]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/edac/edac_mc_sysfs.c
edac: Don't add __func__ or __FILE__ for debugf[0-9] msgs
[karo-tx-linux.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012 - Mauro Carvalho Chehab <mchehab@redhat.com>
11  *      The entire API were re-written, and ported to use struct device
12  *
13  */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34         return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39         return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44         return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50         return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55         long l;
56         int ret;
57
58         if (!val)
59                 return -EINVAL;
60
61         ret = strict_strtol(val, 0, &l);
62         if (ret == -EINVAL || ((int)l != l))
63                 return -EINVAL;
64         *((int *)kp->arg) = l;
65
66         /* notify edac_mc engine to reset the poll period */
67         edac_mc_reset_delay_period(l);
68
69         return 0;
70 }
71
72 /* Parameter declarations for above */
73 module_param(edac_mc_panic_on_ue, int, 0644);
74 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
75 module_param(edac_mc_log_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_log_ue,
77                  "Log uncorrectable error to console: 0=off 1=on");
78 module_param(edac_mc_log_ce, int, 0644);
79 MODULE_PARM_DESC(edac_mc_log_ce,
80                  "Log correctable error to console: 0=off 1=on");
81 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
82                   &edac_mc_poll_msec, 0644);
83 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
84
85 static struct device *mci_pdev;
86
87 /*
88  * various constants for Memory Controllers
89  */
90 static const char *mem_types[] = {
91         [MEM_EMPTY] = "Empty",
92         [MEM_RESERVED] = "Reserved",
93         [MEM_UNKNOWN] = "Unknown",
94         [MEM_FPM] = "FPM",
95         [MEM_EDO] = "EDO",
96         [MEM_BEDO] = "BEDO",
97         [MEM_SDR] = "Unbuffered-SDR",
98         [MEM_RDR] = "Registered-SDR",
99         [MEM_DDR] = "Unbuffered-DDR",
100         [MEM_RDDR] = "Registered-DDR",
101         [MEM_RMBS] = "RMBS",
102         [MEM_DDR2] = "Unbuffered-DDR2",
103         [MEM_FB_DDR2] = "FullyBuffered-DDR2",
104         [MEM_RDDR2] = "Registered-DDR2",
105         [MEM_XDR] = "XDR",
106         [MEM_DDR3] = "Unbuffered-DDR3",
107         [MEM_RDDR3] = "Registered-DDR3"
108 };
109
110 static const char *dev_types[] = {
111         [DEV_UNKNOWN] = "Unknown",
112         [DEV_X1] = "x1",
113         [DEV_X2] = "x2",
114         [DEV_X4] = "x4",
115         [DEV_X8] = "x8",
116         [DEV_X16] = "x16",
117         [DEV_X32] = "x32",
118         [DEV_X64] = "x64"
119 };
120
121 static const char *edac_caps[] = {
122         [EDAC_UNKNOWN] = "Unknown",
123         [EDAC_NONE] = "None",
124         [EDAC_RESERVED] = "Reserved",
125         [EDAC_PARITY] = "PARITY",
126         [EDAC_EC] = "EC",
127         [EDAC_SECDED] = "SECDED",
128         [EDAC_S2ECD2ED] = "S2ECD2ED",
129         [EDAC_S4ECD4ED] = "S4ECD4ED",
130         [EDAC_S8ECD8ED] = "S8ECD8ED",
131         [EDAC_S16ECD16ED] = "S16ECD16ED"
132 };
133
134 #ifdef CONFIG_EDAC_LEGACY_SYSFS
135 /*
136  * EDAC sysfs CSROW data structures and methods
137  */
138
139 #define to_csrow(k) container_of(k, struct csrow_info, dev)
140
141 /*
142  * We need it to avoid namespace conflicts between the legacy API
143  * and the per-dimm/per-rank one
144  */
145 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
146         struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
147
148 struct dev_ch_attribute {
149         struct device_attribute attr;
150         int channel;
151 };
152
153 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
154         struct dev_ch_attribute dev_attr_legacy_##_name = \
155                 { __ATTR(_name, _mode, _show, _store), (_var) }
156
157 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
158
159 /* Set of more default csrow<id> attribute show/store functions */
160 static ssize_t csrow_ue_count_show(struct device *dev,
161                                    struct device_attribute *mattr, char *data)
162 {
163         struct csrow_info *csrow = to_csrow(dev);
164
165         return sprintf(data, "%u\n", csrow->ue_count);
166 }
167
168 static ssize_t csrow_ce_count_show(struct device *dev,
169                                    struct device_attribute *mattr, char *data)
170 {
171         struct csrow_info *csrow = to_csrow(dev);
172
173         return sprintf(data, "%u\n", csrow->ce_count);
174 }
175
176 static ssize_t csrow_size_show(struct device *dev,
177                                struct device_attribute *mattr, char *data)
178 {
179         struct csrow_info *csrow = to_csrow(dev);
