *sconfig,
391 enum dma_transfer_direction direction)
395 if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
396 !sconfig->dst_maxburst)
399 if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
400 sconfig->src_addr_width = sconfig->dst_addr_width;
402 if (!sconfig->src_maxburst)
403 sconfig->src_maxburst = sconfig->dst_maxburst;
408 if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
409 !sconfig->src_maxburst)
412 if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
413 sconfig->dst_addr_width = sconfig->src_addr_width;
415 if (!sconfig->dst_maxburst)
416 sconfig->dst_maxburst = sconfig->src_maxburst;
427 * Generate a promise, to be used in a normal DMA contract.
429 * A NDMA promise contains all the information required to program the
430 * normal part of the DMA Engine and get data copied. A non-executed
431 * promise will live in the demands list on a contract. Once it has been
432 * completed, it will be moved to the completed demands list for later freeing.
433 * All linked promises will be freed when the corresponding contract is freed
435 static struct sun4i_dma_promise *
436 generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
437 size_t len, struct dma_slave_config *sconfig,
438 enum dma_transfer_direction direction)
440 struct sun4i_dma_promise *promise;
443 ret = sanitize_config(sconfig, direction);
447 promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
454 promise->cfg = SUN4I_DMA_CFG_LOADING |
455 SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN;
457 dev_dbg(chan2dev(chan),
458 "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
459 sconfig->src_maxburst, sconfig->dst_maxburst,
460 sconfig->src_addr_width, sconfig->dst_addr_width);
463 ret = convert_burst(sconfig->src_maxburst);
466 promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
468 /* Destination burst */
469 ret = convert_burst(sconfig->dst_maxburst);
472 promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
474 /* Source bus width */
475 ret = convert_buswidth(sconfig->src_addr_width);
478 promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
480 /* Destination bus width */
481 ret = convert_buswidth(sconfig->dst_addr_width);
484 promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
494 * Generate a promise, to be used in a dedicated DMA contract.
496 * A DDMA promise contains all the information required to program the
497 * Dedicated part of the DMA Engine and get data copied. A non-executed
498 * promise will live in the demands list on a contract. Once it has been
499 * completed, it will be moved to the completed demands list for later freeing.
500 * All linked promises will be freed when the corresponding contract is freed
502 static struct sun4i_dma_promise *
503 generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
504 size_t len, struct dma_slave_config *sconfig)
506 struct sun4i_dma_promise *promise;
509 promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
516 promise->cfg = SUN4I_DMA_CFG_LOADING |
517 SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
520 ret = convert_burst(sconfig->src_maxburst);
523 promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
525 /* Destination burst */
526 ret = convert_burst(sconfig->dst_maxburst);
529 promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
531 /* Source bus width */
532 ret = convert_buswidth(sconfig->src_addr_width);
535 promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
537 /* Destination bus width */
538 ret = convert_buswidth(sconfig->dst_addr_width);
541 promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
551 * Generate a contract
553 * Contracts function as DMA descriptors. As our hardware does not support
554 * linked lists, we need to implement SG via software. We use a contract
555 * to hold all the pieces of the request and process them serially one
556 * after another. Each piece is represented as a promise.
558 static struct sun4i_dma_contract *generate_dma_contract(void)
560 struct sun4i_dma_contract *contract;
562 contract = kzalloc(sizeof(*contract), GFP_NOWAIT);
566 INIT_LIST_HEAD(&contract->demands);
567 INIT_LIST_HEAD(&contract->completed_demands);
573 * Get next promise on a cyclic transfer
575 * Cyclic contracts contain a series of promises which are executed on a
576 * loop. This function returns the next promise from a cyclic contract,
577 * so it can be programmed into the hardware.
579 static struct sun4i_dma_promise *
580 get_next_cyclic_promise(struct sun4i_dma_contract *contract)
582 struct sun4i_dma_promise *promise;
584 promise = list_first_entry_or_null(&contract->demands,
585 struct sun4i_dma_promise, list);
587 list_splice_init(&contract->completed_demands,
589 promise = list_first_entry(&contract->demands,
590 struct sun4i_dma_promise, list);
597 * Free a contract and all its associated promises
599 static void sun4i_dma_free_contract(struct virt_dma_desc *vd)
601 struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd);
602 struct sun4i_dma_promise *promise, *tmp;
604 /* Free all the demands and completed demands */
605 list_for_each_entry_safe(promise, tmp, &contract->demands, list)
608 list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list)
614 static struct dma_async_tx_descriptor *
615 sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
616 dma_addr_t src, size_t len, unsigned long flags)
618 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
619 struct dma_slave_config *sconfig = &vchan->cfg;
620 struct sun4i_dma_promise *promise;
621 struct sun4i_dma_contract *contract;
623 contract = generate_dma_contract();
628 * We can only do the copy to bus aligned addresses, so
629 * choose the best one so we get decent performance. We also
630 * maximize the burst size for this same reason.
