]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/edac/edac_mc.c
[PATCH] EDAC: reorder EXPORT_SYMBOL macros
[karo-tx-linux.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15
16 #include <linux/config.h>
17 #include <linux/module.h>
18 #include <linux/proc_fs.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/smp.h>
22 #include <linux/init.h>
23 #include <linux/sysctl.h>
24 #include <linux/highmem.h>
25 #include <linux/timer.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
28 #include <linux/spinlock.h>
29 #include <linux/list.h>
30 #include <linux/sysdev.h>
31 #include <linux/ctype.h>
32 #include <linux/kthread.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/page.h>
36 #include <asm/edac.h>
37
38 #include "edac_mc.h"
39
40 #define EDAC_MC_VERSION "Ver: 2.0.0 " __DATE__
41
42 /* For now, disable the EDAC sysfs code.  The sysfs interface that EDAC
43  * presents to user space needs more thought, and is likely to change
44  * substantially.
45  */
46 #define DISABLE_EDAC_SYSFS
47
48 #ifdef CONFIG_EDAC_DEBUG
49 /* Values of 0 to 4 will generate output */
50 int edac_debug_level = 1;
51 EXPORT_SYMBOL(edac_debug_level);
52 #endif
53
54 /* EDAC Controls, setable by module parameter, and sysfs */
55 static int log_ue = 1;
56 static int log_ce = 1;
57 static int panic_on_ue;
58 static int poll_msec = 1000;
59
60 static int check_pci_parity = 0;        /* default YES check PCI parity */
61 static int panic_on_pci_parity;         /* default no panic on PCI Parity */
62 static atomic_t pci_parity_count = ATOMIC_INIT(0);
63
64 /* lock to memory controller's control array */
65 static DECLARE_MUTEX(mem_ctls_mutex);
66 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
67
68 static struct task_struct *edac_thread;
69
70 /* Structure of the whitelist and blacklist arrays */
71 struct edac_pci_device_list {
72         unsigned int  vendor;           /* Vendor ID */
73         unsigned int  device;           /* Deviice ID */
74 };
75
76
77 #define MAX_LISTED_PCI_DEVICES          32
78
79 /* List of PCI devices (vendor-id:device-id) that should be skipped */
80 static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES];
81 static int pci_blacklist_count;
82
83 /* List of PCI devices (vendor-id:device-id) that should be scanned */
84 static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES];
85 static int pci_whitelist_count ;
86
87 /*  START sysfs data and methods */
88
89 #ifndef DISABLE_EDAC_SYSFS
90
91 static const char *mem_types[] = {
92         [MEM_EMPTY] = "Empty",
93         [MEM_RESERVED] = "Reserved",
94         [MEM_UNKNOWN] = "Unknown",
95         [MEM_FPM] = "FPM",
96         [MEM_EDO] = "EDO",
97         [MEM_BEDO] = "BEDO",
98         [MEM_SDR] = "Unbuffered-SDR",
99         [MEM_RDR] = "Registered-SDR",
100         [MEM_DDR] = "Unbuffered-DDR",
101         [MEM_RDDR] = "Registered-DDR",
102         [MEM_RMBS] = "RMBS"
103 };
104
105 static const char *dev_types[] = {
106         [DEV_UNKNOWN] = "Unknown",
107         [DEV_X1] = "x1",
108         [DEV_X2] = "x2",
109         [DEV_X4] = "x4",
110         [DEV_X8] = "x8",
111         [DEV_X16] = "x16",
112         [DEV_X32] = "x32",
113         [DEV_X64] = "x64"
114 };
115
116 static const char *edac_caps[] = {
117         [EDAC_UNKNOWN] = "Unknown",
118         [EDAC_NONE] = "None",
119         [EDAC_RESERVED] = "Reserved",
120         [EDAC_PARITY] = "PARITY",
121         [EDAC_EC] = "EC",
122         [EDAC_SECDED] = "SECDED",
123         [EDAC_S2ECD2ED] = "S2ECD2ED",
124         [EDAC_S4ECD4ED] = "S4ECD4ED",
125         [EDAC_S8ECD8ED] = "S8ECD8ED",
126         [EDAC_S16ECD16ED] = "S16ECD16ED"
127 };
128
129
130 /* sysfs object: /sys/devices/system/edac */
131 static struct sysdev_class edac_class = {
132         set_kset_name("edac"),
133 };
134
135 /* sysfs objects:
136  *      /sys/devices/system/edac/mc
137  *      /sys/devices/system/edac/pci
138  */
139 static struct kobject edac_memctrl_kobj;
140 static struct kobject edac_pci_kobj;
141
142 /* We use these to wait for the reference counts on edac_memctrl_kobj and
143  * edac_pci_kobj to reach 0.
144  */
145 static struct completion edac_memctrl_kobj_complete;
146 static struct completion edac_pci_kobj_complete;
147
148 /*
149  * /sys/devices/system/edac/mc;
150  *      data structures and methods
151  */
152 #if 0
153 static ssize_t memctrl_string_show(void *ptr, char *buffer)
154 {
155         char *value = (char*) ptr;
156         return sprintf(buffer, "%s\n", value);
157 }
158 #endif
159
160 static ssize_t memctrl_int_show(void *ptr, char *buffer)
161 {
162         int *value = (int*) ptr;
163         return sprintf(buffer, "%d\n", *value);
164 }
165
166 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
167 {
168         int *value = (int*) ptr;
169
170         if (isdigit(*buffer))
171                 *value = simple_strtoul(buffer, NULL, 0);
172
173         return count;
174 }
175
176 struct memctrl_dev_attribute {
177         struct attribute        attr;
178         void    *value;
179         ssize_t (*show)(void *,char *);
180         ssize_t (*store)(void *, const char *, size_t);
181 };
182
183 /* Set of show/store abstract level functions for memory control object */
184 static ssize_t
185 memctrl_dev_show(struct kobject *kobj, struct attribute *attr, char *buffer)
186 {
187         struct memctrl_dev_attribute *memctrl_dev;
188         memctrl_dev = (struct memctrl_dev_attribute*)attr;
189
190         if (memctrl_dev->show)
191                 return memctrl_dev->show(memctrl_dev->value, buffer);
192         return -EIO;
193 }
194
195 static ssize_t
196 memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
197                         const char *buffer, size_t count)
198 {
199         struct memctrl_dev_attribute *memctrl_dev;
200         memctrl_dev = (struct memctrl_dev_attribute*)attr;
201
202         if (memctrl_dev->store)
203                 return memctrl_dev->store(memctrl_dev->value, buffer, count);
204         return -EIO;
205 }
206
207 static struct sysfs_ops memctrlfs_ops = {
208         .show   = memctrl_dev_show,
209         .store  = memctrl_dev_store
210 };
211
212 #define MEMCTRL_ATTR(_name,_mode,_show,_store)                  \
213 struct memctrl_dev_attribute attr_##_name = {                   \
214         .attr = {.name = __stringify(_name), .mode = _mode },   \
215         .value  = &_name,                                       \
216         .show   = _show,                                        \
217         .store  = _store,                                       \
218 };
219
220 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)     \
221 struct memctrl_dev_attribute attr_##_name = {                   \
222         .attr = {.name = __stringify(_name), .mode = _mode },   \
223         .value  = _data,                                        \
224         .show   = _show,                                        \
225         .store  = _store,                                       \
226 };
227
228 /* cwrow<id> attribute f*/
229 #if 0
230 MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL);
231 #endif
232
233 /* csrow<id> control files */
234 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
235 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
236 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
237 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
238
239
240 /* Base Attributes of the memory ECC object */
241 static struct memctrl_dev_attribute *memctrl_attr[] = {
242         &attr_panic_on_ue,
243         &attr_log_ue,
244         &attr_log_ce,
245         &attr_poll_msec,
246         NULL,
247 };
248
249 /* Main MC kobject release() function */
250 static void edac_memctrl_master_release(struct kobject *kobj)
251 {
252         debugf1("%s()\n", __func__);
253         complete(&edac_memctrl_kobj_complete);
254 }
255
256 static struct kobj_type ktype_memctrl = {
257         .release        = edac_memctrl_master_release,
258         .sysfs_ops      = &memctrlfs_ops,
259         .default_attrs  = (struct attribute **) memctrl_attr,
260 };
261
262 #endif  /* DISABLE_EDAC_SYSFS */
263
264 /* Initialize the main sysfs entries for edac:
265  *   /sys/devices/system/edac
266  *
267  * and children
268  *
269  * Return:  0 SUCCESS
270  *         !0 FAILURE
271  */
272 static int edac_sysfs_memctrl_setup(void)
273 #ifdef DISABLE_EDAC_SYSFS
274 {
275         return 0;
276 }
277 #else
278 {
279         int err=0;
280
281         debugf1("%s()\n", __func__);
282
283         /* create the /sys/devices/system/edac directory */
284         err = sysdev_class_register(&edac_class);
285         if (!err) {
286                 /* Init the MC's kobject */
287                 memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
288                 edac_memctrl_kobj.parent = &edac_class.kset.kobj;
289                 edac_memctrl_kobj.ktype = &ktype_memctrl;
290
291                 /* generate sysfs "..../edac/mc"   */
292                 err = kobject_set_name(&edac_memctrl_kobj,"mc");
293                 if (!err) {
294                         /* FIXME: maybe new sysdev_create_subdir() */
295                         err = kobject_register(&edac_memctrl_kobj);
296                         if (err) {
297                                 debugf1("Failed to register '.../edac/mc'\n");
298                         } else {
299                                 debugf1("Registered '.../edac/mc' kobject\n");
300                         }
301                 }
302         } else {
303                 debugf1("%s() error=%d\n", __func__, err);
304         }
305
306         return err;
307 }
308 #endif  /* DISABLE_EDAC_SYSFS */
309
310 /*
311  * MC teardown:
312  *      the '..../edac/mc' kobject followed by '..../edac' itself
313  */
314 static void edac_sysfs_memctrl_teardown(void)
315 {
316 #ifndef DISABLE_EDAC_SYSFS
317         debugf0("MC: " __FILE__ ": %s()\n", __func__);
318
319         /* Unregister the MC's kobject and wait for reference count to reach
320          * 0.