180         int i;
181         u32 nr_pages = 0;
182
183         for (i = 0; i < csrow->nr_channels; i++)
184                 nr_pages += csrow->channels[i]->dimm->nr_pages;
185         return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
186 }
187
188 static ssize_t csrow_mem_type_show(struct device *dev,
189                                    struct device_attribute *mattr, char *data)
190 {
191         struct csrow_info *csrow = to_csrow(dev);
192
193         return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
194 }
195
196 static ssize_t csrow_dev_type_show(struct device *dev,
197                                    struct device_attribute *mattr, char *data)
198 {
199         struct csrow_info *csrow = to_csrow(dev);
200
201         return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
202 }
203
204 static ssize_t csrow_edac_mode_show(struct device *dev,
205                                     struct device_attribute *mattr,
206                                     char *data)
207 {
208         struct csrow_info *csrow = to_csrow(dev);
209
210         return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
211 }
212
213 /* show/store functions for DIMM Label attributes */
214 static ssize_t channel_dimm_label_show(struct device *dev,
215                                        struct device_attribute *mattr,
216                                        char *data)
217 {
218         struct csrow_info *csrow = to_csrow(dev);
219         unsigned chan = to_channel(mattr);
220         struct rank_info *rank = csrow->channels[chan];
221
222         /* if field has not been initialized, there is nothing to send */
223         if (!rank->dimm->label[0])
224                 return 0;
225
226         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
227                         rank->dimm->label);
228 }
229
230 static ssize_t channel_dimm_label_store(struct device *dev,
231                                         struct device_attribute *mattr,
232                                         const char *data, size_t count)
233 {
234         struct csrow_info *csrow = to_csrow(dev);
235         unsigned chan = to_channel(mattr);
236         struct rank_info *rank = csrow->channels[chan];
237
238         ssize_t max_size = 0;
239
240         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
241         strncpy(rank->dimm->label, data, max_size);
242         rank->dimm->label[max_size] = '\0';
243
244         return max_size;
245 }
246
247 /* show function for dynamic chX_ce_count attribute */
248 static ssize_t channel_ce_count_show(struct device *dev,
249                                      struct device_attribute *mattr, char *data)
250 {
251         struct csrow_info *csrow = to_csrow(dev);
252         unsigned chan = to_channel(mattr);
253         struct rank_info *rank = csrow->channels[chan];
254
255         return sprintf(data, "%u\n", rank->ce_count);
256 }
257
258 /* cwrow<id>/attribute files */
259 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
260 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
261 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
262 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
263 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
264 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
265
266 /* default attributes of the CSROW<id> object */
267 static struct attribute *csrow_attrs[] = {
268         &dev_attr_legacy_dev_type.attr,
269         &dev_attr_legacy_mem_type.attr,
270         &dev_attr_legacy_edac_mode.attr,
271         &dev_attr_legacy_size_mb.attr,
272         &dev_attr_legacy_ue_count.attr,
273         &dev_attr_legacy_ce_count.attr,
274         NULL,
275 };
276
277 static struct attribute_group csrow_attr_grp = {
278         .attrs  = csrow_attrs,
279 };
280
281 static const struct attribute_group *csrow_attr_groups[] = {
282         &csrow_attr_grp,
283         NULL
284 };
285
286 static void csrow_attr_release(struct device *dev)
287 {
288         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
289
290         debugf1("Releasing csrow device %s\n", dev_name(dev));
291         kfree(csrow);
292 }
293
294 static struct device_type csrow_attr_type = {
295         .groups         = csrow_attr_groups,
296         .release        = csrow_attr_release,
297 };
298
299 /*
300  * possible dynamic channel DIMM Label attribute files
301  *
302  */
303
304 #define EDAC_NR_CHANNELS        6
305
306 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
307         channel_dimm_label_show, channel_dimm_label_store, 0);
308 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
309         channel_dimm_label_show, channel_dimm_label_store, 1);
310 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
311         channel_dimm_label_show, channel_dimm_label_store, 2);
