]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/edac/x38_edac.c
writeback: always use sb->s_bdi for writeback purposes
[mv-sheeva.git] / drivers / edac / x38_edac.c
1 /*
2  * Intel X38 Memory Controller kernel module
3  * Copyright (C) 2008 Cluster Computing, Inc.
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * This file is based on i3200_edac.c
9  *
10  */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/edac.h>
17 #include "edac_core.h"
18
19 #define X38_REVISION            "1.1"
20
21 #define EDAC_MOD_STR            "x38_edac"
22
23 #define PCI_DEVICE_ID_INTEL_X38_HB      0x29e0
24
25 #define X38_RANKS               8
26 #define X38_RANKS_PER_CHANNEL   4
27 #define X38_CHANNELS            2
28
29 /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
30
31 #define X38_MCHBAR_LOW  0x48    /* MCH Memory Mapped Register BAR */
32 #define X38_MCHBAR_HIGH 0x4c
33 #define X38_MCHBAR_MASK 0xfffffc000ULL  /* bits 35:14 */
34 #define X38_MMR_WINDOW_SIZE     16384
35
36 #define X38_TOM 0xa0    /* Top of Memory (16b)
37                                  *
38                                  * 15:10 reserved
39                                  *  9:0  total populated physical memory
40                                  */
41 #define X38_TOM_MASK    0x3ff   /* bits 9:0 */
42 #define X38_TOM_SHIFT 26        /* 64MiB grain */
43
44 #define X38_ERRSTS      0xc8    /* Error Status Register (16b)
45                                  *
46                                  * 15    reserved
47                                  * 14    Isochronous TBWRR Run Behind FIFO Full
48                                  *       (ITCV)
49                                  * 13    Isochronous TBWRR Run Behind FIFO Put
50                                  *       (ITSTV)
51                                  * 12    reserved
52                                  * 11    MCH Thermal Sensor Event
53                                  *       for SMI/SCI/SERR (GTSE)
54                                  * 10    reserved
55                                  *  9    LOCK to non-DRAM Memory Flag (LCKF)
56                                  *  8    reserved
57                                  *  7    DRAM Throttle Flag (DTF)
58                                  *  6:2  reserved
59                                  *  1    Multi-bit DRAM ECC Error Flag (DMERR)
60                                  *  0    Single-bit DRAM ECC Error Flag (DSERR)
61                                  */
62 #define X38_ERRSTS_UE           0x0002
63 #define X38_ERRSTS_CE           0x0001
64 #define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE)
65
66
67 /* Intel  MMIO register space - device 0 function 0 - MMR space */
68
69 #define X38_C0DRB       0x200   /* Channel 0 DRAM Rank Boundary (16b x 4)
70                                  *
71                                  * 15:10 reserved
72                                  *  9:0  Channel 0 DRAM Rank Boundary Address
73                                  */
74 #define X38_C1DRB       0x600   /* Channel 1 DRAM Rank Boundary (16b x 4) */
75 #define X38_DRB_MASK    0x3ff   /* bits 9:0 */
76 #define X38_DRB_SHIFT 26        /* 64MiB grain */
77
78 #define X38_C0ECCERRLOG 0x280   /* Channel 0 ECC Error Log (64b)
79                                  *
80                                  * 63:48 Error Column Address (ERRCOL)
81                                  * 47:32 Error Row Address (ERRROW)
82                                  * 31:29 Error Bank Address (ERRBANK)
83                                  * 28:27 Error Rank Address (ERRRANK)
84                                  * 26:24 reserved
85                                  * 23:16 Error Syndrome (ERRSYND)
86                                  * 15: 2 reserved
87                                  *    1  Multiple Bit Error Status (MERRSTS)
88                                  *    0  Correctable Error Status (CERRSTS)
89                                  */
90 #define X38_C1ECCERRLOG 0x680   /* Channel 1 ECC Error Log (64b) */
91 #define X38_ECCERRLOG_CE        0x1
92 #define X38_ECCERRLOG_UE        0x2
93 #define X38_ECCERRLOG_RANK_BITS 0x18000000
94 #define X38_ECCERRLOG_SYNDROME_BITS     0xff0000
95
96 #define X38_CAPID0 0xe0 /* see P.94 of spec for details */
97
98 static int x38_channel_num;
99
100 static int how_many_channel(struct pci_dev *pdev)
101 {
102         unsigned char capid0_8b; /* 8th byte of CAPID0 */
103
