]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/firewire/core-transaction.c
firewire: core: fix fw_send_request kerneldoc comment
[karo-tx-linux.git] / drivers / firewire / core-transaction.c
1 /*
2  * Core IEEE1394 transaction logic
3  *
4  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/timer.h>
38 #include <linux/types.h>
39
40 #include <asm/byteorder.h>
41
42 #include "core.h"
43
44 #define HEADER_PRI(pri)                 ((pri) << 0)
45 #define HEADER_TCODE(tcode)             ((tcode) << 4)
46 #define HEADER_RETRY(retry)             ((retry) << 8)
47 #define HEADER_TLABEL(tlabel)           ((tlabel) << 10)
48 #define HEADER_DESTINATION(destination) ((destination) << 16)
49 #define HEADER_SOURCE(source)           ((source) << 16)
50 #define HEADER_RCODE(rcode)             ((rcode) << 12)
51 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
52 #define HEADER_DATA_LENGTH(length)      ((length) << 16)
53 #define HEADER_EXTENDED_TCODE(tcode)    ((tcode) << 0)
54
55 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
56 #define HEADER_GET_TLABEL(q)            (((q) >> 10) & 0x3f)
57 #define HEADER_GET_RCODE(q)             (((q) >> 12) & 0x0f)
58 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
59 #define HEADER_GET_SOURCE(q)            (((q) >> 16) & 0xffff)
60 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
61 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
62 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
63
64 #define HEADER_DESTINATION_IS_BROADCAST(q) \
65         (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
66
67 #define PHY_PACKET_CONFIG       0x0
68 #define PHY_PACKET_LINK_ON      0x1
69 #define PHY_PACKET_SELF_ID      0x2
70
71 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
72 #define PHY_CONFIG_ROOT_ID(node_id)     ((((node_id) & 0x3f) << 24) | (1 << 23))
73 #define PHY_IDENTIFIER(id)              ((id) << 30)
74
75 static int close_transaction(struct fw_transaction *transaction,
76                              struct fw_card *card, int rcode)
77 {
78         struct fw_transaction *t;
79         unsigned long flags;
80
81         spin_lock_irqsave(&card->lock, flags);
82         list_for_each_entry(t, &card->transaction_list, link) {
83                 if (t == transaction) {
84                         list_del_init(&t->link);
85                         card->tlabel_mask &= ~(1ULL << t->tlabel);
86                         break;
87                 }
88         }
89         spin_unlock_irqrestore(&card->lock, flags);
90
91         if (&t->link != &card->transaction_list) {
92                 del_timer_sync(&t->split_timeout_timer);
93                 t->callback(card, rcode, NULL, 0, t->callback_data);
94                 return 0;
95         }
96
97         return -ENOENT;
98 }
99
100 /*
101  * Only valid for transactions that are potentially pending (ie have
102  * been sent).
103  */
104 int fw_cancel_transaction(struct fw_card *card,
105                           struct fw_transaction *transaction)
106 {
107         /*
108          * Cancel the packet transmission if it's still queued.  That
109          * will call the packet transmission callback which cancels
110          * the transaction.
111          */
112
113         if (card->driver->cancel_packet(card, &transaction->packet) == 0)
114                 return 0;
115
116         /*
117          * If the request packet has already been sent, we need to see
118          * if the transaction is still pending and remove it in that case.
119          */
120
121         return close_transaction(transaction, card, RCODE_CANCELLED);
122 }
123 EXPORT_SYMBOL(fw_cancel_transaction);
124
125 static void split_transaction_timeout_callback(unsigned long data)
126 {
127         struct fw_transaction *t = (struct fw_transaction *)data;
128         struct fw_card *card = t->card;
129         unsigned long flags;
130
131         spin_lock_irqsave(&card->lock, flags);
132         if (list_empty(&t->link)) {
133                 spin_unlock_irqrestore(&card->lock, flags);
134                 return;
135         }
136         list_del(&t->link);
137         card->tlabel_mask &= ~(1ULL << t->tlabel);
138         spin_unlock_irqrestore(&card->lock, flags);
139
140         card->driver->cancel_packet(card, &t->packet);
141
142         /*
143          * At this point cancel_packet will never call the transaction
144          * callback, since we just took the transaction out of the list.
145          * So do it here.