321          */
322         init_completion(&edac_memctrl_kobj_complete);
323         kobject_unregister(&edac_memctrl_kobj);
324         wait_for_completion(&edac_memctrl_kobj_complete);
325
326         /* Unregister the 'edac' object */
327         sysdev_class_unregister(&edac_class);
328 #endif  /* DISABLE_EDAC_SYSFS */
329 }
330
331 #ifndef DISABLE_EDAC_SYSFS
332
333 /*
334  * /sys/devices/system/edac/pci;
335  *      data structures and methods
336  */
337
338 struct list_control {
339         struct edac_pci_device_list *list;
340         int *count;
341 };
342
343
344 #if 0
345 /* Output the list as:  vendor_id:device:id<,vendor_id:device_id> */
346 static ssize_t edac_pci_list_string_show(void *ptr, char *buffer)
347 {
348         struct list_control *listctl;
349         struct edac_pci_device_list *list;
350         char *p = buffer;
351         int len=0;
352         int i;
353
354         listctl = ptr;
355         list = listctl->list;
356
357         for (i = 0; i < *(listctl->count); i++, list++ ) {
358                 if (len > 0)
359                         len += snprintf(p + len, (PAGE_SIZE-len), ",");
360
361                 len += snprintf(p + len,
362                                 (PAGE_SIZE-len),
363                                 "%x:%x",
364                                 list->vendor,list->device);
365         }
366
367         len += snprintf(p + len,(PAGE_SIZE-len), "\n");
368
369         return (ssize_t) len;
370 }
371
372 /**
373  *
374  * Scan string from **s to **e looking for one 'vendor:device' tuple
375  * where each field is a hex value
376  *
377  * return 0 if an entry is NOT found
378  * return 1 if an entry is found
379  *      fill in *vendor_id and *device_id with values found
380  *
381  * In both cases, make sure *s has been moved forward toward *e
382  */
383 static int parse_one_device(const char **s,const char **e,
384         unsigned int *vendor_id, unsigned int *device_id)
385 {
386         const char *runner, *p;
387
388         /* if null byte, we are done */
389         if (!**s) {
390                 (*s)++; /* keep *s moving */
391                 return 0;
392         }
393
394         /* skip over newlines & whitespace */
395         if ((**s == '\n') || isspace(**s)) {
396                 (*s)++;
397                 return 0;
398         }
399
400         if (!isxdigit(**s)) {
401                 (*s)++;
402                 return 0;
403         }
404
405         /* parse vendor_id */
406         runner = *s;
407         while (runner < *e) {
408                 /* scan for vendor:device delimiter */
409                 if (*runner == ':') {
410                         *vendor_id = simple_strtol((char*) *s, (char**) &p, 16);
411                         runner = p + 1;
412                         break;
413                 }
414                 runner++;
415         }
416
417         if (!isxdigit(*runner)) {
418                 *s = ++runner;
419                 return 0;
420         }
421
422         /* parse device_id */
423         if (runner < *e) {
424                 *device_id = simple_strtol((char*)runner, (char**)&p, 16);
425                 runner = p;
426         }
427
428         *s = runner;
429
430         return 1;
431 }
432
433 static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer,
434                                         size_t count)
435 {
436         struct list_control *listctl;
437         struct edac_pci_device_list *list;
438         unsigned int vendor_id, device_id;
439         const char *s, *e;
440         int *index;
441
442         s = (char*)buffer;
443         e = s + count;
444
445         listctl = ptr;
446         list = listctl->list;
447         index = listctl->count;
448
449         *index = 0;
450         while (*index < MAX_LISTED_PCI_DEVICES) {
451
452                 if (parse_one_device(&s,&e,&vendor_id,&device_id)) {
453                         list[ *index ].vendor = vendor_id;
454                         list[ *index ].device = device_id;
455                         (*index)++;
456                 }
457
458                 /* check for all data consume */
459                 if (s >= e)
460                         break;
461         }
462
463         return count;
464 }
465
466 #endif
467 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
468 {
469         int *value = ptr;
470         return sprintf(buffer,"%d\n",*value);
471 }
472
473 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
474 {
475         int *value = ptr;
476
477         if (isdigit(*buffer))
478                 *value = simple_strtoul(buffer,NULL,0);
479
480         return count;
481 }
482
483 struct edac_pci_dev_attribute {
484         struct attribute        attr;
485         void    *value;
486         ssize_t (*show)(void *,char *);
487         ssize_t (*store)(void *, const char *,size_t);
488 };
489
490 /* Set of show/store abstract level functions for PCI Parity object */
491 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
492                                 char *buffer)
493 {
494         struct edac_pci_dev_attribute *edac_pci_dev;
495         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
496
497         if (edac_pci_dev->show)
498                 return edac_pci_dev->show(edac_pci_dev->value, buffer);
499         return -EIO;
500 }
501
502 static ssize_t edac_pci_dev_store(struct kobject *kobj, struct attribute *attr,
503                                 const char *buffer, size_t count)
504 {
505         struct edac_pci_dev_attribute *edac_pci_dev;
506         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
507
508         if (edac_pci_dev->show)
509                 return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
510         return -EIO;
511 }
512
513 static struct sysfs_ops edac_pci_sysfs_ops = {
514         .show   = edac_pci_dev_show,
515         .store  = edac_pci_dev_store
516 };
517
518
519 #define EDAC_PCI_ATTR(_name,_mode,_show,_store)                 \
520 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
521         .attr = {.name = __stringify(_name), .mode = _mode },   \
522         .value  = &_name,                                       \
523         .show   = _show,                                        \
524         .store  = _store,                                       \
525 };
526
527 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)    \
528 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
529         .attr = {.name = __stringify(_name), .mode = _mode },   \
530         .value  = _data,                                        \
531         .show   = _show,                                        \
532         .store  = _store,                                       \
533 };
534
535 #if 0
536 static struct list_control pci_whitelist_control = {
537         .list = pci_whitelist,
538         .count = &pci_whitelist_count
539 };
540
541 static struct list_control pci_blacklist_control = {
542         .list = pci_blacklist,
543         .count = &pci_blacklist_count
544 };
545
546 /* whitelist attribute */
547 EDAC_PCI_STRING_ATTR(pci_parity_whitelist,
548         &pci_whitelist_control,
549         S_IRUGO|S_IWUSR,
550         edac_pci_list_string_show,
551         edac_pci_list_string_store);
552
553 EDAC_PCI_STRING_ATTR(pci_parity_blacklist,
554         &pci_blacklist_control,
555         S_IRUGO|S_IWUSR,
556         edac_pci_list_string_show,
557         edac_pci_list_string_store);
558 #endif
559
560 /* PCI Parity control files */
561 EDAC_PCI_ATTR(check_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store);
562 EDAC_PCI_ATTR(panic_on_pci_parity,S_IRUGO|S_IWUSR,edac_pci_int_show,edac_pci_int_store);
563 EDAC_PCI_ATTR(pci_parity_count,S_IRUGO,edac_pci_int_show,NULL);
564
565 /* Base Attributes of the memory ECC object */
566 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
567         &edac_pci_attr_check_pci_parity,
568         &edac_pci_attr_panic_on_pci_parity,
569         &edac_pci_attr_pci_parity_count,
570         NULL,
571 };
572
573 /* No memory to release */
574 static void edac_pci_release(struct kobject *kobj)
575 {
576         debugf1("%s()\n", __func__);
577         complete(&edac_pci_kobj_complete);
578 }
579
580 static struct kobj_type ktype_edac_pci = {
581         .release        = edac_pci_release,
582         .sysfs_ops      = &edac_pci_sysfs_ops,
583         .default_attrs  = (struct attribute **) edac_pci_attr,
584 };
585
586 #endif  /* DISABLE_EDAC_SYSFS */
587
588 /**