312 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
313         channel_dimm_label_show, channel_dimm_label_store, 3);
314 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
315         channel_dimm_label_show, channel_dimm_label_store, 4);
316 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
317         channel_dimm_label_show, channel_dimm_label_store, 5);
318
319 /* Total possible dynamic DIMM Label attribute file table */
320 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
321         &dev_attr_legacy_ch0_dimm_label.attr,
322         &dev_attr_legacy_ch1_dimm_label.attr,
323         &dev_attr_legacy_ch2_dimm_label.attr,
324         &dev_attr_legacy_ch3_dimm_label.attr,
325         &dev_attr_legacy_ch4_dimm_label.attr,
326         &dev_attr_legacy_ch5_dimm_label.attr
327 };
328
329 /* possible dynamic channel ce_count attribute files */
330 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
331                    channel_ce_count_show, NULL, 0);
332 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
333                    channel_ce_count_show, NULL, 1);
334 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
335                    channel_ce_count_show, NULL, 2);
336 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
337                    channel_ce_count_show, NULL, 3);
338 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
339                    channel_ce_count_show, NULL, 4);
340 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
341                    channel_ce_count_show, NULL, 5);
342
343 /* Total possible dynamic ce_count attribute file table */
344 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
345         &dev_attr_legacy_ch0_ce_count.attr,
346         &dev_attr_legacy_ch1_ce_count.attr,
347         &dev_attr_legacy_ch2_ce_count.attr,
348         &dev_attr_legacy_ch3_ce_count.attr,
349         &dev_attr_legacy_ch4_ce_count.attr,
350         &dev_attr_legacy_ch5_ce_count.attr
351 };
352
353 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
354 {
355         int chan, nr_pages = 0;
356
357         for (chan = 0; chan < csrow->nr_channels; chan++)
358                 nr_pages += csrow->channels[chan]->dimm->nr_pages;
359
360         return nr_pages;
361 }
362
363 /* Create a CSROW object under specifed edac_mc_device */
364 static int edac_create_csrow_object(struct mem_ctl_info *mci,
365                                     struct csrow_info *csrow, int index)
366 {
367         int err, chan;
368
369         if (csrow->nr_channels >= EDAC_NR_CHANNELS)
370                 return -ENODEV;
371
372         csrow->dev.type = &csrow_attr_type;
373         csrow->dev.bus = &mci->bus;
374         device_initialize(&csrow->dev);
375         csrow->dev.parent = &mci->dev;
376         dev_set_name(&csrow->dev, "csrow%d", index);
377         dev_set_drvdata(&csrow->dev, csrow);
378
379         debugf0("creating (virtual) csrow node %s\n", dev_name(&csrow->dev));
380
381         err = device_add(&csrow->dev);
382         if (err < 0)
383                 return err;
384
385         for (chan = 0; chan < csrow->nr_channels; chan++) {
386                 /* Only expose populated DIMMs */
387                 if (!csrow->channels[chan]->dimm->nr_pages)
388                         continue;
389                 err = device_create_file(&csrow->dev,
390                                          dynamic_csrow_dimm_attr[chan]);
391                 if (err < 0)
392                         goto error;
393                 err = device_create_file(&csrow->dev,
394                                          dynamic_csrow_ce_count_attr[chan]);
395                 if (err < 0) {
396                         device_remove_file(&csrow->dev,
397                                            dynamic_csrow_dimm_attr[chan]);
398                         goto error;
399                 }
400         }
401
402         return 0;
403
404 error:
405         for (--chan; chan >= 0; chan--) {
406                 device_remove_file(&csrow->dev,
407                                         dynamic_csrow_dimm_attr[chan]);
408                 device_remove_file(&csrow->dev,
409                                            dynamic_csrow_ce_count_attr[chan]);
410         }
411         put_device(&csrow->dev);
412
413         return err;
414 }
415
416 /* Create a CSROW object under specifed edac_mc_device */
417 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
418 {
419         int err, i, chan;
420         struct csrow_info *csrow;
421
422         for (i = 0; i < mci->nr_csrows; i++) {
423                 csrow = mci->csrows[i];
424                 if (!nr_pages_per_csrow(csrow))
425                         continue;
426                 err = edac_create_csrow_object(mci, mci->csrows[i], i);
427                 if (err < 0)
428                         goto error;
429         }
