]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/dma-buf/dma-fence.c
Merge tag 'edac/v4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[karo-tx-linux.git] / drivers / dma-buf / dma-fence.c
1 /*
2  * Fence mechanism for dma-buf and to allow for asynchronous dma access
3  *
4  * Copyright (C) 2012 Canonical Ltd
5  * Copyright (C) 2012 Texas Instruments
6  *
7  * Authors:
8  * Rob Clark <robdclark@gmail.com>
9  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License version 2 as published by
13  * the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/export.h>
23 #include <linux/atomic.h>
24 #include <linux/dma-fence.h>
25
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/dma_fence.h>
28
29 EXPORT_TRACEPOINT_SYMBOL(dma_fence_annotate_wait_on);
30 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
31
32 /*
33  * fence context counter: each execution context should have its own
34  * fence context, this allows checking if fences belong to the same
35  * context or not. One device can have multiple separate contexts,
36  * and they're used if some engine can run independently of another.
37  */
38 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(0);
39
40 /**
41  * dma_fence_context_alloc - allocate an array of fence contexts
42  * @num:        [in]    amount of contexts to allocate
43  *
44  * This function will return the first index of the number of fences allocated.
45  * The fence context is used for setting fence->context to a unique number.
46  */
47 u64 dma_fence_context_alloc(unsigned num)
48 {
49         BUG_ON(!num);
50         return atomic64_add_return(num, &dma_fence_context_counter) - num;
51 }
52 EXPORT_SYMBOL(dma_fence_context_alloc);
53
54 /**
55  * dma_fence_signal_locked - signal completion of a fence
56  * @fence: the fence to signal
57  *
58  * Signal completion for software callbacks on a fence, this will unblock
59  * dma_fence_wait() calls and run all the callbacks added with
60  * dma_fence_add_callback(). Can be called multiple times, but since a fence
61  * can only go from unsignaled to signaled state, it will only be effective
62  * the first time.
63  *
64  * Unlike dma_fence_signal, this function must be called with fence->lock held.
65  */
66 int dma_fence_signal_locked(struct dma_fence *fence)
67 {
68         struct dma_fence_cb *cur, *tmp;
69         int ret = 0;
70
71         lockdep_assert_held(fence->lock);
72
73         if (WARN_ON(!fence))
74                 return -EINVAL;
75
76         if (!ktime_to_ns(fence->timestamp)) {
77                 fence->timestamp = ktime_get();
78                 smp_mb__before_atomic();
79         }
80
81         if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
82                 ret = -EINVAL;
83
84                 /*
85                  * we might have raced with the unlocked dma_fence_signal,
86                  * still run through all callbacks
87                  */
88         } else
89                 trace_dma_fence_signaled(fence);
90
91         list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
92                 list_del_init(&cur->node);
93                 cur->func(fence, cur);
94         }
95         return ret;
96 }
97 EXPORT_SYMBOL(dma_fence_signal_locked);
98
99 /**
100  * dma_fence_signal - signal completion of a fence
101  * @fence: the fence to signal
102  *
103  * Signal completion for software callbacks on a fence, this will unblock
104  * dma_fence_wait() calls and run all the callbacks added with
105  * dma_fence_add_callback(). Can be called multiple times, but since a fence
106  * can only go from unsignaled to signaled state, it will only be effective
107  * the first time.
108  */
109 int dma_fence_signal(struct dma_fence *fence)
110 {
111         unsigned long flags;
112
113         if (!fence)
114                 return -EINVAL;
115
116         if (!ktime_to_ns(fence->timestamp)) {
117                 fence->timestamp = ktime_get();
118                 smp_mb__before_atomic();
119         }
120
121         if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
122                 return -EINVAL;
123
124         trace_dma_fence_signaled(fence);
125
126         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
127                 struct dma_fence_cb *cur, *tmp;
128
129                 spin_lock_irqsave(fence->lock, flags);
130                 list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
131                         list_del_init(&cur->node);
132                         cur->func(fence, cur);
133                 }
134                 spin_unlock_irqrestore(fence->lock, flags);
135         }
136         return 0;
137 }
138 EXPORT_SYMBOL(dma_fence_signal);
139
140 /**
141  * dma_fence_wait_timeout - sleep until the fence gets signaled
142  * or until timeout elapses
143  * @fence:      [in]    the fence to wait on
144  * @intr:       [in]    if true, do an interruptible wait
145  * @timeout:    [in]    timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
146  *
147  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
148  * remaining timeout in jiffies on success. Other error values may be
149  * returned on custom implementations.