589  * edac_sysfs_pci_setup()
590  *
591  */
592 static int edac_sysfs_pci_setup(void)
593 #ifdef DISABLE_EDAC_SYSFS
594 {
595         return 0;
596 }
597 #else
598 {
599         int err;
600
601         debugf1("%s()\n", __func__);
602
603         memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
604         edac_pci_kobj.parent = &edac_class.kset.kobj;
605         edac_pci_kobj.ktype = &ktype_edac_pci;
606
607         err = kobject_set_name(&edac_pci_kobj, "pci");
608         if (!err) {
609                 /* Instanstiate the csrow object */
610                 /* FIXME: maybe new sysdev_create_subdir() */
611                 err = kobject_register(&edac_pci_kobj);
612                 if (err)
613                         debugf1("Failed to register '.../edac/pci'\n");
614                 else
615                         debugf1("Registered '.../edac/pci' kobject\n");
616         }
617         return err;
618 }
619 #endif  /* DISABLE_EDAC_SYSFS */
620
621 static void edac_sysfs_pci_teardown(void)
622 {
623 #ifndef DISABLE_EDAC_SYSFS
624         debugf0("%s()\n", __func__);
625         init_completion(&edac_pci_kobj_complete);
626         kobject_unregister(&edac_pci_kobj);
627         wait_for_completion(&edac_pci_kobj_complete);
628 #endif
629 }
630
631 #ifndef DISABLE_EDAC_SYSFS
632
633 /* EDAC sysfs CSROW data structures and methods */
634
635 /* Set of more detailed csrow<id> attribute show/store functions */
636 static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data)
637 {
638         ssize_t size = 0;
639
640         if (csrow->nr_channels > 0) {
641                 size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n",
642                         csrow->channels[0].label);
643         }
644         return size;
645 }
646
647 static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data)
648 {
649         ssize_t size = 0;
650
651         if (csrow->nr_channels > 0) {
652                 size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
653                         csrow->channels[1].label);
654         }
655         return size;
656 }
657
658 static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow,
659                         const char *data, size_t size)
660 {
661         ssize_t max_size = 0;
662
663         if (csrow->nr_channels > 0) {
664                 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
665                 strncpy(csrow->channels[0].label, data, max_size);
666                 csrow->channels[0].label[max_size] = '\0';
667         }
668         return size;
669 }
670
671 static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow,
672                         const char *data, size_t size)
673 {
674         ssize_t max_size = 0;
675
676         if (csrow->nr_channels > 1) {
677                 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
678                 strncpy(csrow->channels[1].label, data, max_size);
679                 csrow->channels[1].label[max_size] = '\0';
680         }
681         return max_size;
682 }
683
684 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data)
685 {
686         return sprintf(data,"%u\n", csrow->ue_count);
687 }
688
689 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data)
690 {
691         return sprintf(data,"%u\n", csrow->ce_count);
692 }
693
694 static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data)
695 {
696         ssize_t size = 0;
697
698         if (csrow->nr_channels > 0) {
699                 size = sprintf(data,"%u\n", csrow->channels[0].ce_count);
700         }
701         return size;
702 }
703
704 static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data)
705 {
706         ssize_t size = 0;
707
708         if (csrow->nr_channels > 1) {
709                 size = sprintf(data,"%u\n", csrow->channels[1].ce_count);
710         }
711         return size;
712 }
713
714 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data)
715 {
716         return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
717 }
718
719 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data)
720 {
721         return sprintf(data,"%s\n", mem_types[csrow->mtype]);
722 }
723
724 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data)
725 {
726         return sprintf(data,"%s\n", dev_types[csrow->dtype]);
727 }
728
729 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data)
730 {
731         return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
732 }
733
734 struct csrowdev_attribute {
735         struct attribute        attr;
736         ssize_t (*show)(struct csrow_info *,char *);
737         ssize_t (*store)(struct csrow_info *, const char *,size_t);
738 };
739
740 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
741 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
742
743 /* Set of show/store higher level functions for csrow objects */
744 static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr,
745                                 char *buffer)
746 {
747         struct csrow_info *csrow = to_csrow(kobj);
748         struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
749
750         if (csrowdev_attr->show)
751                 return csrowdev_attr->show(csrow, buffer);
752         return -EIO;
753 }
754
755 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
756                                 const char *buffer, size_t count)
757 {
758         struct csrow_info *csrow = to_csrow(kobj);
759         struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
760
761         if (csrowdev_attr->store)
762                 return csrowdev_attr->store(csrow, buffer, count);
763         return -EIO;
764 }
765
766 static struct sysfs_ops csrowfs_ops = {
767         .show   = csrowdev_show,
768         .store  = csrowdev_store
769 };
770
771 #define CSROWDEV_ATTR(_name,_mode,_show,_store)                 \
772 struct csrowdev_attribute attr_##_name = {                      \
773         .attr = {.name = __stringify(_name), .mode = _mode },   \
774         .show   = _show,                                        \
775         .store  = _store,                                       \
776 };
777
778 /* cwrow<id>/attribute files */
779 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL);
780 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL);
781 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL);
782 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL);
783 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL);
784 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL);
785 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL);
786 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL);
787
788 /* control/attribute files */
789 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
790                 csrow_ch0_dimm_label_show,
791                 csrow_ch0_dimm_label_store);
792 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
793                 csrow_ch1_dimm_label_show,
794                 csrow_ch1_dimm_label_store);
795
796
797 /* Attributes of the CSROW<id> object */
798 static struct csrowdev_attribute *csrow_attr[] = {
799         &attr_dev_type,
800         &attr_mem_type,
801         &attr_edac_mode,
802         &attr_size_mb,
803         &attr_ue_count,
804         &attr_ce_count,
805         &attr_ch0_ce_count,
806         &attr_ch1_ce_count,
807         &attr_ch0_dimm_label,
808         &attr_ch1_dimm_label,
809         NULL,
810 };
811
812
813 /* No memory to release */
814 static void edac_csrow_instance_release(struct kobject *kobj)
815 {
816         struct csrow_info *cs;
817
818         debugf1("%s()\n", __func__);
819         cs = container_of(kobj, struct csrow_info, kobj);
820         complete(&cs->kobj_complete);
821 }
822
823 static struct kobj_type ktype_csrow = {
824         .release        = edac_csrow_instance_release,
825         .sysfs_ops      = &csrowfs_ops,
826         .default_attrs  = (struct attribute **) csrow_attr,
827 };
828
829 /* Create a CSROW object under specifed edac_mc_device */
830 static int edac_create_csrow_object(struct kobject *edac_mci_kobj,
831                                 struct csrow_info *csrow, int index )
832 {
833         int err = 0;
834
835         debugf0("%s()\n", __func__);
836
837         memset(&csrow->kobj, 0, sizeof(csrow->kobj));
838
839         /* generate ..../edac/mc/mc<id>/csrow<index>   */
840
841         csrow->kobj.parent = edac_mci_kobj;
842         csrow->kobj.ktype = &ktype_csrow;
843