146          */
147         t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
148 }
149
150 static void transmit_complete_callback(struct fw_packet *packet,
151                                        struct fw_card *card, int status)
152 {
153         struct fw_transaction *t =
154             container_of(packet, struct fw_transaction, packet);
155
156         switch (status) {
157         case ACK_COMPLETE:
158                 close_transaction(t, card, RCODE_COMPLETE);
159                 break;
160         case ACK_PENDING:
161                 t->timestamp = packet->timestamp;
162                 break;
163         case ACK_BUSY_X:
164         case ACK_BUSY_A:
165         case ACK_BUSY_B:
166                 close_transaction(t, card, RCODE_BUSY);
167                 break;
168         case ACK_DATA_ERROR:
169                 close_transaction(t, card, RCODE_DATA_ERROR);
170                 break;
171         case ACK_TYPE_ERROR:
172                 close_transaction(t, card, RCODE_TYPE_ERROR);
173                 break;
174         default:
175                 /*
176                  * In this case the ack is really a juju specific
177                  * rcode, so just forward that to the callback.
178                  */
179                 close_transaction(t, card, status);
180                 break;
181         }
182 }
183
184 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
185                 int destination_id, int source_id, int generation, int speed,
186                 unsigned long long offset, void *payload, size_t length)
187 {
188         int ext_tcode;
189
190         if (tcode == TCODE_STREAM_DATA) {
191                 packet->header[0] =
192                         HEADER_DATA_LENGTH(length) |
193                         destination_id |
194                         HEADER_TCODE(TCODE_STREAM_DATA);
195                 packet->header_length = 4;
196                 packet->payload = payload;
197                 packet->payload_length = length;
198
199                 goto common;
200         }
201
202         if (tcode > 0x10) {
203                 ext_tcode = tcode & ~0x10;
204                 tcode = TCODE_LOCK_REQUEST;
205         } else
206                 ext_tcode = 0;
207
208         packet->header[0] =
209                 HEADER_RETRY(RETRY_X) |
210                 HEADER_TLABEL(tlabel) |
211                 HEADER_TCODE(tcode) |
212                 HEADER_DESTINATION(destination_id);
213         packet->header[1] =
214                 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
215         packet->header[2] =
216                 offset;
217
218         switch (tcode) {
219         case TCODE_WRITE_QUADLET_REQUEST:
220                 packet->header[3] = *(u32 *)payload;
221                 packet->header_length = 16;
222                 packet->payload_length = 0;
223                 break;
224
225         case TCODE_LOCK_REQUEST:
226         case TCODE_WRITE_BLOCK_REQUEST:
227                 packet->header[3] =
228                         HEADER_DATA_LENGTH(length) |
229                         HEADER_EXTENDED_TCODE(ext_tcode);
230                 packet->header_length = 16;
231                 packet->payload = payload;
232                 packet->payload_length = length;
233                 break;
234
235         case TCODE_READ_QUADLET_REQUEST:
236                 packet->header_length = 12;
237                 packet->payload_length = 0;
238                 break;
239
240         case TCODE_READ_BLOCK_REQUEST:
241                 packet->header[3] =
242                         HEADER_DATA_LENGTH(length) |
243                         HEADER_EXTENDED_TCODE(ext_tcode);
244                 packet->header_length = 16;
245                 packet->payload_length = 0;
246                 break;
247
248         default:
249                 WARN(1, "wrong tcode %d", tcode);
250         }
251  common:
252         packet->speed = speed;
253         packet->generation = generation;
254         packet->ack = 0;
255         packet->payload_mapped = false;
256 }
257
258 static int allocate_tlabel(struct fw_card *card)
259 {
260         int tlabel;
261
262         tlabel = card->current_tlabel;
263         while (card->tlabel_mask & (1ULL << tlabel)) {
264                 tlabel = (tlabel + 1) & 0x3f;
265                 if (tlabel == card->current_tlabel)
266                         return -EBUSY;
267         }
268
269         card->current_tlabel = (tlabel + 1) & 0x3f;
270         card->tlabel_mask |= 1ULL << tlabel;
271
272         return tlabel;
273 }
274
275 /**
276  * fw_send_request() - submit a request packet for transmission
277  * @card:               interface to send the request at
278  * @t:                  transaction instance to which the request belongs
279  * @tcode:              transaction code
280  * @destination_id:     destination node ID, consisting of bus_ID and phy_ID
281  * @generation:         bus generation in which request and response are valid
282  * @speed:              transmission speed
283  * @offset:             48bit wide offset into destination's address space
284  * @payload:            data payload for the request subaction
285  * @length:             length of the payload, in bytes
286  * @callback:           function to be called when the transaction is completed
287  * @callback_data:      data to be passed to the transaction completion callback
288  *
289  * Submit a request packet into the asynchronous request transmission queue.
290  * Can be called from atomic context.  If you prefer a blocking API, use
291  * fw_run_transaction() in a context that can sleep.
292  *
293  * In case of lock requests, specify one of the firewire-core specific %TCODE_
294  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
295  *
296  * Make sure that the value in @destination_id is not older than the one in
297  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
298  *
299  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
300  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
301  * It will contain tag, channel, and sy data instead of a node ID then.