632 sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
633 sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
634 sconfig->src_maxburst = 8;
635 sconfig->dst_maxburst = 8;
637 if (vchan->is_dedicated)
638 promise = generate_ddma_promise(chan, src, dest, len, sconfig);
640 promise = generate_ndma_promise(chan, src, dest, len, sconfig,
648 /* Configure memcpy mode */
649 if (vchan->is_dedicated) {
650 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) |
651 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM);
653 promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
654 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
657 /* Fill the contract with our only promise */
658 list_add_tail(&promise->list, &contract->demands);
660 /* And add it to the vchan */
661 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
664 static struct dma_async_tx_descriptor *
665 sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
666 size_t period_len, enum dma_transfer_direction dir,
669 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
670 struct dma_slave_config *sconfig = &vchan->cfg;
671 struct sun4i_dma_promise *promise;
672 struct sun4i_dma_contract *contract;
673 dma_addr_t src, dest;
675 int nr_periods, offset, plength, i;
677 if (!is_slave_direction(dir)) {
678 dev_err(chan2dev(chan), "Invalid DMA direction\n");
682 if (vchan->is_dedicated) {
684 * As we are using this just for audio data, we need to use
685 * normal DMA. There is nothing stopping us from supporting
686 * dedicated DMA here as well, so if a client comes up and
687 * requires it, it will be simple to implement it.
689 dev_err(chan2dev(chan),
690 "Cyclic transfers are only supported on Normal DMA\n");
694 contract = generate_dma_contract();
698 contract->is_cyclic = 1;
700 /* Figure out the endpoints and the address we need */
701 if (dir == DMA_MEM_TO_DEV) {
703 dest = sconfig->dst_addr;
704 endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
705 SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
706 SUN4I_DMA_CFG_DST_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO);
708 src = sconfig->src_addr;
710 endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
711 SUN4I_DMA_CFG_SRC_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO) |
712 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
716 * We will be using half done interrupts to make two periods
717 * out of a promise, so we need to program the DMA engine less
722 * The engine can interrupt on half-transfer, so we can use
723 * this feature to program the engine half as often as if we
724 * didn't use it (keep in mind the hardware doesn't support
727 * Say you have a set of periods (| marks the start/end, I for
728 * interrupt, P for programming the engine to do a new
729 * transfer), the easy but slow way would be to do
731 * |---|---|---|---| (periods / promises)
734 * Using half transfer interrupts you can do
736 * |-------|-------| (promises as configured on hw)
737 * |---|---|---|---| (periods)
740 * Which requires half the engine programming for the same
743 nr_periods = DIV_ROUND_UP(len / period_len, 2);
744 for (i = 0; i < nr_periods; i++) {
745 /* Calculate the offset in the buffer and the length needed */
746 offset = i * period_len * 2;
747 plength = min((len - offset), (period_len * 2));
748 if (dir == DMA_MEM_TO_DEV)
753 /* Make the promise */
754 promise = generate_ndma_promise(chan, src, dest,
755 plength, sconfig, dir);
757 /* TODO: should we free everything? */
760 promise->cfg |= endpoints;
762 /* Then add it to the contract */
763 list_add_tail(&promise->list, &contract->demands);
766 /* And add it to the vchan */
767 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
770 static struct dma_async_tx_descriptor *
771 sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
772 unsigned int sg_len, enum dma_transfer_direction dir,
773 unsigned long flags, void *context)
775 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
776 struct dma_slave_config *sconfig = &vchan->cfg;
777 struct sun4i_dma_promise *promise;
778 struct sun4i_dma_contract *contract;
779 u8 ram_type, io_mode, linear_mode;
780 struct scatterlist *sg;
781 dma_addr_t srcaddr, dstaddr;
788 if (!is_slave_direction(dir)) {
789 dev_err(chan2dev(chan), "Invalid DMA direction\n");
793 contract = generate_dma_contract();
797 if (vchan->is_dedicated) {
798 io_mode = SUN4I_DDMA_ADDR_MODE_IO;
799 linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
800 ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
802 io_mode = SUN4I_NDMA_ADDR_MODE_IO;
803 linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
804 ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
807 if (dir == DMA_MEM_TO_DEV)
808 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
809 SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
810 SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
811 SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
813 endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
814 SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
815 SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
816 SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
818 for_each_sg(sgl, sg, sg_len, i) {
819 /* Figure out addresses */
820 if (dir == DMA_MEM_TO_DEV) {
821 srcaddr = sg_dma_address(sg);
822 dstaddr = sconfig->dst_addr;
824 srcaddr = sconfig->src_addr;
825 dstaddr = sg_dma_address(sg);
829 * These are the magic DMA engine timings that keep SPI going.