150  *
151  * Performs a synchronous wait on this fence. It is assumed the caller
152  * directly or indirectly (buf-mgr between reservation and committing)
153  * holds a reference to the fence, otherwise the fence might be
154  * freed before return, resulting in undefined behavior.
155  */
156 signed long
157 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
158 {
159         signed long ret;
160
161         if (WARN_ON(timeout < 0))
162                 return -EINVAL;
163
164         trace_dma_fence_wait_start(fence);
165         ret = fence->ops->wait(fence, intr, timeout);
166         trace_dma_fence_wait_end(fence);
167         return ret;
168 }
169 EXPORT_SYMBOL(dma_fence_wait_timeout);
170
171 void dma_fence_release(struct kref *kref)
172 {
173         struct dma_fence *fence =
174                 container_of(kref, struct dma_fence, refcount);
175
176         trace_dma_fence_destroy(fence);
177
178         BUG_ON(!list_empty(&fence->cb_list));
179
180         if (fence->ops->release)
181                 fence->ops->release(fence);
182         else
183                 dma_fence_free(fence);
184 }
185 EXPORT_SYMBOL(dma_fence_release);
186
187 void dma_fence_free(struct dma_fence *fence)
188 {
189         kfree_rcu(fence, rcu);
190 }
191 EXPORT_SYMBOL(dma_fence_free);
192
193 /**
194  * dma_fence_enable_sw_signaling - enable signaling on fence
195  * @fence:      [in]    the fence to enable
196  *
197  * this will request for sw signaling to be enabled, to make the fence
198  * complete as soon as possible
199  */
200 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
201 {
202         unsigned long flags;
203
204         if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
205                               &fence->flags) &&
206             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
207                 trace_dma_fence_enable_signal(fence);
208
209                 spin_lock_irqsave(fence->lock, flags);
210
211                 if (!fence->ops->enable_signaling(fence))
212                         dma_fence_signal_locked(fence);
213
214                 spin_unlock_irqrestore(fence->lock, flags);
215         }
216 }
217 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
218
219 /**
220  * dma_fence_add_callback - add a callback to be called when the fence
221  * is signaled
222  * @fence:      [in]    the fence to wait on
223  * @cb:         [in]    the callback to register
224  * @func:       [in]    the function to call
225  *
226  * cb will be initialized by dma_fence_add_callback, no initialization
227  * by the caller is required. Any number of callbacks can be registered
228  * to a fence, but a callback can only be registered to one fence at a time.
229  *
230  * Note that the callback can be called from an atomic context.  If
231  * fence is already signaled, this function will return -ENOENT (and
232  * *not* call the callback)
233  *
234  * Add a software callback to the fence. Same restrictions apply to
235  * refcount as it does to dma_fence_wait, however the caller doesn't need to
236  * keep a refcount to fence afterwards: when software access is enabled,
237  * the creator of the fence is required to keep the fence alive until
238  * after it signals with dma_fence_signal. The callback itself can be called
239  * from irq context.
240  *
241  */
242 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
243                            dma_fence_func_t func)
244 {
245         unsigned long flags;
246         int ret = 0;
247         bool was_set;
248
249         if (WARN_ON(!fence || !func))
250                 return -EINVAL;
251
252         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
253                 INIT_LIST_HEAD(&cb->node);
254                 return -ENOENT;
255         }
256
257         spin_lock_irqsave(fence->lock, flags);
258
259         was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
260                                    &fence->flags);
261
262         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
263                 ret = -ENOENT;
264         else if (!was_set) {
265                 trace_dma_fence_enable_signal(fence);
266
267                 if (!fence->ops->enable_signaling(fence)) {
268                         dma_fence_signal_locked(fence);
269                         ret = -ENOENT;
270                 }
271         }
272
273         if (!ret) {
274                 cb->func = func;
275                 list_add_tail(&cb->node, &fence->cb_list);
276         } else
277                 INIT_LIST_HEAD(&cb->node);
278         spin_unlock_irqrestore(fence->lock, flags);
279
280         return ret;
281 }
282 EXPORT_SYMBOL(dma_fence_add_callback);
283
284 /**
285  * dma_fence_remove_callback - remove a callback from the signaling list
286  * @fence:      [in]    the fence to wait on
287  * @cb:         [in]    the callback to remove
288  *
289  * Remove a previously queued callback from the fence. This function returns
290  * true if the callback is successfully removed, or false if the fence has
291  * already been signaled.