302  *
303  * The payload buffer at @data is going to be DMA-mapped except in case of
304  * quadlet-sized payload or of local (loopback) requests.  Hence make sure that
305  * the buffer complies with the restrictions for DMA-mapped memory.  The
306  * @payload must not be freed before the @callback is called.
307  *
308  * In case of request types without payload, @data is NULL and @length is 0.
309  *
310  * After the transaction is completed successfully or unsuccessfully, the
311  * @callback will be called.  Among its parameters is the response code which
312  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
313  * the firewire-core specific %RCODE_SEND_ERROR.
314  *
315  * Note some timing corner cases:  fw_send_request() may complete much earlier
316  * than when the request packet actually hits the wire.  On the other hand,
317  * transaction completion and hence execution of @callback may happen even
318  * before fw_send_request() returns.
319  */
320 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
321                      int destination_id, int generation, int speed,
322                      unsigned long long offset, void *payload, size_t length,
323                      fw_transaction_callback_t callback, void *callback_data)
324 {
325         unsigned long flags;
326         int tlabel;
327
328         /*
329          * Allocate tlabel from the bitmap and put the transaction on
330          * the list while holding the card spinlock.
331          */
332
333         spin_lock_irqsave(&card->lock, flags);
334
335         tlabel = allocate_tlabel(card);
336         if (tlabel < 0) {
337                 spin_unlock_irqrestore(&card->lock, flags);
338                 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
339                 return;
340         }
341
342         t->node_id = destination_id;
343         t->tlabel = tlabel;
344         t->card = card;
345         setup_timer(&t->split_timeout_timer,
346                     split_transaction_timeout_callback, (unsigned long)t);
347         /* FIXME: start this timer later, relative to t->timestamp */
348         mod_timer(&t->split_timeout_timer,
349                   jiffies + card->split_timeout_jiffies);
350         t->callback = callback;
351         t->callback_data = callback_data;
352
353         fw_fill_request(&t->packet, tcode, t->tlabel,
354                         destination_id, card->node_id, generation,
355                         speed, offset, payload, length);
356         t->packet.callback = transmit_complete_callback;
357
358         list_add_tail(&t->link, &card->transaction_list);
359
360         spin_unlock_irqrestore(&card->lock, flags);
361
362         card->driver->send_request(card, &t->packet);
363 }
364 EXPORT_SYMBOL(fw_send_request);
365
366 struct transaction_callback_data {
367         struct completion done;
368         void *payload;
369         int rcode;
370 };
371
372 static void transaction_callback(struct fw_card *card, int rcode,
373                                  void *payload, size_t length, void *data)
374 {
375         struct transaction_callback_data *d = data;
376
377         if (rcode == RCODE_COMPLETE)
378                 memcpy(d->payload, payload, length);
379         d->rcode = rcode;
380         complete(&d->done);
381 }
382
383 /**
384  * fw_run_transaction() - send request and sleep until transaction is completed
385  *
386  * Returns the RCODE.  See fw_send_request() for parameter documentation.
387  * Unlike fw_send_request(), @data points to the payload of the request or/and
388  * to the payload of the response.
389  */
390 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
391                        int generation, int speed, unsigned long long offset,
392                        void *payload, size_t length)
393 {
394         struct transaction_callback_data d;
395         struct fw_transaction t;
396
397         init_timer_on_stack(&t.split_timeout_timer);
398         init_completion(&d.done);
399         d.payload = payload;
400         fw_send_request(card, &t, tcode, destination_id, generation, speed,
401                         offset, payload, length, transaction_callback, &d);
402         wait_for_completion(&d.done);
403         destroy_timer_on_stack(&t.split_timeout_timer);
404
405         return d.rcode;
406 }
407 EXPORT_SYMBOL(fw_run_transaction);
408
409 static DEFINE_MUTEX(phy_config_mutex);
410 static DECLARE_COMPLETION(phy_config_done);
411
412 static void transmit_phy_packet_callback(struct fw_packet *packet,
413                                          struct fw_card *card, int status)
414 {
415         complete(&phy_config_done);
416 }
417
418 static struct fw_packet phy_config_packet = {
419         .header_length  = 8,
420         .payload_length = 0,
421         .speed          = SCODE_100,
422         .callback       = transmit_phy_packet_callback,
423 };
424
425 void fw_send_phy_config(struct fw_card *card,
426                         int node_id, int generation, int gap_count)
427 {
428         long timeout = DIV_ROUND_UP(HZ, 10);
429         u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG) |
430                    PHY_CONFIG_ROOT_ID(node_id) |
431                    PHY_CONFIG_GAP_COUNT(gap_count);
432
433         mutex_lock(&phy_config_mutex);
434
435         phy_config_packet.header[0] = data;
436         phy_config_packet.header[1] = ~data;
437         phy_config_packet.generation = generation;
438         INIT_COMPLETION(phy_config_done);
439
440         card->driver->send_request(card, &phy_config_packet);
441         wait_for_completion_timeout(&phy_config_done, timeout);
442
443         mutex_unlock(&phy_config_mutex);
444 }
445
446 static struct fw_address_handler *lookup_overlapping_address_handler(
447         struct list_head *list, unsigned long long offset, size_t length)
448 {
449         struct fw_address_handler *handler;
450
451         list_for_each_entry(handler, list, link) {
452                 if (handler->offset < offset + length &&