830 * I haven't seen any interface on DMAEngine to configure
831 * timings, and so far they seem to work for everything we
832 * support, so I've kept them here. I don't know if other
833 * devices need different timings because, as usual, we only
834 * have the "para" bitfield meanings, but no comment on what
835 * the values should be when doing a certain operation :|
837 para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS;
839 /* And make a suitable promise */
840 if (vchan->is_dedicated)
841 promise = generate_ddma_promise(chan, srcaddr, dstaddr,
845 promise = generate_ndma_promise(chan, srcaddr, dstaddr,
850 return NULL; /* TODO: should we free everything? */
852 promise->cfg |= endpoints;
853 promise->para = para;
855 /* Then add it to the contract */
856 list_add_tail(&promise->list, &contract->demands);
860 * Once we've got all the promises ready, add the contract
861 * to the pending list on the vchan
863 return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
866 static int sun4i_dma_terminate_all(struct dma_chan *chan)
868 struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
869 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
870 struct sun4i_dma_pchan *pchan = vchan->pchan;
874 spin_lock_irqsave(&vchan->vc.lock, flags);
875 vchan_get_all_descriptors(&vchan->vc, &head);
876 spin_unlock_irqrestore(&vchan->vc.lock, flags);
879 * Clearing the configuration register will halt the pchan. Interrupts
880 * may still trigger, so don't forget to disable them.
883 if (pchan->is_dedicated)
884 writel(0, pchan->base + SUN4I_DDMA_CFG_REG);
886 writel(0, pchan->base + SUN4I_NDMA_CFG_REG);
887 set_pchan_interrupt(priv, pchan, 0, 0);
888 release_pchan(priv, pchan);
891 spin_lock_irqsave(&vchan->vc.lock, flags);
892 vchan_dma_desc_free_list(&vchan->vc, &head);
893 /* Clear these so the vchan is usable again */
894 vchan->processing = NULL;
896 spin_unlock_irqrestore(&vchan->vc.lock, flags);
901 static int sun4i_dma_config(struct dma_chan *chan,
902 struct dma_slave_config *config)
904 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
906 memcpy(&vchan->cfg, config, sizeof(*config));
911 static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec,
912 struct of_dma *ofdma)
914 struct sun4i_dma_dev *priv = ofdma->of_dma_data;
915 struct sun4i_dma_vchan *vchan;
916 struct dma_chan *chan;
917 u8 is_dedicated = dma_spec->args[0];
918 u8 endpoint = dma_spec->args[1];
920 /* Check if type is Normal or Dedicated */
921 if (is_dedicated != 0 && is_dedicated != 1)
924 /* Make sure the endpoint looks sane */
925 if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) ||
926 (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT))
929 chan = dma_get_any_slave_channel(&priv->slave);
933 /* Assign the endpoint to the vchan */
934 vchan = to_sun4i_dma_vchan(chan);
935 vchan->is_dedicated = is_dedicated;
936 vchan->endpoint = endpoint;
941 static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan,
943 struct dma_tx_state *state)
945 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
946 struct sun4i_dma_pchan *pchan = vchan->pchan;
947 struct sun4i_dma_contract *contract;
948 struct sun4i_dma_promise *promise;
949 struct virt_dma_desc *vd;
954 ret = dma_cookie_status(chan, cookie, state);
955 if (!state || (ret == DMA_COMPLETE))
958 spin_lock_irqsave(&vchan->vc.lock, flags);
959 vd = vchan_find_desc(&vchan->vc, cookie);
962 contract = to_sun4i_dma_contract(vd);
964 list_for_each_entry(promise, &contract->demands, list)
965 bytes += promise->len;
968 * The hardware is configured to return the remaining byte
969 * quantity. If possible, replace the first listed element's
970 * full size with the actual remaining amount
972 promise = list_first_entry_or_null(&contract->demands,
973 struct sun4i_dma_promise, list);
974 if (promise && pchan) {
975 bytes -= promise->len;
976 if (pchan->is_dedicated)
977 bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
979 bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
984 dma_set_residue(state, bytes);
985 spin_unlock_irqrestore(&vchan->vc.lock, flags);
990 static void sun4i_dma_issue_pending(struct dma_chan *chan)
992 struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
993 struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
996 spin_lock_irqsave(&vchan->vc.lock, flags);
999 * If there are pending transactions for this vchan, push one of
1000 * them into the engine to get the ball rolling.