844         /* name this instance of csrow<id> */
845         err = kobject_set_name(&csrow->kobj,"csrow%d",index);
846         if (!err) {
847                 /* Instanstiate the csrow object */
848                 err = kobject_register(&csrow->kobj);
849                 if (err)
850                         debugf0("Failed to register CSROW%d\n",index);
851                 else
852                         debugf0("Registered CSROW%d\n",index);
853         }
854
855         return err;
856 }
857
858 /* sysfs data structures and methods for the MCI kobjects */
859
860 static ssize_t mci_reset_counters_store(struct mem_ctl_info  *mci,
861                                         const char *data, size_t count )
862 {
863         int row, chan;
864
865         mci->ue_noinfo_count = 0;
866         mci->ce_noinfo_count = 0;
867         mci->ue_count = 0;
868         mci->ce_count = 0;
869         for (row = 0; row < mci->nr_csrows; row++) {
870                 struct csrow_info *ri = &mci->csrows[row];
871
872                 ri->ue_count = 0;
873                 ri->ce_count = 0;
874                 for (chan = 0; chan < ri->nr_channels; chan++)
875                         ri->channels[chan].ce_count = 0;
876         }
877         mci->start_time = jiffies;
878
879         return count;
880 }
881
882 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
883 {
884         return sprintf(data,"%d\n", mci->ue_count);
885 }
886
887 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
888 {
889         return sprintf(data,"%d\n", mci->ce_count);
890 }
891
892 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
893 {
894         return sprintf(data,"%d\n", mci->ce_noinfo_count);
895 }
896
897 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
898 {
899         return sprintf(data,"%d\n", mci->ue_noinfo_count);
900 }
901
902 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
903 {
904         return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
905 }
906
907 static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data)
908 {
909         return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver);
910 }
911
912 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
913 {
914         return sprintf(data,"%s\n", mci->ctl_name);
915 }
916
917 static int mci_output_edac_cap(char *buf, unsigned long edac_cap)
918 {
919         char *p = buf;
920         int bit_idx;
921
922         for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) {
923                 if ((edac_cap >> bit_idx) & 0x1)
924                         p += sprintf(p, "%s ", edac_caps[bit_idx]);
925         }
926
927         return p - buf;
928 }
929
930 static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data)
931 {
932         char *p = data;
933
934         p += mci_output_edac_cap(p,mci->edac_ctl_cap);
935         p += sprintf(p, "\n");
936
937         return p - data;
938 }
939
940 static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci,
941                                                 char *data)
942 {
943         char *p = data;
944
945         p += mci_output_edac_cap(p,mci->edac_cap);
946         p += sprintf(p, "\n");
947
948         return p - data;
949 }
950
951 static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap)
952 {
953         char *p = buf;
954         int bit_idx;
955
956         for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) {
957                 if ((mtype_cap >> bit_idx) & 0x1)
958                         p += sprintf(p, "%s ", mem_types[bit_idx]);
959         }
960
961         return p - buf;
962 }
963
964 static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci, char *data)
965 {
966         char *p = data;
967
968         p += mci_output_mtype_cap(p,mci->mtype_cap);
969         p += sprintf(p, "\n");
970
971         return p - data;
972 }
973
974 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
975 {
976         int total_pages, csrow_idx;
977
978         for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
979                         csrow_idx++) {
980                 struct csrow_info *csrow = &mci->csrows[csrow_idx];
981
982                 if (!csrow->nr_pages)
983                         continue;
984                 total_pages += csrow->nr_pages;
985         }
986
987         return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
988 }
989
990 struct mcidev_attribute {
991         struct attribute        attr;
992         ssize_t (*show)(struct mem_ctl_info *,char *);
993         ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
994 };
995
996 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
997 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
998
999 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1000                         char *buffer)
1001 {
1002         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1003         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1004
1005         if (mcidev_attr->show)
1006                 return mcidev_attr->show(mem_ctl_info, buffer);
1007         return -EIO;
1008 }
1009
1010 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1011                                 const char *buffer, size_t count)
1012 {
1013         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1014         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1015
1016         if (mcidev_attr->store)
1017                 return mcidev_attr->store(mem_ctl_info, buffer, count);
1018         return -EIO;
1019 }
1020
1021 static struct sysfs_ops mci_ops = {
1022         .show   = mcidev_show,
1023         .store  = mcidev_store
1024 };
1025
1026 #define MCIDEV_ATTR(_name,_mode,_show,_store)                   \
1027 struct mcidev_attribute mci_attr_##_name = {                    \
1028         .attr = {.name = __stringify(_name), .mode = _mode },   \
1029         .show   = _show,                                        \
1030         .store  = _store,                                       \
1031 };
1032
1033 /* Control file */
1034 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1035
1036 /* Attribute files */
1037 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1038 MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL);
1039 MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL);
1040 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1041 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1042 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1043 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1044 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1045 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1046 MCIDEV_ATTR(edac_current_capability,S_IRUGO,
1047         mci_edac_current_capability_show,NULL);
1048 MCIDEV_ATTR(supported_mem_type,S_IRUGO,
1049         mci_supported_mem_type_show,NULL);
1050
1051
1052 static struct mcidev_attribute *mci_attr[] = {
1053         &mci_attr_reset_counters,
1054         &mci_attr_module_name,
1055         &mci_attr_mc_name,
1056         &mci_attr_edac_capability,
1057         &mci_attr_edac_current_capability,
1058         &mci_attr_supported_mem_type,
1059         &mci_attr_size_mb,
1060         &mci_attr_seconds_since_reset,
1061         &mci_attr_ue_noinfo_count,
1062         &mci_attr_ce_noinfo_count,
1063         &mci_attr_ue_count,
1064         &mci_attr_ce_count,
1065         NULL
1066 };
1067
1068
1069 /*
1070  * Release of a MC controlling instance
1071  */
1072 static void edac_mci_instance_release(struct kobject *kobj)
1073 {
1074         struct mem_ctl_info *mci;
1075
1076         mci = to_mci(kobj);
1077         debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1078         complete(&mci->kobj_complete);
1079 }
1080
1081 static struct kobj_type ktype_mci = {
1082         .release        = edac_mci_instance_release,
1083         .sysfs_ops      = &mci_ops,
1084         .default_attrs  = (struct attribute **) mci_attr,
1085 };
1086
1087 #endif  /* DISABLE_EDAC_SYSFS */
1088
1089 #define EDAC_DEVICE_SYMLINK     "device"
1090
1091 /*
1092  * Create a new Memory Controller kobject instance,
1093  *      mc<id> under the 'mc' directory
1094  *
1095  * Return:
1096  *      0       Success
1097  *      !0      Failure
1098  */
1099 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1100 #ifdef DISABLE_EDAC_SYSFS
1101 {
1102         return 0;
1103 }
1104 #else
1105 {
1106         int i;
1107         int err;
1108         struct csrow_info *csrow;
1109         struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1110