453                     offset < handler->offset + handler->length)
454                         return handler;
455         }
456
457         return NULL;
458 }
459
460 static bool is_enclosing_handler(struct fw_address_handler *handler,
461                                  unsigned long long offset, size_t length)
462 {
463         return handler->offset <= offset &&
464                 offset + length <= handler->offset + handler->length;
465 }
466
467 static struct fw_address_handler *lookup_enclosing_address_handler(
468         struct list_head *list, unsigned long long offset, size_t length)
469 {
470         struct fw_address_handler *handler;
471
472         list_for_each_entry(handler, list, link) {
473                 if (is_enclosing_handler(handler, offset, length))
474                         return handler;
475         }
476
477         return NULL;
478 }
479
480 static DEFINE_SPINLOCK(address_handler_lock);
481 static LIST_HEAD(address_handler_list);
482
483 const struct fw_address_region fw_high_memory_region =
484         { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
485 EXPORT_SYMBOL(fw_high_memory_region);
486
487 #if 0
488 const struct fw_address_region fw_low_memory_region =
489         { .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
490 const struct fw_address_region fw_private_region =
491         { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
492 const struct fw_address_region fw_csr_region =
493         { .start = CSR_REGISTER_BASE,
494           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
495 const struct fw_address_region fw_unit_space_region =
496         { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
497 #endif  /*  0  */
498
499 static bool is_in_fcp_region(u64 offset, size_t length)
500 {
501         return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
502                 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
503 }
504
505 /**
506  * fw_core_add_address_handler() - register for incoming requests
507  * @handler:    callback
508  * @region:     region in the IEEE 1212 node space address range
509  *
510  * region->start, ->end, and handler->length have to be quadlet-aligned.
511  *
512  * When a request is received that falls within the specified address range,
513  * the specified callback is invoked.  The parameters passed to the callback
514  * give the details of the particular request.
515  *
516  * Return value:  0 on success, non-zero otherwise.
517  *
518  * The start offset of the handler's address region is determined by
519  * fw_core_add_address_handler() and is returned in handler->offset.
520  *
521  * Address allocations are exclusive, except for the FCP registers.
522  */
523 int fw_core_add_address_handler(struct fw_address_handler *handler,
524                                 const struct fw_address_region *region)
525 {
526         struct fw_address_handler *other;
527         unsigned long flags;
528         int ret = -EBUSY;
529
530         if (region->start & 0xffff000000000003ULL ||
531             region->end   & 0xffff000000000003ULL ||
532             region->start >= region->end ||
533             handler->length & 3 ||
534             handler->length == 0)
535                 return -EINVAL;
536
537         spin_lock_irqsave(&address_handler_lock, flags);
538
539         handler->offset = region->start;
540         while (handler->offset + handler->length <= region->end) {
541                 if (is_in_fcp_region(handler->offset, handler->length))
542                         other = NULL;
543                 else
544                         other = lookup_overlapping_address_handler
545                                         (&address_handler_list,
546                                          handler->offset, handler->length);
547                 if (other != NULL) {
548                         handler->offset += other->length;
549                 } else {
550                         list_add_tail(&handler->link, &address_handler_list);
551                         ret = 0;
552                         break;
553                 }
554         }
555
556         spin_unlock_irqrestore(&address_handler_lock, flags);
557
558         return ret;
559 }
560 EXPORT_SYMBOL(fw_core_add_address_handler);
561
562 /**
563  * fw_core_remove_address_handler() - unregister an address handler
564  */
565 void fw_core_remove_address_handler(struct fw_address_handler *handler)
566 {
567         unsigned long flags;
568
569         spin_lock_irqsave(&address_handler_lock, flags);
570         list_del(&handler->link);
571         spin_unlock_irqrestore(&address_handler_lock, flags);
572 }
573 EXPORT_SYMBOL(fw_core_remove_address_handler);
574
575 struct fw_request {
576         struct fw_packet response;
577         u32 request_header[4];
578         int ack;
579         u32 length;
580         u32 data[0];
581 };
582
583 static void free_response_callback(struct fw_packet *packet,
584                                    struct fw_card *card, int status)
585 {
586         struct fw_request *request;
587
588         request = container_of(packet, struct fw_request, response);
589         kfree(request);
590 }
591
592 int fw_get_response_length(struct fw_request *r)
593 {
594         int tcode, ext_tcode, data_length;
595
596         tcode = HEADER_GET_TCODE(r->request_header[0]);
597
598         switch (tcode) {
599         case TCODE_WRITE_QUADLET_REQUEST:
600         case TCODE_WRITE_BLOCK_REQUEST:
601                 return 0;
602
603         case TCODE_READ_QUADLET_REQUEST:
604                 return 4;
605
606         case TCODE_READ_BLOCK_REQUEST:
607                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
608                 return data_length;
609
610         case TCODE_LOCK_REQUEST:
611                 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
612                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
613                 switch (ext_tcode) {
614                 case EXTCODE_FETCH_ADD:
615                 case EXTCODE_LITTLE_ADD:
616                         return data_length;
617                 default:
618                         return data_length / 2;
619                 }
620
621         default:
622                 WARN(1, "wrong tcode %d", tcode);
623                 return 0;
624         }
625 }
626
627 void fw_fill_response(struct fw_packet *response, u32 *request_header,
628                       int rcode, void *payload, size_t length)
629 {
630         int tcode, tlabel, extended_tcode, source, destination;
631
632         tcode          = HEADER_GET_TCODE(request_header[0]);
633         tlabel         = HEADER_GET_TLABEL(request_header[0]);
634         source         = HEADER_GET_DESTINATION(request_header[0]);
635         destination    = HEADER_GET_SOURCE(request_header[1]);
636         extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
637
638         response->header[0] =
639                 HEADER_RETRY(RETRY_1) |
640                 HEADER_TLABEL(tlabel) |
641                 HEADER_DESTINATION(destination);
642         response->header[1] =
643                 HEADER_SOURCE(source) |
644                 HEADER_RCODE(rcode);
645         response->header[2] = 0;
646
647         switch (tcode) {
648         case TCODE_WRITE_QUADLET_REQUEST:
649         case TCODE_WRITE_BLOCK_REQUEST:
650                 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
651                 response->header_length = 12;
652                 response->payload_length = 0;
653                 break;
654
655         case TCODE_READ_QUADLET_REQUEST:
656                 response->header[0] |=
657                         HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
658                 if (payload != NULL)
659                         response->header[3] = *(u32 *)payload;
660                 else
661                         response->header[3] = 0;
662                 response->header_length = 16;
663                 response->payload_length = 0;
664                 break;
665
666         case TCODE_READ_BLOCK_REQUEST:
667         case TCODE_LOCK_REQUEST:
668                 response->header[0] |= HEADER_TCODE(tcode + 2);
669                 response->header[3] =
670                         HEADER_DATA_LENGTH(length) |
671                         HEADER_EXTENDED_TCODE(extended_tcode);
672                 response->header_length = 16;
673                 response->payload = payload;
674                 response->payload_length = length;
675                 break;
676
677         default:
678                 WARN(1, "wrong tcode %d", tcode);
679         }
680
681         response->payload_mapped = false;
682 }
683 EXPORT_SYMBOL(fw_fill_response);
684
685 static u32 compute_split_timeout_timestamp(struct fw_card *card,
686                                            u32 request_timestamp)
687 {
688         unsigned int cycles;
689         u32 timestamp;
690
691         cycles = card->split_timeout_cycles;
692         cycles += request_timestamp & 0x1fff;
693
694         timestamp = request_timestamp & ~0x1fff;
695         timestamp += (cycles / 8000) << 13;
696         timestamp |= cycles % 8000;
697
698         return timestamp;
699 }
700
701 static struct fw_request *allocate_request(struct fw_card *card,
702                                            struct fw_packet *p)
703 {
704         struct fw_request *request;
705         u32 *data, length;
706         int request_tcode;
707
708         request_tcode = HEADER_GET_TCODE(p->header[0]);
709         switch (request_tcode) {
710         case TCODE_WRITE_QUADLET_REQUEST:
711                 data = &p->header[3];
712                 length = 4;
713                 break;
714
715         case TCODE_WRITE_BLOCK_REQUEST:
716         case TCODE_LOCK_REQUEST:
717                 data = p->payload;
718                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
719                 break;
720
721         case TCODE_READ_QUADLET_REQUEST:
722                 data = NULL;
723                 length = 4;
724                 break;
725
726         case TCODE_READ_BLOCK_REQUEST:
727                 data = NULL;
728                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
729                 break;
730
731         default:
732                 fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
733                          p->header[0], p->header[1], p->header[2]);
734                 return NULL;
735         }
736
737         request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
738         if (request == NULL)
739                 return NULL;
740
741         request->response.speed = p->speed;
742         request->response.timestamp =
743                         compute_split_timeout_timestamp(card, p->timestamp);
744         request->response.generation = p->generation;
745         request->response.ack = 0;
746         request->response.callback = free_response_callback;
747         request->ack = p->ack;
748         request->length = length;
749         if (data)
750                 memcpy(request->data, data, length);
751
752         memcpy(request->request_header, p->header, sizeof(p->header));
753
754         return request;
755 }
756
757 void fw_send_response(struct fw_card *card,
758                       struct fw_request *request, int rcode)
759 {
760         if (WARN_ONCE(!request, "invalid for FCP address handlers"))
761                 return;
762
763         /* unified transaction or broadcast transaction: don't respond */
764         if (request->ack != ACK_PENDING ||
765             HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
766                 kfree(request);
767                 return;
768         }
769
770         if (rcode == RCODE_COMPLETE)
771                 fw_fill_response(&request->response, request->request_header,
772                                  rcode, request->data,
773                                  fw_get_response_length(request));
774         else
775                 fw_fill_response(&request->response, request->request_header,
776                                  rcode, NULL, 0);