430         return 0;
431
432 error:
433         for (--i; i >= 0; i--) {
434                 csrow = mci->csrows[i];
435                 if (!nr_pages_per_csrow(csrow))
436                         continue;
437                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
438                         if (!csrow->channels[chan]->dimm->nr_pages)
439                                 continue;
440                         device_remove_file(&csrow->dev,
441                                                 dynamic_csrow_dimm_attr[chan]);
442                         device_remove_file(&csrow->dev,
443                                                 dynamic_csrow_ce_count_attr[chan]);
444                 }
445                 put_device(&mci->csrows[i]->dev);
446         }
447
448         return err;
449 }
450
451 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
452 {
453         int i, chan;
454         struct csrow_info *csrow;
455
456         for (i = mci->nr_csrows - 1; i >= 0; i--) {
457                 csrow = mci->csrows[i];
458                 if (!nr_pages_per_csrow(csrow))
459                         continue;
460                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
461                         if (!csrow->channels[chan]->dimm->nr_pages)
462                                 continue;
463                         debugf1("Removing csrow %d channel %d sysfs nodes\n",
464                                 i, chan);
465                         device_remove_file(&csrow->dev,
466                                                 dynamic_csrow_dimm_attr[chan]);
467                         device_remove_file(&csrow->dev,
468                                                 dynamic_csrow_ce_count_attr[chan]);
469                 }
470                 put_device(&mci->csrows[i]->dev);
471                 device_del(&mci->csrows[i]->dev);
472         }
473 }
474 #endif
475
476 /*
477  * Per-dimm (or per-rank) devices
478  */
479
480 #define to_dimm(k) container_of(k, struct dimm_info, dev)
481
482 /* show/store functions for DIMM Label attributes */
483 static ssize_t dimmdev_location_show(struct device *dev,
484                                      struct device_attribute *mattr, char *data)
485 {
486         struct dimm_info *dimm = to_dimm(dev);
487         struct mem_ctl_info *mci = dimm->mci;
488         int i;
489         char *p = data;
490
491         for (i = 0; i < mci->n_layers; i++) {
492                 p += sprintf(p, "%s %d ",
493                              edac_layer_name[mci->layers[i].type],
494                              dimm->location[i]);
495         }
496
497         return p - data;
498 }
499
500 static ssize_t dimmdev_label_show(struct device *dev,
501                                   struct device_attribute *mattr, char *data)
502 {
503         struct dimm_info *dimm = to_dimm(dev);
504
505         /* if field has not been initialized, there is nothing to send */
506         if (!dimm->label[0])
507                 return 0;
508
509         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
510 }
511
512 static ssize_t dimmdev_label_store(struct device *dev,
513                                    struct device_attribute *mattr,
514                                    const char *data,
515                                    size_t count)
516 {
517         struct dimm_info *dimm = to_dimm(dev);
518
519         ssize_t max_size = 0;
520
521         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
522         strncpy(dimm->label, data, max_size);
523         dimm->label[max_size] = '\0';
524
525         return max_size;
526 }
527
528 static ssize_t dimmdev_size_show(struct device *dev,
529                                  struct device_attribute *mattr, char *data)
530 {
531         struct dimm_info *dimm = to_dimm(dev);
532
533         return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
534 }
535
536 static ssize_t dimmdev_mem_type_show(struct device *dev,
537                                      struct device_attribute *mattr, char *data)
538 {
539         struct dimm_info *dimm = to_dimm(dev);
540
541         return sprintf(data, "%s\n", mem_types[dimm->mtype]);
542 }
543
544 static ssize_t dimmdev_dev_type_show(struct device *dev,
545                                      struct device_attribute *mattr, char *data)
546 {
547         struct dimm_info *dimm = to_dimm(dev);
548
549         return sprintf(data, "%s\n", dev_types[dimm->dtype]);
550 }
551
552 static ssize_t dimmdev_edac_mode_show(struct device *dev,
553                                       struct device_attribute *mattr,
554                                       char *data)
555 {
556         struct dimm_info *dimm = to_dimm(dev);
557
558         return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
559 }
560
561 /* dimm/rank attribute files */