1111         debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1112
1113         memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1114
1115         /* set the name of the mc<id> object */
1116         err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1117         if (err)
1118                 return err;
1119
1120         /* link to our parent the '..../edac/mc' object */
1121         edac_mci_kobj->parent = &edac_memctrl_kobj;
1122         edac_mci_kobj->ktype = &ktype_mci;
1123
1124         /* register the mc<id> kobject */
1125         err = kobject_register(edac_mci_kobj);
1126         if (err)
1127                 return err;
1128
1129         /* create a symlink for the device */
1130         err = sysfs_create_link(edac_mci_kobj, &mci->pdev->dev.kobj,
1131                                 EDAC_DEVICE_SYMLINK);
1132         if (err)
1133                 goto fail0;
1134
1135         /* Make directories for each CSROW object
1136          * under the mc<id> kobject
1137          */
1138         for (i = 0; i < mci->nr_csrows; i++) {
1139
1140                 csrow = &mci->csrows[i];
1141
1142                 /* Only expose populated CSROWs */
1143                 if (csrow->nr_pages > 0) {
1144                         err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1145                         if (err)
1146                                 goto fail1;
1147                 }
1148         }
1149
1150         return 0;
1151
1152
1153         /* CSROW error: backout what has already been registered,  */
1154 fail1:
1155         for ( i--; i >= 0; i--) {
1156                 if (csrow->nr_pages > 0) {
1157                         init_completion(&csrow->kobj_complete);
1158                         kobject_unregister(&mci->csrows[i].kobj);
1159                         wait_for_completion(&csrow->kobj_complete);
1160                 }
1161         }
1162
1163 fail0:
1164         init_completion(&mci->kobj_complete);
1165         kobject_unregister(edac_mci_kobj);
1166         wait_for_completion(&mci->kobj_complete);
1167
1168         return err;
1169 }
1170 #endif  /* DISABLE_EDAC_SYSFS */
1171
1172 /*
1173  * remove a Memory Controller instance
1174  */
1175 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1176 {
1177 #ifndef DISABLE_EDAC_SYSFS
1178         int i;
1179
1180         debugf0("%s()\n", __func__);
1181
1182         /* remove all csrow kobjects */
1183         for (i = 0; i < mci->nr_csrows; i++) {
1184                 if (mci->csrows[i].nr_pages > 0) {
1185                         init_completion(&mci->csrows[i].kobj_complete);
1186                         kobject_unregister(&mci->csrows[i].kobj);
1187                         wait_for_completion(&mci->csrows[i].kobj_complete);
1188                 }
1189         }
1190
1191         sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1192         init_completion(&mci->kobj_complete);
1193         kobject_unregister(&mci->edac_mci_kobj);
1194         wait_for_completion(&mci->kobj_complete);
1195 #endif  /* DISABLE_EDAC_SYSFS */
1196 }
1197
1198 /* END OF sysfs data and methods */
1199
1200 #ifdef CONFIG_EDAC_DEBUG
1201
1202
1203 void edac_mc_dump_channel(struct channel_info *chan)
1204 {
1205         debugf4("\tchannel = %p\n", chan);
1206         debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1207         debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1208         debugf4("\tchannel->label = '%s'\n", chan->label);
1209         debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1210 }
1211 EXPORT_SYMBOL(edac_mc_dump_channel);
1212
1213
1214 void edac_mc_dump_csrow(struct csrow_info *csrow)
1215 {
1216         debugf4("\tcsrow = %p\n", csrow);
1217         debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1218         debugf4("\tcsrow->first_page = 0x%lx\n",
1219                 csrow->first_page);
1220         debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1221         debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1222         debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1223         debugf4("\tcsrow->nr_channels = %d\n",
1224                 csrow->nr_channels);
1225         debugf4("\tcsrow->channels = %p\n", csrow->channels);
1226         debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1227 }
1228 EXPORT_SYMBOL(edac_mc_dump_csrow);
1229
1230
1231 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1232 {
1233         debugf3("\tmci = %p\n", mci);
1234         debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1235         debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1236         debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1237         debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1238         debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1239                 mci->nr_csrows, mci->csrows);
1240         debugf3("\tpdev = %p\n", mci->pdev);
1241         debugf3("\tmod_name:ctl_name = %s:%s\n",
1242                 mci->mod_name, mci->ctl_name);
1243         debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1244 }
1245 EXPORT_SYMBOL(edac_mc_dump_mci);
1246
1247
1248 #endif                          /* CONFIG_EDAC_DEBUG */
1249
1250 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1251  * Adjust 'ptr' so that its alignment is at least as stringent as what the
1252  * compiler would provide for X and return the aligned result.
1253  *
1254  * If 'size' is a constant, the compiler will optimize this whole function
1255  * down to either a no-op or the addition of a constant to the value of 'ptr'.
1256  */
1257 static inline char * align_ptr (void *ptr, unsigned size)
1258 {
1259         unsigned align, r;
1260
1261         /* Here we assume that the alignment of a "long long" is the most
1262          * stringent alignment that the compiler will ever provide by default.
1263          * As far as I know, this is a reasonable assumption.
1264          */
1265         if (size > sizeof(long))
1266                 align = sizeof(long long);
1267         else if (size > sizeof(int))
1268                 align = sizeof(long);
1269         else if (size > sizeof(short))
1270                 align = sizeof(int);
1271         else if (size > sizeof(char))
1272                 align = sizeof(short);
1273         else
1274                 return (char *) ptr;
1275
1276         r = size % align;
1277
1278         if (r == 0)
1279                 return (char *) ptr;
1280
1281         return (char *) (((unsigned long) ptr) + align - r);
1282 }
1283
1284
1285 /**
1286  * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1287  * @size_pvt:   size of private storage needed
1288  * @nr_csrows:  Number of CWROWS needed for this MC
1289  * @nr_chans:   Number of channels for the MC
1290  *
1291  * Everything is kmalloc'ed as one big chunk - more efficient.
1292  * Only can be used if all structures have the same lifetime - otherwise
1293  * you have to allocate and initialize your own structures.
1294  *
1295  * Use edac_mc_free() to free mc structures allocated by this function.
1296  *
1297  * Returns:
1298  *      NULL allocation failed
1299  *      struct mem_ctl_info pointer
1300  */
1301 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1302                                         unsigned nr_chans)
1303 {
1304         struct mem_ctl_info *mci;
1305         struct csrow_info *csi, *csrow;
1306         struct channel_info *chi, *chp, *chan;
1307         void *pvt;
1308         unsigned size;
1309         int row, chn;
1310
1311         /* Figure out the offsets of the various items from the start of an mc
1312          * structure.  We want the alignment of each item to be at least as
1313          * stringent as what the compiler would provide if we could simply
1314          * hardcode everything into a single struct.
1315          */
1316         mci = (struct mem_ctl_info *) 0;
1317         csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1318         chi = (struct channel_info *)
1319                         align_ptr(&csi[nr_csrows], sizeof(*chi));
1320         pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1321         size = ((unsigned long) pvt) + sz_pvt;
1322
1323         if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1324                 return NULL;
1325
1326         /* Adjust pointers so they point within the memory we just allocated
1327          * rather than an imaginary chunk of memory located at address 0.