777
778         card->driver->send_response(card, &request->response);
779 }
780 EXPORT_SYMBOL(fw_send_response);
781
782 static void handle_exclusive_region_request(struct fw_card *card,
783                                             struct fw_packet *p,
784                                             struct fw_request *request,
785                                             unsigned long long offset)
786 {
787         struct fw_address_handler *handler;
788         unsigned long flags;
789         int tcode, destination, source;
790
791         destination = HEADER_GET_DESTINATION(p->header[0]);
792         source      = HEADER_GET_SOURCE(p->header[1]);
793         tcode       = HEADER_GET_TCODE(p->header[0]);
794         if (tcode == TCODE_LOCK_REQUEST)
795                 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
796
797         spin_lock_irqsave(&address_handler_lock, flags);
798         handler = lookup_enclosing_address_handler(&address_handler_list,
799                                                    offset, request->length);
800         spin_unlock_irqrestore(&address_handler_lock, flags);
801
802         /*
803          * FIXME: lookup the fw_node corresponding to the sender of
804          * this request and pass that to the address handler instead
805          * of the node ID.  We may also want to move the address
806          * allocations to fw_node so we only do this callback if the
807          * upper layers registered it for this node.
808          */
809
810         if (handler == NULL)
811                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
812         else
813                 handler->address_callback(card, request,
814                                           tcode, destination, source,
815                                           p->generation, offset,
816                                           request->data, request->length,
817                                           handler->callback_data);
818 }
819
820 static void handle_fcp_region_request(struct fw_card *card,
821                                       struct fw_packet *p,
822                                       struct fw_request *request,
823                                       unsigned long long offset)
824 {
825         struct fw_address_handler *handler;
826         unsigned long flags;
827         int tcode, destination, source;
828
829         if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
830              offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
831             request->length > 0x200) {
832                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
833
834                 return;
835         }
836
837         tcode       = HEADER_GET_TCODE(p->header[0]);
838         destination = HEADER_GET_DESTINATION(p->header[0]);
839         source      = HEADER_GET_SOURCE(p->header[1]);
840
841         if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
842             tcode != TCODE_WRITE_BLOCK_REQUEST) {
843                 fw_send_response(card, request, RCODE_TYPE_ERROR);
844
845                 return;
846         }
847
848         spin_lock_irqsave(&address_handler_lock, flags);
849         list_for_each_entry(handler, &address_handler_list, link) {
850                 if (is_enclosing_handler(handler, offset, request->length))
851                         handler->address_callback(card, NULL, tcode,
852                                                   destination, source,
853                                                   p->generation, offset,
854                                                   request->data,
855                                                   request->length,
856                                                   handler->callback_data);
857         }
858         spin_unlock_irqrestore(&address_handler_lock, flags);
859
860         fw_send_response(card, request, RCODE_COMPLETE);
861 }
862
863 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
864 {
865         struct fw_request *request;
866         unsigned long long offset;
867
868         if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
869                 return;
870
871         request = allocate_request(card, p);
872         if (request == NULL) {
873                 /* FIXME: send statically allocated busy packet. */
874                 return;
875         }
876
877         offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
878                 p->header[2];
879
880         if (!is_in_fcp_region(offset, request->length))
881                 handle_exclusive_region_request(card, p, request, offset);
882         else
883                 handle_fcp_region_request(card, p, request, offset);
884
885 }
886 EXPORT_SYMBOL(fw_core_handle_request);
887
888 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
889 {
890         struct fw_transaction *t;
891         unsigned long flags;
892         u32 *data;
893         size_t data_length;
894         int tcode, tlabel, source, rcode;
895
896         tcode   = HEADER_GET_TCODE(p->header[0]);
897         tlabel  = HEADER_GET_TLABEL(p->header[0]);
898         source  = HEADER_GET_SOURCE(p->header[1]);
899         rcode   = HEADER_GET_RCODE(p->header[1]);
900
901         spin_lock_irqsave(&card->lock, flags);
902         list_for_each_entry(t, &card->transaction_list, link) {
903                 if (t->node_id == source && t->tlabel == tlabel) {
904                         list_del_init(&t->link);
905                         card->tlabel_mask &= ~(1ULL << t->tlabel);
906                         break;
907                 }
908         }
909         spin_unlock_irqrestore(&card->lock, flags);
910
911         if (&t->link == &card->transaction_list) {
912                 fw_notify("Unsolicited response (source %x, tlabel %x)\n",
913                           source, tlabel);
914                 return;
915         }
916
917         /*
918          * FIXME: sanity check packet, is length correct, does tcodes
919          * and addresses match.