562 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
563                    dimmdev_label_show, dimmdev_label_store);
564 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
565 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
566 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
567 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
568 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
569
570 /* attributes of the dimm<id>/rank<id> object */
571 static struct attribute *dimm_attrs[] = {
572         &dev_attr_dimm_label.attr,
573         &dev_attr_dimm_location.attr,
574         &dev_attr_size.attr,
575         &dev_attr_dimm_mem_type.attr,
576         &dev_attr_dimm_dev_type.attr,
577         &dev_attr_dimm_edac_mode.attr,
578         NULL,
579 };
580
581 static struct attribute_group dimm_attr_grp = {
582         .attrs  = dimm_attrs,
583 };
584
585 static const struct attribute_group *dimm_attr_groups[] = {
586         &dimm_attr_grp,
587         NULL
588 };
589
590 static void dimm_attr_release(struct device *dev)
591 {
592         struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
593
594         debugf1("Releasing dimm device %s\n", dev_name(dev));
595         kfree(dimm);
596 }
597
598 static struct device_type dimm_attr_type = {
599         .groups         = dimm_attr_groups,
600         .release        = dimm_attr_release,
601 };
602
603 /* Create a DIMM object under specifed memory controller device */
604 static int edac_create_dimm_object(struct mem_ctl_info *mci,
605                                    struct dimm_info *dimm,
606                                    int index)
607 {
608         int err;
609         dimm->mci = mci;
610
611         dimm->dev.type = &dimm_attr_type;
612         dimm->dev.bus = &mci->bus;
613         device_initialize(&dimm->dev);
614
615         dimm->dev.parent = &mci->dev;
616         if (mci->mem_is_per_rank)
617                 dev_set_name(&dimm->dev, "rank%d", index);
618         else
619                 dev_set_name(&dimm->dev, "dimm%d", index);
620         dev_set_drvdata(&dimm->dev, dimm);
621         pm_runtime_forbid(&mci->dev);
622
623         err =  device_add(&dimm->dev);
624
625         debugf0("creating rank/dimm device %s\n", dev_name(&dimm->dev));
626
627         return err;
628 }
629
630 /*
631  * Memory controller device
632  */
633
634 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
635
636 static ssize_t mci_reset_counters_store(struct device *dev,
637                                         struct device_attribute *mattr,
638                                         const char *data, size_t count)
639 {
640         struct mem_ctl_info *mci = to_mci(dev);
641         int cnt, row, chan, i;
642         mci->ue_mc = 0;
643         mci->ce_mc = 0;
644         mci->ue_noinfo_count = 0;
645         mci->ce_noinfo_count = 0;
646
647         for (row = 0; row < mci->nr_csrows; row++) {
648                 struct csrow_info *ri = mci->csrows[row];
649
650                 ri->ue_count = 0;
651                 ri->ce_count = 0;
652
653                 for (chan = 0; chan < ri->nr_channels; chan++)
654                         ri->channels[chan]->ce_count = 0;
655         }
656
657         cnt = 1;
658         for (i = 0; i < mci->n_layers; i++) {
659                 cnt *= mci->layers[i].size;
660                 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
661                 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
662         }
663
664         mci->start_time = jiffies;
665         return count;
666 }
667
668 /* Memory scrubbing interface:
669  *
670  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
671  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
672  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
673  *
674  * Negative value still means that an error has occurred while setting
675  * the scrub rate.
676  */
677 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
678                                           struct device_attribute *mattr,
679                                           const char *data, size_t count)
680 {
681         struct mem_ctl_info *mci = to_mci(dev);
682         unsigned long bandwidth = 0;
683         int new_bw = 0;
684
685         if (!mci->set_sdram_scrub_rate)
686                 return -ENODEV;
687
688         if (strict_strtoul(data, 10, &bandwidth) < 0)
689                 return -EINVAL;
690
691         new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
692         if (new_bw < 0) {
693                 edac_printk(KERN_WARNING, EDAC_MC,
694                             "Error setting scrub rate to: %lu\n", bandwidth);
695                 return -EINVAL;
696         }
697
698         return count;
699 }
700
701 /*
702  * ->get_sdram_scrub_rate() return value semantics same as above.