1002 if (vchan_issue_pending(&vchan->vc))
1003 __execute_vchan_pending(priv, vchan);
1005 spin_unlock_irqrestore(&vchan->vc.lock, flags);
1008 static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id)
1010 struct sun4i_dma_dev *priv = dev_id;
1011 struct sun4i_dma_pchan *pchans = priv->pchans, *pchan;
1012 struct sun4i_dma_vchan *vchan;
1013 struct sun4i_dma_contract *contract;
1014 struct sun4i_dma_promise *promise;
1015 unsigned long pendirq, irqs, disableirqs;
1016 int bit, i, free_room, allow_mitigation = 1;
1018 pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1025 for_each_set_bit(bit, &pendirq, 32) {
1026 pchan = &pchans[bit >> 1];
1027 vchan = pchan->vchan;
1028 if (!vchan) /* a terminated channel may still interrupt */
1030 contract = vchan->contract;
1033 * Disable the IRQ and free the pchan if it's an end
1034 * interrupt (odd bit)
1037 spin_lock(&vchan->vc.lock);
1040 * Move the promise into the completed list now that
1041 * we're done with it
1043 list_del(&vchan->processing->list);
1044 list_add_tail(&vchan->processing->list,
1045 &contract->completed_demands);
1048 * Cyclic DMA transfers are special:
1049 * - There's always something we can dispatch
1050 * - We need to run the callback
1051 * - Latency is very important, as this is used by audio
1052 * We therefore just cycle through the list and dispatch
1053 * whatever we have here, reusing the pchan. There's
1054 * no need to run the thread after this.
1056 * For non-cyclic transfers we need to look around,
1057 * so we can program some more work, or notify the
1058 * client that their transfers have been completed.
1060 if (contract->is_cyclic) {
1061 promise = get_next_cyclic_promise(contract);
1062 vchan->processing = promise;
1063 configure_pchan(pchan, promise);
1064 vchan_cyclic_callback(&contract->vd);
1066 vchan->processing = NULL;
1067 vchan->pchan = NULL;
1070 disableirqs |= BIT(bit);
1071 release_pchan(priv, pchan);
1074 spin_unlock(&vchan->vc.lock);
1076 /* Half done interrupt */
1077 if (contract->is_cyclic)
1078 vchan_cyclic_callback(&contract->vd);
1080 disableirqs |= BIT(bit);
1084 /* Disable the IRQs for events we handled */
1085 spin_lock(&priv->lock);
1086 irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1087 writel_relaxed(irqs & ~disableirqs,
1088 priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1089 spin_unlock(&priv->lock);
1091 /* Writing 1 to the pending field will clear the pending interrupt */
1092 writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1095 * If a pchan was freed, we may be able to schedule something else,
1096 * so have a look around
1099 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1100 vchan = &priv->vchans[i];
1101 spin_lock(&vchan->vc.lock);
1102 __execute_vchan_pending(priv, vchan);
1103 spin_unlock(&vchan->vc.lock);
1108 * Handle newer interrupts if some showed up, but only do it once
1109 * to avoid a too long a loop
1111 if (allow_mitigation) {
1112 pendirq = readl_relaxed(priv->base +
1113 SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1115 allow_mitigation = 0;
1116 goto handle_pending;
1123 static int sun4i_dma_probe(struct platform_device *pdev)
1125 struct sun4i_dma_dev *priv;
1126 struct resource *res;
1129 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1133 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1134 priv->base = devm_ioremap_resource(&pdev->dev, res);
1135 if (IS_ERR(priv->base))
1136 return PTR_ERR(priv->base);
1138 priv->irq = platform_get_irq(pdev, 0);
1139 if (priv->irq < 0) {
1140 dev_err(&pdev->dev, "Cannot claim IRQ\n");
1144 priv->clk = devm_clk_get(&pdev->dev, NULL);
1145 if (IS_ERR(priv->clk)) {
1146 dev_err(&pdev->dev, "No clock specified\n");
1147 return PTR_ERR(priv->clk);
1150 platform_set_drvdata(pdev, priv);
1151 spin_lock_init(&priv->lock);
1153 dma_cap_zero(priv->slave.cap_mask);
1154 dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask);
1155 dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask);
1156 dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask);