920          */
921
922         switch (tcode) {
923         case TCODE_READ_QUADLET_RESPONSE:
924                 data = (u32 *) &p->header[3];
925                 data_length = 4;
926                 break;
927
928         case TCODE_WRITE_RESPONSE:
929                 data = NULL;
930                 data_length = 0;
931                 break;
932
933         case TCODE_READ_BLOCK_RESPONSE:
934         case TCODE_LOCK_RESPONSE:
935                 data = p->payload;
936                 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
937                 break;
938
939         default:
940                 /* Should never happen, this is just to shut up gcc. */
941                 data = NULL;
942                 data_length = 0;
943                 break;
944         }
945
946         del_timer_sync(&t->split_timeout_timer);
947
948         /*
949          * The response handler may be executed while the request handler
950          * is still pending.  Cancel the request handler.
951          */
952         card->driver->cancel_packet(card, &t->packet);
953
954         t->callback(card, rcode, data, data_length, t->callback_data);
955 }
956 EXPORT_SYMBOL(fw_core_handle_response);
957
958 static const struct fw_address_region topology_map_region =
959         { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
960           .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
961
962 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
963                 int tcode, int destination, int source, int generation,
964                 unsigned long long offset, void *payload, size_t length,
965                 void *callback_data)
966 {
967         int start;
968
969         if (!TCODE_IS_READ_REQUEST(tcode)) {
970                 fw_send_response(card, request, RCODE_TYPE_ERROR);
971                 return;
972         }
973
974         if ((offset & 3) > 0 || (length & 3) > 0) {
975                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
976                 return;
977         }
978
979         start = (offset - topology_map_region.start) / 4;
980         memcpy(payload, &card->topology_map[start], length);
981
982         fw_send_response(card, request, RCODE_COMPLETE);
983 }
984
985 static struct fw_address_handler topology_map = {
986         .length                 = 0x400,
987         .address_callback       = handle_topology_map,
988 };
989
990 static const struct fw_address_region registers_region =
991         { .start = CSR_REGISTER_BASE,
992           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
993
994 static void update_split_timeout(struct fw_card *card)
995 {
996         unsigned int cycles;
997
998         cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
999
1000         cycles = max(cycles, 800u); /* minimum as per the spec */
1001         cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */
1002
1003         card->split_timeout_cycles = cycles;
1004         card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1005 }
1006
1007 static void handle_registers(struct fw_card *card, struct fw_request *request,
1008                 int tcode, int destination, int source, int generation,
1009                 unsigned long long offset, void *payload, size_t length,
1010                 void *callback_data)
1011 {
1012         int reg = offset & ~CSR_REGISTER_BASE;
1013         __be32 *data = payload;
1014         int rcode = RCODE_COMPLETE;
1015         unsigned long flags;
1016
1017         switch (reg) {
1018         case CSR_PRIORITY_BUDGET:
1019                 if (!card->priority_budget_implemented) {
1020                         rcode = RCODE_ADDRESS_ERROR;
1021                         break;
1022                 }
1023                 /* else fall through */
1024
1025         case CSR_NODE_IDS:
1026                 /*
1027                  * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1028                  * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1029                  */
1030                 /* fall through */
1031
1032         case CSR_STATE_CLEAR:
1033         case CSR_STATE_SET:
1034         case CSR_CYCLE_TIME:
1035         case CSR_BUS_TIME:
1036         case CSR_BUSY_TIMEOUT:
1037                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1038                         *data = cpu_to_be32(card->driver->read_csr(card, reg));
1039                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1040                         card->driver->write_csr(card, reg, be32_to_cpu(*data));
1041                 else
1042                         rcode = RCODE_TYPE_ERROR;
1043                 break;
1044
1045         case CSR_RESET_START:
1046                 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1047                         card->driver->write_csr(card, CSR_STATE_CLEAR,
1048                                                 CSR_STATE_BIT_ABDICATE);
1049                 else
1050                         rcode = RCODE_TYPE_ERROR;
1051                 break;
1052
1053         case CSR_SPLIT_TIMEOUT_HI:
1054                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1055                         *data = cpu_to_be32(card->split_timeout_hi);