1328          */
1329         csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1330         chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1331         pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1332
1333         memset(mci, 0, size);   /* clear all fields */
1334
1335         mci->csrows = csi;
1336         mci->pvt_info = pvt;
1337         mci->nr_csrows = nr_csrows;
1338
1339         for (row = 0; row < nr_csrows; row++) {
1340                 csrow = &csi[row];
1341                 csrow->csrow_idx = row;
1342                 csrow->mci = mci;
1343                 csrow->nr_channels = nr_chans;
1344                 chp = &chi[row * nr_chans];
1345                 csrow->channels = chp;
1346
1347                 for (chn = 0; chn < nr_chans; chn++) {
1348                         chan = &chp[chn];
1349                         chan->chan_idx = chn;
1350                         chan->csrow = csrow;
1351                 }
1352         }
1353
1354         return mci;
1355 }
1356 EXPORT_SYMBOL(edac_mc_alloc);
1357
1358
1359 /**
1360  * edac_mc_free:  Free a previously allocated 'mci' structure
1361  * @mci: pointer to a struct mem_ctl_info structure
1362  */
1363 void edac_mc_free(struct mem_ctl_info *mci)
1364 {
1365         kfree(mci);
1366 }
1367 EXPORT_SYMBOL(edac_mc_free);
1368
1369 static struct mem_ctl_info *find_mci_by_pdev(struct pci_dev *pdev)
1370 {
1371         struct mem_ctl_info *mci;
1372         struct list_head *item;
1373
1374         debugf3("%s()\n", __func__);
1375
1376         list_for_each(item, &mc_devices) {
1377                 mci = list_entry(item, struct mem_ctl_info, link);
1378
1379                 if (mci->pdev == pdev)
1380                         return mci;
1381         }
1382
1383         return NULL;
1384 }
1385
1386 static int add_mc_to_global_list (struct mem_ctl_info *mci)
1387 {
1388         struct list_head *item, *insert_before;
1389         struct mem_ctl_info *p;
1390         int i;
1391
1392         if (list_empty(&mc_devices)) {
1393                 mci->mc_idx = 0;
1394                 insert_before = &mc_devices;
1395         } else {
1396                 if (find_mci_by_pdev(mci->pdev)) {
1397                         edac_printk(KERN_WARNING, EDAC_MC,
1398                                 "%s (%s) %s %s already assigned %d\n",
1399                                 mci->pdev->dev.bus_id,
1400                                 pci_name(mci->pdev), mci->mod_name,
1401                                 mci->ctl_name, mci->mc_idx);
1402                         return 1;
1403                 }
1404
1405                 insert_before = NULL;
1406                 i = 0;
1407
1408                 list_for_each(item, &mc_devices) {
1409                         p = list_entry(item, struct mem_ctl_info, link);
1410
1411                         if (p->mc_idx != i) {
1412                                 insert_before = item;
1413                                 break;
1414                         }
1415
1416                         i++;
1417                 }
1418
1419                 mci->mc_idx = i;
1420
1421                 if (insert_before == NULL)
1422                         insert_before = &mc_devices;
1423         }
1424
1425         list_add_tail_rcu(&mci->link, insert_before);
1426         return 0;
1427 }
1428
1429
1430 static void complete_mc_list_del (struct rcu_head *head)
1431 {
1432         struct mem_ctl_info *mci;
1433
1434         mci = container_of(head, struct mem_ctl_info, rcu);
1435         INIT_LIST_HEAD(&mci->link);
1436         complete(&mci->complete);
1437 }
1438
1439
1440 static void del_mc_from_global_list (struct mem_ctl_info *mci)
1441 {
1442         list_del_rcu(&mci->link);
1443         init_completion(&mci->complete);
1444         call_rcu(&mci->rcu, complete_mc_list_del);
1445         wait_for_completion(&mci->complete);
1446 }
1447
1448
1449 /**
1450  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1451  *                 create sysfs entries associated with mci structure
1452  * @mci: pointer to the mci structure to be added to the list
1453  *
1454  * Return:
1455  *      0       Success
1456  *      !0      Failure
1457  */
1458
1459 /* FIXME - should a warning be printed if no error detection? correction? */
1460 int edac_mc_add_mc(struct mem_ctl_info *mci)
1461 {
1462         debugf0("%s()\n", __func__);
1463 #ifdef CONFIG_EDAC_DEBUG
1464         if (edac_debug_level >= 3)
1465                 edac_mc_dump_mci(mci);
1466         if (edac_debug_level >= 4) {
1467                 int i;
1468
1469                 for (i = 0; i < mci->nr_csrows; i++) {
1470                         int j;
1471                         edac_mc_dump_csrow(&mci->csrows[i]);
1472                         for (j = 0; j < mci->csrows[i].nr_channels; j++)
1473                                 edac_mc_dump_channel(&mci->csrows[i].
1474                                                           channels[j]);
1475                 }
1476         }
1477 #endif
1478         down(&mem_ctls_mutex);
1479
1480         if (add_mc_to_global_list(mci))
1481                 goto fail0;
1482
1483         /* set load time so that error rate can be tracked */
1484         mci->start_time = jiffies;
1485
1486         if (edac_create_sysfs_mci_device(mci)) {
1487                 edac_mc_printk(mci, KERN_WARNING,
1488                         "failed to create sysfs device\n");
1489                 goto fail1;
1490         }
1491
1492         /* Report action taken */
1493         edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: PCI %s\n",
1494                 mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1495
1496         up(&mem_ctls_mutex);
1497         return 0;
1498
1499 fail1:
1500         del_mc_from_global_list(mci);
1501
1502 fail0:
1503         up(&mem_ctls_mutex);
1504         return 1;
1505 }
1506 EXPORT_SYMBOL(edac_mc_add_mc);
1507
1508
1509 /**
1510  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1511  *                 remove mci structure from global list
1512  * @pdev: Pointer to 'struct pci_dev' representing mci structure to remove.
1513  *
1514  * Return pointer to removed mci structure, or NULL if device not found.
1515  */
1516 struct mem_ctl_info * edac_mc_del_mc(struct pci_dev *pdev)
1517 {
1518         struct mem_ctl_info *mci;
1519
1520         debugf0("MC: %s()\n", __func__);
1521         down(&mem_ctls_mutex);
1522
1523         if ((mci = find_mci_by_pdev(pdev)) == NULL) {
1524                 up(&mem_ctls_mutex);
1525                 return NULL;
1526         }
1527
1528         edac_remove_sysfs_mci_device(mci);
1529         del_mc_from_global_list(mci);
1530         up(&mem_ctls_mutex);
1531         edac_printk(KERN_INFO, EDAC_MC,
1532                 "Removed device %d for %s %s: PCI %s\n", mci->mc_idx,
1533                 mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1534         return mci;
1535 }
1536 EXPORT_SYMBOL(edac_mc_del_mc);
1537
1538
1539 void edac_mc_scrub_block(unsigned long page, unsigned long offset,
1540                               u32 size)
1541 {
1542         struct page *pg;
1543         void *virt_addr;
1544         unsigned long flags = 0;
1545
1546         debugf3("%s()\n", __func__);
1547
1548         /* ECC error page was not in our memory. Ignore it. */
1549         if(!pfn_valid(page))
1550                 return;
1551
1552         /* Find the actual page structure then map it and fix */
1553         pg = pfn_to_page(page);
1554
1555         if (PageHighMem(pg))
1556                 local_irq_save(flags);
1557
1558         virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1559
1560         /* Perform architecture specific atomic scrub operation */
1561         atomic_scrub(virt_addr + offset, size);
1562
1563         /* Unmap and complete */
1564         kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1565
1566         if (PageHighMem(pg))
1567                 local_irq_restore(flags);
1568 }
1569 EXPORT_SYMBOL(edac_mc_scrub_block);
1570
1571
1572 /* FIXME - should return -1 */
1573 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
1574                                     unsigned long page)
1575 {
1576         struct csrow_info *csrows = mci->csrows;
1577         int row, i;
1578
1579         debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1580         row = -1;
1581
1582         for (i = 0; i < mci->nr_csrows; i++) {
1583                 struct csrow_info *csrow = &csrows[i];
1584
1585                 if (csrow->nr_pages == 0)
1586                         continue;
1587
1588                 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1589                         "mask(0x%lx)\n", mci->mc_idx, __func__,
1590                         csrow->first_page, page, csrow->last_page,
1591                         csrow->page_mask);
1592
1593                 if ((page >= csrow->first_page) &&
1594                     (page <= csrow->last_page) &&
1595                     ((page & csrow->page_mask) ==
1596                      (csrow->first_page & csrow->page_mask))) {
1597                         row = i;
1598                         break;
1599                 }
1600         }
1601
1602         if (row == -1)
1603                 edac_mc_printk(mci, KERN_ERR,
1604                         "could not look up page error address %lx\n",
1605                         (unsigned long) page);
1606
1607         return row;
1608 }
1609 EXPORT_SYMBOL(edac_mc_find_csrow_by_page);
1610
1611
1612 /* FIXME - setable log (warning/emerg) levels */
1613 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1614 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1615                             unsigned long page_frame_number,
1616                             unsigned long offset_in_page,
1617                             unsigned long syndrome, int row, int channel,
1618                             const char *msg)
1619 {
1620         unsigned long remapped_page;
1621
1622         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1623
1624         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1625         if (row >= mci->nr_csrows || row < 0) {
1626                 /* something is wrong */
1627                 edac_mc_printk(mci, KERN_ERR,
1628                         "INTERNAL ERROR: row out of range "
1629                         "(%d >= %d)\n", row, mci->nr_csrows);
1630                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1631                 return;
1632         }
1633         if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1634                 /* something is wrong */
1635                 edac_mc_printk(mci, KERN_ERR,
1636                         "INTERNAL ERROR: channel out of range "
1637                         "(%d >= %d)\n", channel,
1638                         mci->csrows[row].nr_channels);
1639                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1640                 return;
1641         }
1642
1643         if (log_ce)
1644                 /* FIXME - put in DIMM location */
1645                 edac_mc_printk(mci, KERN_WARNING,
1646                         "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1647                         "0x%lx, row %d, channel %d, label \"%s\": %s\n",
1648                         page_frame_number, offset_in_page,
1649                         mci->csrows[row].grain, syndrome, row, channel,
1650                         mci->csrows[row].channels[channel].label, msg);
1651
1652         mci->ce_count++;
1653         mci->csrows[row].ce_count++;
1654         mci->csrows[row].channels[channel].ce_count++;
1655
1656         if (mci->scrub_mode & SCRUB_SW_SRC) {
1657                 /*
1658                  * Some MC's can remap memory so that it is still available
1659                  * at a different address when PCI devices map into memory.