1157 dma_cap_set(DMA_SLAVE, priv->slave.cap_mask);
1159 INIT_LIST_HEAD(&priv->slave.channels);
1160 priv->slave.device_free_chan_resources = sun4i_dma_free_chan_resources;
1161 priv->slave.device_tx_status = sun4i_dma_tx_status;
1162 priv->slave.device_issue_pending = sun4i_dma_issue_pending;
1163 priv->slave.device_prep_slave_sg = sun4i_dma_prep_slave_sg;
1164 priv->slave.device_prep_dma_memcpy = sun4i_dma_prep_dma_memcpy;
1165 priv->slave.device_prep_dma_cyclic = sun4i_dma_prep_dma_cyclic;
1166 priv->slave.device_config = sun4i_dma_config;
1167 priv->slave.device_terminate_all = sun4i_dma_terminate_all;
1168 priv->slave.copy_align = 2;
1169 priv->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1170 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1171 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1172 priv->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1173 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1174 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1175 priv->slave.directions = BIT(DMA_DEV_TO_MEM) |
1176 BIT(DMA_MEM_TO_DEV);
1177 priv->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1179 priv->slave.dev = &pdev->dev;
1181 priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS,
1182 sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
1183 priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS,
1184 sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
1185 if (!priv->vchans || !priv->pchans)
1189 * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
1190 * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
1193 for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++)
1194 priv->pchans[i].base = priv->base +
1195 SUN4I_NDMA_CHANNEL_REG_BASE(i);
1197 for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) {
1198 priv->pchans[i].base = priv->base +
1199 SUN4I_DDMA_CHANNEL_REG_BASE(j);
1200 priv->pchans[i].is_dedicated = 1;
1203 for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1204 struct sun4i_dma_vchan *vchan = &priv->vchans[i];
1206 spin_lock_init(&vchan->vc.lock);
1207 vchan->vc.desc_free = sun4i_dma_free_contract;
1208 vchan_init(&vchan->vc, &priv->slave);
1211 ret = clk_prepare_enable(priv->clk);
1213 dev_err(&pdev->dev, "Couldn't enable the clock\n");
1218 * Make sure the IRQs are all disabled and accounted for. The bootloader
1219 * likes to leave these dirty
1221 writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1222 writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1224 ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt,
1225 0, dev_name(&pdev->dev), priv);
1227 dev_err(&pdev->dev, "Cannot request IRQ\n");
1228 goto err_clk_disable;
1231 ret = dma_async_device_register(&priv->slave);
1233 dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
1234 goto err_clk_disable;
1237 ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate,
1240 dev_err(&pdev->dev, "of_dma_controller_register failed\n");
1241 goto err_dma_unregister;
1244 dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n");
1249 dma_async_device_unregister(&priv->slave);
1251 clk_disable_unprepare(priv->clk);
1255 static int sun4i_dma_remove(struct platform_device *pdev)
1257 struct sun4i_dma_dev *priv = platform_get_drvdata(pdev);
1259 /* Disable IRQ so no more work is scheduled */
1260 disable_irq(priv->irq);
1262 of_dma_controller_free(pdev->dev.of_node);
1263 dma_async_device_unregister(&priv->slave);
1265 clk_disable_unprepare(priv->clk);
1270 static const struct of_device_id sun4i_dma_match[] = {
1271 { .compatible = "allwinner,sun4i-a10-dma" },
1274 MODULE_DEVICE_TABLE(of, sun4i_dma_match);
1276 static struct platform_driver sun4i_dma_driver = {
1277 .probe = sun4i_dma_probe,
1278 .remove = sun4i_dma_remove,
1280 .name = "sun4i-dma",
1281 .of_match_table = sun4i_dma_match,
1285 module_platform_driver(sun4i_dma_driver);
1287 MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
1288 MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
1289 MODULE_LICENSE("GPL");