104         pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b);
105         if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */
106                 debugf0("In single channel mode.\n");
107                 x38_channel_num = 1;
108         } else {
109                 debugf0("In dual channel mode.\n");
110                 x38_channel_num = 2;
111         }
112
113         return x38_channel_num;
114 }
115
116 static unsigned long eccerrlog_syndrome(u64 log)
117 {
118         return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16;
119 }
120
121 static int eccerrlog_row(int channel, u64 log)
122 {
123         return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) |
124                 (channel * X38_RANKS_PER_CHANNEL);
125 }
126
127 enum x38_chips {
128         X38 = 0,
129 };
130
131 struct x38_dev_info {
132         const char *ctl_name;
133 };
134
135 struct x38_error_info {
136         u16 errsts;
137         u16 errsts2;
138         u64 eccerrlog[X38_CHANNELS];
139 };
140
141 static const struct x38_dev_info x38_devs[] = {
142         [X38] = {
143                 .ctl_name = "x38"},
144 };
145
146 static struct pci_dev *mci_pdev;
147 static int x38_registered = 1;
148
149
150 static void x38_clear_error_info(struct mem_ctl_info *mci)
151 {
152         struct pci_dev *pdev;
153
154         pdev = to_pci_dev(mci->dev);
155
156         /*
157          * Clear any error bits.
158          * (Yes, we really clear bits by writing 1 to them.)
159          */
160         pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS,
161                          X38_ERRSTS_BITS);
162 }
163
164 static u64 x38_readq(const void __iomem *addr)
165 {
166         return readl(addr) | (((u64)readl(addr + 4)) << 32);
167 }
168
169 static void x38_get_and_clear_error_info(struct mem_ctl_info *mci,
170                                  struct x38_error_info *info)
171 {
172         struct pci_dev *pdev;
173         void __iomem *window = mci->pvt_info;
174
175         pdev = to_pci_dev(mci->dev);
176
177         /*
178          * This is a mess because there is no atomic way to read all the
179          * registers at once and the registers can transition from CE being
180          * overwritten by UE.
181          */
182         pci_read_config_word(pdev, X38_ERRSTS, &info->errsts);
183         if (!(info->errsts & X38_ERRSTS_BITS))
184                 return;
185
186         info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
187         if (x38_channel_num == 2)
188                 info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG);
189
190         pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2);
191
192         /*
193          * If the error is the same for both reads then the first set
194          * of reads is valid.  If there is a change then there is a CE
195          * with no info and the second set of reads is valid and
196          * should be UE info.
197          */
198         if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
199                 info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
200                 if (x38_channel_num == 2)
201                         info->eccerrlog[1] =
202                                 x38_readq(window + X38_C1ECCERRLOG);
203         }
204
205         x38_clear_error_info(mci);
206 }
207
208 static void x38_process_error_info(struct mem_ctl_info *mci,
209                                 struct x38_error_info *info)
210 {
211         int channel;
212         u64 log;
213
214         if (!(info->errsts & X38_ERRSTS_BITS))
215                 return;
216
217         if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
218                 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
219                 info->errsts = info->errsts2;
220         }
221
222         for (channel = 0; channel < x38_channel_num; channel++) {
223                 log = info->eccerrlog[channel];
224                 if (log & X38_ECCERRLOG_UE) {
225                         edac_mc_handle_ue(mci, 0, 0,
226                                 eccerrlog_row(channel, log), "x38 UE");
227                 } else if (log & X38_ECCERRLOG_CE) {
228                         edac_mc_handle_ce(mci, 0, 0,
229                                 eccerrlog_syndrome(log),
230                                 eccerrlog_row(channel, log), 0, "x38 CE");
231                 }
232         }
233 }
234