1660                  * MC's that can't do this lose the memory where PCI devices
1661                  * are mapped.  This mapping is MC dependant and so we call
1662                  * back into the MC driver for it to map the MC page to
1663                  * a physical (CPU) page which can then be mapped to a virtual
1664                  * page - which can then be scrubbed.
1665                  */
1666                 remapped_page = mci->ctl_page_to_phys ?
1667                     mci->ctl_page_to_phys(mci, page_frame_number) :
1668                     page_frame_number;
1669
1670                 edac_mc_scrub_block(remapped_page, offset_in_page,
1671                                          mci->csrows[row].grain);
1672         }
1673 }
1674 EXPORT_SYMBOL(edac_mc_handle_ce);
1675
1676
1677 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
1678                                     const char *msg)
1679 {
1680         if (log_ce)
1681                 edac_mc_printk(mci, KERN_WARNING,
1682                         "CE - no information available: %s\n", msg);
1683         mci->ce_noinfo_count++;
1684         mci->ce_count++;
1685 }
1686 EXPORT_SYMBOL(edac_mc_handle_ce_no_info);
1687
1688
1689 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1690                             unsigned long page_frame_number,
1691                             unsigned long offset_in_page, int row,
1692                             const char *msg)
1693 {
1694         int len = EDAC_MC_LABEL_LEN * 4;
1695         char labels[len + 1];
1696         char *pos = labels;
1697         int chan;
1698         int chars;
1699
1700         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1701
1702         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1703         if (row >= mci->nr_csrows || row < 0) {
1704                 /* something is wrong */
1705                 edac_mc_printk(mci, KERN_ERR,
1706                         "INTERNAL ERROR: row out of range "
1707                         "(%d >= %d)\n", row, mci->nr_csrows);
1708                 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1709                 return;
1710         }
1711
1712         chars = snprintf(pos, len + 1, "%s",
1713                          mci->csrows[row].channels[0].label);
1714         len -= chars;
1715         pos += chars;
1716         for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1717              chan++) {
1718                 chars = snprintf(pos, len + 1, ":%s",
1719                                  mci->csrows[row].channels[chan].label);
1720                 len -= chars;
1721                 pos += chars;
1722         }
1723
1724         if (log_ue)
1725                 edac_mc_printk(mci, KERN_EMERG,
1726                         "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1727                         "labels \"%s\": %s\n", page_frame_number,
1728                         offset_in_page, mci->csrows[row].grain, row, labels,
1729                         msg);
1730
1731         if (panic_on_ue)
1732                 panic
1733                     ("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, row %d,"
1734                      " labels \"%s\": %s\n", mci->mc_idx,
1735                      page_frame_number, offset_in_page,
1736                      mci->csrows[row].grain, row, labels, msg);
1737
1738         mci->ue_count++;
1739         mci->csrows[row].ue_count++;
1740 }
1741 EXPORT_SYMBOL(edac_mc_handle_ue);
1742
1743
1744 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
1745                                     const char *msg)
1746 {
1747         if (panic_on_ue)
1748                 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1749
1750         if (log_ue)
1751                 edac_mc_printk(mci, KERN_WARNING,
1752                         "UE - no information available: %s\n", msg);
1753         mci->ue_noinfo_count++;
1754         mci->ue_count++;
1755 }
1756 EXPORT_SYMBOL(edac_mc_handle_ue_no_info);
1757
1758
1759 #ifdef CONFIG_PCI
1760
1761 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
1762 {
1763         int where;
1764         u16 status;
1765
1766         where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
1767         pci_read_config_word(dev, where, &status);
1768
1769         /* If we get back 0xFFFF then we must suspect that the card has been pulled but
1770            the Linux PCI layer has not yet finished cleaning up. We don't want to report
1771            on such devices */
1772
1773         if (status == 0xFFFF) {
1774                 u32 sanity;
1775                 pci_read_config_dword(dev, 0, &sanity);
1776                 if (sanity == 0xFFFFFFFF)
1777                         return 0;
1778         }
1779         status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1780                   PCI_STATUS_PARITY;
1781
1782         if (status)
1783                 /* reset only the bits we are interested in */
1784                 pci_write_config_word(dev, where, status);
1785
1786         return status;
1787 }
1788
1789 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
1790
1791 /* Clear any PCI parity errors logged by this device. */
1792 static void edac_pci_dev_parity_clear( struct pci_dev *dev )
1793 {
1794         u8 header_type;
1795
1796         get_pci_parity_status(dev, 0);
1797
1798         /* read the device TYPE, looking for bridges */
1799         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1800
1801         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
1802                 get_pci_parity_status(dev, 1);
1803 }
1804
1805 /*
1806  *  PCI Parity polling
1807  *
1808  */
1809 static void edac_pci_dev_parity_test(struct pci_dev *dev)
1810 {
1811         u16 status;
1812         u8  header_type;
1813
1814         /* read the STATUS register on this device
1815          */
1816         status = get_pci_parity_status(dev, 0);
1817
1818         debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
1819
1820         /* check the status reg for errors */
1821         if (status) {
1822                 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1823                         edac_printk(KERN_CRIT, EDAC_PCI,
1824                                 "Signaled System Error on %s\n",
1825                                 pci_name(dev));
1826
1827                 if (status & (PCI_STATUS_PARITY)) {
1828                         edac_printk(KERN_CRIT, EDAC_PCI,
1829                                 "Master Data Parity Error on %s\n",
1830                                 pci_name(dev));
1831
1832                         atomic_inc(&pci_parity_count);
1833                 }
1834
1835                 if (status & (PCI_STATUS_DETECTED_PARITY)) {
1836                         edac_printk(KERN_CRIT, EDAC_PCI,
1837                                 "Detected Parity Error on %s\n",
1838                                 pci_name(dev));
1839
1840                         atomic_inc(&pci_parity_count);
1841                 }
1842         }
1843
1844         /* read the device TYPE, looking for bridges */
1845         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1846
1847         debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
1848
1849         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1850                 /* On bridges, need to examine secondary status register  */
1851                 status = get_pci_parity_status(dev, 1);
1852
1853                 debugf2("PCI SEC_STATUS= 0x%04x %s\n",
1854                                 status, dev->dev.bus_id );
1855
1856                 /* check the secondary status reg for errors */
1857                 if (status) {
1858                         if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1859                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1860                                         "Signaled System Error on %s\n",
1861                                         pci_name(dev));
1862
1863                         if (status & (PCI_STATUS_PARITY)) {
1864                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1865                                         "Master Data Parity Error on "
1866                                         "%s\n", pci_name(dev));
1867
1868                                 atomic_inc(&pci_parity_count);
1869                         }
1870
1871                         if (status & (PCI_STATUS_DETECTED_PARITY)) {
1872                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1873                                         "Detected Parity Error on %s\n",
1874                                         pci_name(dev));
1875
1876                                 atomic_inc(&pci_parity_count);
1877                         }
1878                 }
1879         }
1880 }
1881
1882 /*
1883  * check_dev_on_list: Scan for a PCI device on a white/black list
1884  * @list:       an EDAC  &edac_pci_device_list  white/black list pointer
1885  * @free_index: index of next free entry on the list
1886  * @pci_dev:    PCI Device pointer
1887  *
1888  * see if list contains the device.