703  */
704 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
705                                          struct device_attribute *mattr,
706                                          char *data)
707 {
708         struct mem_ctl_info *mci = to_mci(dev);
709         int bandwidth = 0;
710
711         if (!mci->get_sdram_scrub_rate)
712                 return -ENODEV;
713
714         bandwidth = mci->get_sdram_scrub_rate(mci);
715         if (bandwidth < 0) {
716                 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
717                 return bandwidth;
718         }
719
720         return sprintf(data, "%d\n", bandwidth);
721 }
722
723 /* default attribute files for the MCI object */
724 static ssize_t mci_ue_count_show(struct device *dev,
725                                  struct device_attribute *mattr,
726                                  char *data)
727 {
728         struct mem_ctl_info *mci = to_mci(dev);
729
730         return sprintf(data, "%d\n", mci->ue_mc);
731 }
732
733 static ssize_t mci_ce_count_show(struct device *dev,
734                                  struct device_attribute *mattr,
735                                  char *data)
736 {
737         struct mem_ctl_info *mci = to_mci(dev);
738
739         return sprintf(data, "%d\n", mci->ce_mc);
740 }
741
742 static ssize_t mci_ce_noinfo_show(struct device *dev,
743                                   struct device_attribute *mattr,
744                                   char *data)
745 {
746         struct mem_ctl_info *mci = to_mci(dev);
747
748         return sprintf(data, "%d\n", mci->ce_noinfo_count);
749 }
750
751 static ssize_t mci_ue_noinfo_show(struct device *dev,
752                                   struct device_attribute *mattr,
753                                   char *data)
754 {
755         struct mem_ctl_info *mci = to_mci(dev);
756
757         return sprintf(data, "%d\n", mci->ue_noinfo_count);
758 }
759
760 static ssize_t mci_seconds_show(struct device *dev,
761                                 struct device_attribute *mattr,
762                                 char *data)
763 {
764         struct mem_ctl_info *mci = to_mci(dev);
765
766         return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
767 }
768
769 static ssize_t mci_ctl_name_show(struct device *dev,
770                                  struct device_attribute *mattr,
771                                  char *data)
772 {
773         struct mem_ctl_info *mci = to_mci(dev);
774
775         return sprintf(data, "%s\n", mci->ctl_name);
776 }
777
778 static ssize_t mci_size_mb_show(struct device *dev,
779                                 struct device_attribute *mattr,
780                                 char *data)
781 {
782         struct mem_ctl_info *mci = to_mci(dev);
783         int total_pages = 0, csrow_idx, j;
784
785         for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
786                 struct csrow_info *csrow = mci->csrows[csrow_idx];
787
788                 for (j = 0; j < csrow->nr_channels; j++) {
789                         struct dimm_info *dimm = csrow->channels[j]->dimm;
790
791                         total_pages += dimm->nr_pages;
792                 }
793         }
794
795         return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
796 }
797
798 static ssize_t mci_max_location_show(struct device *dev,
799                                      struct device_attribute *mattr,
800                                      char *data)
801 {
802         struct mem_ctl_info *mci = to_mci(dev);
803         int i;
804         char *p = data;
805
806         for (i = 0; i < mci->n_layers; i++) {
807                 p += sprintf(p, "%s %d ",
808                              edac_layer_name[mci->layers[i].type],
809                              mci->layers[i].size - 1);
810         }
811
812         return p - data;
813 }
814
815 #ifdef CONFIG_EDAC_DEBUG
816 static ssize_t edac_fake_inject_write(struct file *file,
817                                       const char __user *data,
818                                       size_t count, loff_t *ppos)
819 {
820         struct device *dev = file->private_data;
821         struct mem_ctl_info *mci = to_mci(dev);
822         static enum hw_event_mc_err_type type;
823
824         type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
825                                    : HW_EVENT_ERR_CORRECTED;
826
827         printk(KERN_DEBUG
828                "Generating a %s fake error to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