292  *
293  * *WARNING*:
294  * Cancelling a callback should only be done if you really know what you're
295  * doing, since deadlocks and race conditions could occur all too easily. For
296  * this reason, it should only ever be done on hardware lockup recovery,
297  * with a reference held to the fence.
298  */
299 bool
300 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
301 {
302         unsigned long flags;
303         bool ret;
304
305         spin_lock_irqsave(fence->lock, flags);
306
307         ret = !list_empty(&cb->node);
308         if (ret)
309                 list_del_init(&cb->node);
310
311         spin_unlock_irqrestore(fence->lock, flags);
312
313         return ret;
314 }
315 EXPORT_SYMBOL(dma_fence_remove_callback);
316
317 struct default_wait_cb {
318         struct dma_fence_cb base;
319         struct task_struct *task;
320 };
321
322 static void
323 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
324 {
325         struct default_wait_cb *wait =
326                 container_of(cb, struct default_wait_cb, base);
327
328         wake_up_state(wait->task, TASK_NORMAL);
329 }
330
331 /**
332  * dma_fence_default_wait - default sleep until the fence gets signaled
333  * or until timeout elapses
334  * @fence:      [in]    the fence to wait on
335  * @intr:       [in]    if true, do an interruptible wait
336  * @timeout:    [in]    timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
337  *
338  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
339  * remaining timeout in jiffies on success. If timeout is zero the value one is
340  * returned if the fence is already signaled for consistency with other
341  * functions taking a jiffies timeout.
342  */
343 signed long
344 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
345 {
346         struct default_wait_cb cb;
347         unsigned long flags;
348         signed long ret = timeout ? timeout : 1;
349         bool was_set;
350
351         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
352                 return ret;
353
354         spin_lock_irqsave(fence->lock, flags);
355
356         if (intr && signal_pending(current)) {
357                 ret = -ERESTARTSYS;
358                 goto out;
359         }
360
361         was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
362                                    &fence->flags);
363
364         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
365                 goto out;
366
367         if (!was_set) {
368                 trace_dma_fence_enable_signal(fence);
369
370                 if (!fence->ops->enable_signaling(fence)) {
371                         dma_fence_signal_locked(fence);
372                         goto out;
373                 }
374         }
375
376         cb.base.func = dma_fence_default_wait_cb;
377         cb.task = current;
378         list_add(&cb.base.node, &fence->cb_list);
379
380         while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
381                 if (intr)
382                         __set_current_state(TASK_INTERRUPTIBLE);
383                 else
384                         __set_current_state(TASK_UNINTERRUPTIBLE);
385                 spin_unlock_irqrestore(fence->lock, flags);
386
387                 ret = schedule_timeout(ret);
388
389                 spin_lock_irqsave(fence->lock, flags);
390                 if (ret > 0 && intr && signal_pending(current))
391                         ret = -ERESTARTSYS;
392         }
393
394         if (!list_empty(&cb.base.node))
395                 list_del(&cb.base.node);
396         __set_current_state(TASK_RUNNING);
397
398 out:
399         spin_unlock_irqrestore(fence->lock, flags);
400         return ret;
401 }
402 EXPORT_SYMBOL(dma_fence_default_wait);
403
404 static bool
405 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
406                             uint32_t *idx)
407 {
408         int i;
409
410         for (i = 0; i < count; ++i) {
411                 struct dma_fence *fence = fences[i];
412                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
413                         if (idx)
414                                 *idx = i;
415                         return true;
416                 }
417         }
418         return false;
419 }
420
421 /**
422  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
423  * or until timeout elapses
424  * @fences:     [in]    array of fences to wait on
425  * @count:      [in]    number of fences to wait on
426  * @intr:       [in]    if true, do an interruptible wait
427  * @timeout:    [in]    timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
428  * @idx:       [out]    the first signaled fence index, meaningful only on
429  *                      positive return
430  *
431  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
432  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
433  * on success.