1889  *
1890  * Returns:     0 not found
1891  *              1 found on list
1892  */
1893 static int check_dev_on_list(struct edac_pci_device_list *list, int free_index,
1894                                 struct pci_dev *dev)
1895 {
1896         int i;
1897         int rc = 0;     /* Assume not found */
1898         unsigned short vendor=dev->vendor;
1899         unsigned short device=dev->device;
1900
1901         /* Scan the list, looking for a vendor/device match
1902          */
1903         for (i = 0; i < free_index; i++, list++ ) {
1904                 if (    (list->vendor == vendor ) &&
1905                         (list->device == device )) {
1906                         rc = 1;
1907                         break;
1908                 }
1909         }
1910
1911         return rc;
1912 }
1913
1914 /*
1915  * pci_dev parity list iterator
1916  *      Scan the PCI device list for one iteration, looking for SERRORs
1917  *      Master Parity ERRORS or Parity ERRORs on primary or secondary devices
1918  */
1919 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
1920 {
1921         struct pci_dev *dev=NULL;
1922
1923         /* request for kernel access to the next PCI device, if any,
1924          * and while we are looking at it have its reference count
1925          * bumped until we are done with it
1926          */
1927         while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1928
1929                 /* if whitelist exists then it has priority, so only scan those
1930                  * devices on the whitelist
1931                  */
1932                 if (pci_whitelist_count > 0 ) {
1933                         if (check_dev_on_list(pci_whitelist,
1934                                         pci_whitelist_count, dev))
1935                                 fn(dev);
1936                 } else {
1937                         /*
1938                          * if no whitelist, then check if this devices is
1939                          * blacklisted
1940                          */
1941                         if (!check_dev_on_list(pci_blacklist,
1942                                         pci_blacklist_count, dev))
1943                                 fn(dev);
1944                 }
1945         }
1946 }
1947
1948 static void do_pci_parity_check(void)
1949 {
1950         unsigned long flags;
1951         int before_count;
1952
1953         debugf3("%s()\n", __func__);
1954
1955         if (!check_pci_parity)
1956                 return;
1957
1958         before_count = atomic_read(&pci_parity_count);
1959
1960         /* scan all PCI devices looking for a Parity Error on devices and
1961          * bridges
1962          */
1963         local_irq_save(flags);
1964         edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
1965         local_irq_restore(flags);
1966
1967         /* Only if operator has selected panic on PCI Error */
1968         if (panic_on_pci_parity) {
1969                 /* If the count is different 'after' from 'before' */
1970                 if (before_count != atomic_read(&pci_parity_count))
1971                         panic("EDAC: PCI Parity Error");
1972         }
1973 }
1974
1975
1976 static inline void clear_pci_parity_errors(void)
1977 {
1978         /* Clear any PCI bus parity errors that devices initially have logged
1979          * in their registers.
1980          */
1981         edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
1982 }
1983
1984
1985 #else  /* CONFIG_PCI */
1986
1987
1988 static inline void do_pci_parity_check(void)
1989 {
1990         /* no-op */
1991 }
1992
1993
1994 static inline void clear_pci_parity_errors(void)
1995 {
1996         /* no-op */
1997 }
1998
1999
2000 #endif  /* CONFIG_PCI */
2001
2002 /*
2003  * Iterate over all MC instances and check for ECC, et al, errors
2004  */
2005 static inline void check_mc_devices (void)
2006 {
2007         struct list_head *item;
2008         struct mem_ctl_info *mci;
2009
2010         debugf3("%s()\n", __func__);
2011
2012         down(&mem_ctls_mutex);
2013
2014         list_for_each(item, &mc_devices) {
2015                 mci = list_entry(item, struct mem_ctl_info, link);
2016
2017                 if (mci->edac_check != NULL)
2018                         mci->edac_check(mci);
2019         }
2020
2021         up(&mem_ctls_mutex);
2022 }
2023
2024
2025 /*
2026  * Check MC status every poll_msec.
2027  * Check PCI status every poll_msec as well.
2028  *
2029  * This where the work gets done for edac.
2030  *
2031  * SMP safe, doesn't use NMI, and auto-rate-limits.
2032  */
2033 static void do_edac_check(void)
2034 {
2035         debugf3("%s()\n", __func__);
2036         check_mc_devices();
2037         do_pci_parity_check();
2038 }
2039
2040 static int edac_kernel_thread(void *arg)
2041 {
2042         while (!kthread_should_stop()) {
2043                 do_edac_check();
2044
2045                 /* goto sleep for the interval */
2046                 schedule_timeout_interruptible((HZ * poll_msec) / 1000);
2047                 try_to_freeze();
2048         }
2049
2050         return 0;
2051 }
2052
2053 /*
2054  * edac_mc_init
2055  *      module initialization entry point
2056  */
2057 static int __init edac_mc_init(void)
2058 {
2059         edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
2060
2061         /*
2062          * Harvest and clear any boot/initialization PCI parity errors
2063          *
2064          * FIXME: This only clears errors logged by devices present at time of
2065          *      module initialization.  We should also do an initial clear
2066          *      of each newly hotplugged device.
2067          */
2068         clear_pci_parity_errors();
2069
2070         /* Create the MC sysfs entires */
2071         if (edac_sysfs_memctrl_setup()) {
2072                 edac_printk(KERN_ERR, EDAC_MC,
2073                         "Error initializing sysfs code\n");
2074                 return -ENODEV;
2075         }
2076
2077         /* Create the PCI parity sysfs entries */
2078         if (edac_sysfs_pci_setup()) {
2079                 edac_sysfs_memctrl_teardown();
2080                 edac_printk(KERN_ERR, EDAC_MC,
2081                         "EDAC PCI: Error initializing sysfs code\n");
2082                 return -ENODEV;
2083         }
2084
2085         /* create our kernel thread */
2086         edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
2087         if (IS_ERR(edac_thread)) {
2088                 /* remove the sysfs entries */
2089                 edac_sysfs_memctrl_teardown();
2090                 edac_sysfs_pci_teardown();
2091                 return PTR_ERR(edac_thread);
2092         }
2093
2094         return 0;
2095 }
2096
2097
2098 /*
2099  * edac_mc_exit()
2100  *      module exit/termination functioni
2101  */
2102 static void __exit edac_mc_exit(void)
2103 {
2104         debugf0("%s()\n", __func__);
2105
2106         kthread_stop(edac_thread);
2107
2108         /* tear down the sysfs device */
2109         edac_sysfs_memctrl_teardown();
2110         edac_sysfs_pci_teardown();
2111 }
2112
2113
2114
2115
2116 module_init(edac_mc_init);
2117 module_exit(edac_mc_exit);
2118
2119 MODULE_LICENSE("GPL");
2120 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
2121               "Based on.work by Dan Hollis et al");
2122 MODULE_DESCRIPTION("Core library routines for MC reporting");
2123
2124 module_param(panic_on_ue, int, 0644);
2125 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
2126 module_param(check_pci_parity, int, 0644);
2127 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
2128 module_param(panic_on_pci_parity, int, 0644);
2129 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
2130 module_param(log_ue, int, 0644);
2131 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
2132 module_param(log_ce, int, 0644);
2133 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
2134 module_param(poll_msec, int, 0644);
2135 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2136 #ifdef CONFIG_EDAC_DEBUG
2137 module_param(edac_debug_level, int, 0644);
2138 MODULE_PARM_DESC(edac_debug_level, "Debug level");
2139 #endif