829                 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
830                 mci->fake_inject_layer[0],
831                 mci->fake_inject_layer[1],
832                 mci->fake_inject_layer[2]
833                );
834         edac_mc_handle_error(type, mci, 0, 0, 0,
835                              mci->fake_inject_layer[0],
836                              mci->fake_inject_layer[1],
837                              mci->fake_inject_layer[2],
838                              "FAKE ERROR", "for EDAC testing only", NULL);
839
840         return count;
841 }
842
843 static int debugfs_open(struct inode *inode, struct file *file)
844 {
845         file->private_data = inode->i_private;
846         return 0;
847 }
848
849 static const struct file_operations debug_fake_inject_fops = {
850         .open = debugfs_open,
851         .write = edac_fake_inject_write,
852         .llseek = generic_file_llseek,
853 };
854 #endif
855
856 /* default Control file */
857 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
858
859 /* default Attribute files */
860 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
861 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
862 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
863 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
864 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
865 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
866 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
867 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
868
869 /* memory scrubber attribute file */
870 DEVICE_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show,
871         mci_sdram_scrub_rate_store);
872
873 static struct attribute *mci_attrs[] = {
874         &dev_attr_reset_counters.attr,
875         &dev_attr_mc_name.attr,
876         &dev_attr_size_mb.attr,
877         &dev_attr_seconds_since_reset.attr,
878         &dev_attr_ue_noinfo_count.attr,
879         &dev_attr_ce_noinfo_count.attr,
880         &dev_attr_ue_count.attr,
881         &dev_attr_ce_count.attr,
882         &dev_attr_sdram_scrub_rate.attr,
883         &dev_attr_max_location.attr,
884         NULL
885 };
886
887 static struct attribute_group mci_attr_grp = {
888         .attrs  = mci_attrs,
889 };
890
891 static const struct attribute_group *mci_attr_groups[] = {
892         &mci_attr_grp,
893         NULL
894 };
895
896 static void mci_attr_release(struct device *dev)
897 {
898         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
899
900         debugf1("Releasing csrow device %s\n", dev_name(dev));
901         kfree(mci);
902 }
903
904 static struct device_type mci_attr_type = {
905         .groups         = mci_attr_groups,
906         .release        = mci_attr_release,
907 };
908
909 #ifdef CONFIG_EDAC_DEBUG
910 int edac_create_debug_nodes(struct mem_ctl_info *mci)
911 {
912         struct dentry *d, *parent;
913         char name[80];
914         int i;
915
916         d = debugfs_create_dir(mci->dev.kobj.name, mci->debugfs);
917         if (!d)
918                 return -ENOMEM;
919         parent = d;
920
921         for (i = 0; i < mci->n_layers; i++) {
922                 sprintf(name, "fake_inject_%s",
923                              edac_layer_name[mci->layers[i].type]);
924                 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
925                                       &mci->fake_inject_layer[i]);
926                 if (!d)
927                         goto nomem;
928         }
929
930         d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
931                                 &mci->fake_inject_ue);
932         if (!d)
933                 goto nomem;
934
935         d = debugfs_create_file("fake_inject", S_IWUSR, parent,
936                                 &mci->dev,
937                                 &debug_fake_inject_fops);
938         if (!d)
939                 goto nomem;
940
941         return 0;
942 nomem:
943         debugfs_remove(mci->debugfs);
944         return -ENOMEM;
945 }
946 #endif
947
948 /*
949  * Create a new Memory Controller kobject instance,
950  *      mc<id> under the 'mc' directory
951  *
952  * Return:
953  *      0       Success
954  *      !0      Failure
955  */
956 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
957 {
958         int i, err;
959
960         /*
961          * The memory controller needs its own bus, in order to avoid
962          * namespace conflicts at /sys/bus/edac.