434  *
435  * Synchronous waits for the first fence in the array to be signaled. The
436  * caller needs to hold a reference to all fences in the array, otherwise a
437  * fence might be freed before return, resulting in undefined behavior.
438  */
439 signed long
440 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
441                            bool intr, signed long timeout, uint32_t *idx)
442 {
443         struct default_wait_cb *cb;
444         signed long ret = timeout;
445         unsigned i;
446
447         if (WARN_ON(!fences || !count || timeout < 0))
448                 return -EINVAL;
449
450         if (timeout == 0) {
451                 for (i = 0; i < count; ++i)
452                         if (dma_fence_is_signaled(fences[i])) {
453                                 if (idx)
454                                         *idx = i;
455                                 return 1;
456                         }
457
458                 return 0;
459         }
460
461         cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
462         if (cb == NULL) {
463                 ret = -ENOMEM;
464                 goto err_free_cb;
465         }
466
467         for (i = 0; i < count; ++i) {
468                 struct dma_fence *fence = fences[i];
469
470                 if (fence->ops->wait != dma_fence_default_wait) {
471                         ret = -EINVAL;
472                         goto fence_rm_cb;
473                 }
474
475                 cb[i].task = current;
476                 if (dma_fence_add_callback(fence, &cb[i].base,
477                                            dma_fence_default_wait_cb)) {
478                         /* This fence is already signaled */
479                         if (idx)
480                                 *idx = i;
481                         goto fence_rm_cb;
482                 }
483         }
484
485         while (ret > 0) {
486                 if (intr)
487                         set_current_state(TASK_INTERRUPTIBLE);
488                 else
489                         set_current_state(TASK_UNINTERRUPTIBLE);
490
491                 if (dma_fence_test_signaled_any(fences, count, idx))
492                         break;
493
494                 ret = schedule_timeout(ret);
495
496                 if (ret > 0 && intr && signal_pending(current))
497                         ret = -ERESTARTSYS;
498         }
499
500         __set_current_state(TASK_RUNNING);
501
502 fence_rm_cb:
503         while (i-- > 0)
504                 dma_fence_remove_callback(fences[i], &cb[i].base);
505
506 err_free_cb:
507         kfree(cb);
508
509         return ret;
510 }
511 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
512
513 /**
514  * dma_fence_init - Initialize a custom fence.
515  * @fence:      [in]    the fence to initialize
516  * @ops:        [in]    the dma_fence_ops for operations on this fence
517  * @lock:       [in]    the irqsafe spinlock to use for locking this fence
518  * @context:    [in]    the execution context this fence is run on
519  * @seqno:      [in]    a linear increasing sequence number for this context
520  *
521  * Initializes an allocated fence, the caller doesn't have to keep its
522  * refcount after committing with this fence, but it will need to hold a
523  * refcount again if dma_fence_ops.enable_signaling gets called. This can
524  * be used for other implementing other types of fence.
525  *
526  * context and seqno are used for easy comparison between fences, allowing
527  * to check which fence is later by simply using dma_fence_later.
528  */
529 void
530 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
531                spinlock_t *lock, u64 context, unsigned seqno)
532 {
533         BUG_ON(!lock);
534         BUG_ON(!ops || !ops->wait || !ops->enable_signaling ||
535                !ops->get_driver_name || !ops->get_timeline_name);
536
537         kref_init(&fence->refcount);
538         fence->ops = ops;
539         INIT_LIST_HEAD(&fence->cb_list);
540         fence->lock = lock;
541         fence->context = context;
542         fence->seqno = seqno;
543         fence->flags = 0UL;
544
545         trace_dma_fence_init(fence);
546 }
547 EXPORT_SYMBOL(dma_fence_init);