235 static void x38_check(struct mem_ctl_info *mci)
236 {
237         struct x38_error_info info;
238
239         debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
240         x38_get_and_clear_error_info(mci, &info);
241         x38_process_error_info(mci, &info);
242 }
243
244
245 void __iomem *x38_map_mchbar(struct pci_dev *pdev)
246 {
247         union {
248                 u64 mchbar;
249                 struct {
250                         u32 mchbar_low;
251                         u32 mchbar_high;
252                 };
253         } u;
254         void __iomem *window;
255
256         pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low);
257         pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1);
258         pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high);
259         u.mchbar &= X38_MCHBAR_MASK;
260
261         if (u.mchbar != (resource_size_t)u.mchbar) {
262                 printk(KERN_ERR
263                         "x38: mmio space beyond accessible range (0x%llx)\n",
264                         (unsigned long long)u.mchbar);
265                 return NULL;
266         }
267
268         window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE);
269         if (!window)
270                 printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n",
271                         (unsigned long long)u.mchbar);
272
273         return window;
274 }
275
276
277 static void x38_get_drbs(void __iomem *window,
278                         u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
279 {
280         int i;
281
282         for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) {
283                 drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK;
284                 drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK;
285         }
286 }
287
288 static bool x38_is_stacked(struct pci_dev *pdev,
289                         u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
290 {
291         u16 tom;
292
293         pci_read_config_word(pdev, X38_TOM, &tom);
294         tom &= X38_TOM_MASK;
295
296         return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom;
297 }
298
299 static unsigned long drb_to_nr_pages(
300                         u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL],
301                         bool stacked, int channel, int rank)
302 {
303         int n;
304
305         n = drbs[channel][rank];
306         if (rank > 0)
307                 n -= drbs[channel][rank - 1];
308         if (stacked && (channel == 1) && drbs[channel][rank] ==
309                                 drbs[channel][X38_RANKS_PER_CHANNEL - 1]) {
310                 n -= drbs[0][X38_RANKS_PER_CHANNEL - 1];
311         }
312
313         n <<= (X38_DRB_SHIFT - PAGE_SHIFT);
314         return n;
315 }
316
317 static int x38_probe1(struct pci_dev *pdev, int dev_idx)
318 {
319         int rc;
320         int i;
321         struct mem_ctl_info *mci = NULL;
322         unsigned long last_page;
323         u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL];
324         bool stacked;
325         void __iomem *window;
326
327         debugf0("MC: %s()\n", __func__);
328
329         window = x38_map_mchbar(pdev);
330         if (!window)
331                 return -ENODEV;
332
333         x38_get_drbs(window, drbs);
334
335         how_many_channel(pdev);
336
337         /* FIXME: unconventional pvt_info usage */
338         mci = edac_mc_alloc(0, X38_RANKS, x38_channel_num, 0);
339         if (!mci)
340                 return -ENOMEM;
341
342         debugf3("MC: %s(): init mci\n", __func__);
343
344         mci->dev = &pdev->dev;
345         mci->mtype_cap = MEM_FLAG_DDR2;
346
347         mci->edac_ctl_cap = EDAC_FLAG_SECDED;
348         mci->edac_cap = EDAC_FLAG_SECDED;
349
350         mci->mod_name = EDAC_MOD_STR;
351         mci->mod_ver = X38_REVISION;
352         mci->ctl_name = x38_devs[dev_idx].ctl_name;
353         mci->dev_name = pci_name(pdev);
354         mci->edac_check = x38_check;
355         mci->ctl_page_to_phys = NULL;
356         mci->pvt_info = window;
357
358         stacked = x38_is_stacked(pdev, drbs);
359
360         /*
361          * The dram rank boundary (DRB) reg values are boundary addresses
362          * for each DRAM rank with a granularity of 64MB.  DRB regs are
363          * cumulative; the last one will contain the total memory
364          * contained in all ranks.