963          */
964         mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
965         if (!mci->bus.name)
966                 return -ENOMEM;
967         debugf0("creating bus %s\n",mci->bus.name);
968         err = bus_register(&mci->bus);
969         if (err < 0)
970                 return err;
971
972         /* get the /sys/devices/system/edac subsys reference */
973         mci->dev.type = &mci_attr_type;
974         device_initialize(&mci->dev);
975
976         mci->dev.parent = mci_pdev;
977         mci->dev.bus = &mci->bus;
978         dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
979         dev_set_drvdata(&mci->dev, mci);
980         pm_runtime_forbid(&mci->dev);
981
982         debugf0("creating device %s\n", dev_name(&mci->dev));
983         err = device_add(&mci->dev);
984         if (err < 0) {
985                 bus_unregister(&mci->bus);
986                 kfree(mci->bus.name);
987                 return err;
988         }
989
990         /*
991          * Create the dimm/rank devices
992          */
993         for (i = 0; i < mci->tot_dimms; i++) {
994                 struct dimm_info *dimm = mci->dimms[i];
995                 /* Only expose populated DIMMs */
996                 if (dimm->nr_pages == 0)
997                         continue;
998 #ifdef CONFIG_EDAC_DEBUG
999                 debugf1("creating dimm%d, located at ",
1000                         i);
1001                 if (edac_debug_level >= 1) {
1002                         int lay;
1003                         for (lay = 0; lay < mci->n_layers; lay++)
1004                                 printk(KERN_CONT "%s %d ",
1005                                         edac_layer_name[mci->layers[lay].type],
1006                                         dimm->location[lay]);
1007                         printk(KERN_CONT "\n");
1008                 }
1009 #endif
1010                 err = edac_create_dimm_object(mci, dimm, i);
1011                 if (err) {
1012                         debugf1("failure: create dimm %d obj\n",
1013                                 i);
1014                         goto fail;
1015                 }
1016         }
1017
1018 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1019         err = edac_create_csrow_objects(mci);
1020         if (err < 0)
1021                 goto fail;
1022 #endif
1023
1024 #ifdef CONFIG_EDAC_DEBUG
1025         edac_create_debug_nodes(mci);
1026 #endif
1027         return 0;
1028
1029 fail:
1030         for (i--; i >= 0; i--) {
1031                 struct dimm_info *dimm = mci->dimms[i];
1032                 if (dimm->nr_pages == 0)
1033                         continue;
1034                 put_device(&dimm->dev);
1035                 device_del(&dimm->dev);
1036         }
1037         put_device(&mci->dev);
1038         device_del(&mci->dev);
1039         bus_unregister(&mci->bus);
1040         kfree(mci->bus.name);
1041         return err;
1042 }
1043
1044 /*
1045  * remove a Memory Controller instance
1046  */
1047 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1048 {
1049         int i;
1050
1051         debugf0("\n");
1052
1053 #ifdef CONFIG_EDAC_DEBUG
1054         debugfs_remove(mci->debugfs);
1055 #endif
1056 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1057         edac_delete_csrow_objects(mci);
1058 #endif
1059
1060         for (i = 0; i < mci->tot_dimms; i++) {
1061                 struct dimm_info *dimm = mci->dimms[i];
1062                 if (dimm->nr_pages == 0)
1063                         continue;
1064                 debugf0("removing device %s\n", dev_name(&dimm->dev));
1065                 put_device(&dimm->dev);
1066                 device_del(&dimm->dev);
1067         }
1068 }
1069
1070 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1071 {
1072         debugf1("Unregistering device %s\n", dev_name(&mci->dev));
1073         put_device(&mci->dev);
1074         device_del(&mci->dev);
1075         bus_unregister(&mci->bus);
1076         kfree(mci->bus.name);
1077 }
1078
1079 static void mc_attr_release(struct device *dev)
1080 {
1081         /*
1082          * There's no container structure here, as this is just the mci
1083          * parent device, used to create the /sys/devices/mc sysfs node.
1084          * So, there are no attributes on it.
1085          */
1086         debugf1("Releasing device %s\n", dev_name(dev));
1087         kfree(dev);
1088 }
1089
1090 static struct device_type mc_attr_type = {
1091         .release        = mc_attr_release,
1092 };
1093 /*
1094  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1095  */
1096 int __init edac_mc_sysfs_init(void)
1097 {
1098         struct bus_type *edac_subsys;
1099         int err;
1100
1101         /* get the /sys/devices/system/edac subsys reference */
1102         edac_subsys = edac_get_sysfs_subsys();
1103         if (edac_subsys == NULL) {
1104                 debugf1("no edac_subsys\n");
1105                 return -EINVAL;
1106         }
1107
1108         mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1109
1110         mci_pdev->bus = edac_subsys;
1111         mci_pdev->type = &mc_attr_type;
1112         device_initialize(mci_pdev);
1113         dev_set_name(mci_pdev, "mc");
1114
1115         err = device_add(mci_pdev);
1116         if (err < 0)
1117                 return err;
1118
1119         debugf0("device %s created\n", dev_name(mci_pdev));
1120
1121         return 0;
1122 }
1123
1124 void __exit edac_mc_sysfs_exit(void)
1125 {
1126         put_device(mci_pdev);
1127         device_del(mci_pdev);
1128         edac_put_sysfs_subsys();
1129 }