365          */
366         last_page = -1UL;
367         for (i = 0; i < mci->nr_csrows; i++) {
368                 unsigned long nr_pages;
369                 struct csrow_info *csrow = &mci->csrows[i];
370
371                 nr_pages = drb_to_nr_pages(drbs, stacked,
372                         i / X38_RANKS_PER_CHANNEL,
373                         i % X38_RANKS_PER_CHANNEL);
374
375                 if (nr_pages == 0) {
376                         csrow->mtype = MEM_EMPTY;
377                         continue;
378                 }
379
380                 csrow->first_page = last_page + 1;
381                 last_page += nr_pages;
382                 csrow->last_page = last_page;
383                 csrow->nr_pages = nr_pages;
384
385                 csrow->grain = nr_pages << PAGE_SHIFT;
386                 csrow->mtype = MEM_DDR2;
387                 csrow->dtype = DEV_UNKNOWN;
388                 csrow->edac_mode = EDAC_UNKNOWN;
389         }
390
391         x38_clear_error_info(mci);
392
393         rc = -ENODEV;
394         if (edac_mc_add_mc(mci)) {
395                 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
396                 goto fail;
397         }
398
399         /* get this far and it's successful */
400         debugf3("MC: %s(): success\n", __func__);
401         return 0;
402
403 fail:
404         iounmap(window);
405         if (mci)
406                 edac_mc_free(mci);
407
408         return rc;
409 }
410
411 static int __devinit x38_init_one(struct pci_dev *pdev,
412                                 const struct pci_device_id *ent)
413 {
414         int rc;
415
416         debugf0("MC: %s()\n", __func__);
417
418         if (pci_enable_device(pdev) < 0)
419                 return -EIO;
420
421         rc = x38_probe1(pdev, ent->driver_data);
422         if (!mci_pdev)
423                 mci_pdev = pci_dev_get(pdev);
424
425         return rc;
426 }
427
428 static void __devexit x38_remove_one(struct pci_dev *pdev)
429 {
430         struct mem_ctl_info *mci;
431
432         debugf0("%s()\n", __func__);
433
434         mci = edac_mc_del_mc(&pdev->dev);
435         if (!mci)
436                 return;
437
438         iounmap(mci->pvt_info);
439
440         edac_mc_free(mci);
441 }
442
443 static const struct pci_device_id x38_pci_tbl[] __devinitdata = {
444         {
445          PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
446          X38},
447         {
448          0,
449          }                      /* 0 terminated list. */
450 };
451
452 MODULE_DEVICE_TABLE(pci, x38_pci_tbl);
453
454 static struct pci_driver x38_driver = {
455         .name = EDAC_MOD_STR,
456         .probe = x38_init_one,
457         .remove = __devexit_p(x38_remove_one),
458         .id_table = x38_pci_tbl,
459 };
460
461 static int __init x38_init(void)
462 {
463         int pci_rc;
464
465         debugf3("MC: %s()\n", __func__);
466
467         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
468         opstate_init();
469
470         pci_rc = pci_register_driver(&x38_driver);
471         if (pci_rc < 0)
472                 goto fail0;
473
474         if (!mci_pdev) {
475                 x38_registered = 0;
476                 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
477                                         PCI_DEVICE_ID_INTEL_X38_HB, NULL);
478                 if (!mci_pdev) {
479                         debugf0("x38 pci_get_device fail\n");
480                         pci_rc = -ENODEV;
481                         goto fail1;
482                 }
483
484                 pci_rc = x38_init_one(mci_pdev, x38_pci_tbl);
485                 if (pci_rc < 0) {
486                         debugf0("x38 init fail\n");
487                         pci_rc = -ENODEV;
488                         goto fail1;
489                 }
490         }
491
492         return 0;
493
494 fail1:
495         pci_unregister_driver(&x38_driver);
496
497 fail0:
498         if (mci_pdev)
499                 pci_dev_put(mci_pdev);
500
501         return pci_rc;
502 }
503
504 static void __exit x38_exit(void)
505 {
506         debugf3("MC: %s()\n", __func__);
507
508         pci_unregister_driver(&x38_driver);
509         if (!x38_registered) {
510                 x38_remove_one(mci_pdev);
511                 pci_dev_put(mci_pdev);
512         }
513 }
514
515 module_init(x38_init);
516 module_exit(x38_exit);
517
518 MODULE_LICENSE("GPL");
519 MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake");
520 MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers");
521
522 module_param(edac_op_state, int, 0444);
523 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");