1056                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1057                         spin_lock_irqsave(&card->lock, flags);
1058                         card->split_timeout_hi = be32_to_cpu(*data) & 7;
1059                         update_split_timeout(card);
1060                         spin_unlock_irqrestore(&card->lock, flags);
1061                 } else {
1062                         rcode = RCODE_TYPE_ERROR;
1063                 }
1064                 break;
1065
1066         case CSR_SPLIT_TIMEOUT_LO:
1067                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1068                         *data = cpu_to_be32(card->split_timeout_lo);
1069                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1070                         spin_lock_irqsave(&card->lock, flags);
1071                         card->split_timeout_lo =
1072                                         be32_to_cpu(*data) & 0xfff80000;
1073                         update_split_timeout(card);
1074                         spin_unlock_irqrestore(&card->lock, flags);
1075                 } else {
1076                         rcode = RCODE_TYPE_ERROR;
1077                 }
1078                 break;
1079
1080         case CSR_MAINT_UTILITY:
1081                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1082                         *data = card->maint_utility_register;
1083                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1084                         card->maint_utility_register = *data;
1085                 else
1086                         rcode = RCODE_TYPE_ERROR;
1087                 break;
1088
1089         case CSR_BROADCAST_CHANNEL:
1090                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1091                         *data = cpu_to_be32(card->broadcast_channel);
1092                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1093                         card->broadcast_channel =
1094                             (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1095                             BROADCAST_CHANNEL_INITIAL;
1096                 else
1097                         rcode = RCODE_TYPE_ERROR;
1098                 break;
1099
1100         case CSR_BUS_MANAGER_ID:
1101         case CSR_BANDWIDTH_AVAILABLE:
1102         case CSR_CHANNELS_AVAILABLE_HI:
1103         case CSR_CHANNELS_AVAILABLE_LO:
1104                 /*
1105                  * FIXME: these are handled by the OHCI hardware and
1106                  * the stack never sees these request. If we add
1107                  * support for a new type of controller that doesn't
1108                  * handle this in hardware we need to deal with these
1109                  * transactions.
1110                  */
1111                 BUG();
1112                 break;
1113
1114         default:
1115                 rcode = RCODE_ADDRESS_ERROR;
1116                 break;
1117         }
1118
1119         fw_send_response(card, request, rcode);
1120 }
1121
1122 static struct fw_address_handler registers = {
1123         .length                 = 0x400,
1124         .address_callback       = handle_registers,
1125 };
1126
1127 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1128 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1129 MODULE_LICENSE("GPL");
1130
1131 static const u32 vendor_textual_descriptor[] = {
1132         /* textual descriptor leaf () */
1133         0x00060000,
1134         0x00000000,
1135         0x00000000,
1136         0x4c696e75,             /* L i n u */
1137         0x78204669,             /* x   F i */
1138         0x72657769,             /* r e w i */
1139         0x72650000,             /* r e     */
1140 };
1141
1142 static const u32 model_textual_descriptor[] = {
1143         /* model descriptor leaf () */
1144         0x00030000,
1145         0x00000000,
1146         0x00000000,
1147         0x4a756a75,             /* J u j u */
1148 };
1149
1150 static struct fw_descriptor vendor_id_descriptor = {
1151         .length = ARRAY_SIZE(vendor_textual_descriptor),
1152         .immediate = 0x03d00d1e,
1153         .key = 0x81000000,
1154         .data = vendor_textual_descriptor,
1155 };
1156
1157 static struct fw_descriptor model_id_descriptor = {
1158         .length = ARRAY_SIZE(model_textual_descriptor),
1159         .immediate = 0x17000001,
1160         .key = 0x81000000,
1161         .data = model_textual_descriptor,
1162 };
1163
1164 static int __init fw_core_init(void)
1165 {
1166         int ret;
1167
1168         ret = bus_register(&fw_bus_type);
1169         if (ret < 0)
1170                 return ret;
1171
1172         fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1173         if (fw_cdev_major < 0) {
1174                 bus_unregister(&fw_bus_type);
1175                 return fw_cdev_major;
1176         }
1177
1178         fw_core_add_address_handler(&topology_map, &topology_map_region);
1179         fw_core_add_address_handler(&registers, &registers_region);
1180         fw_core_add_descriptor(&vendor_id_descriptor);
1181         fw_core_add_descriptor(&model_id_descriptor);
1182
1183         return 0;
1184 }
1185
1186 static void __exit fw_core_cleanup(void)
1187 {
1188         unregister_chrdev(fw_cdev_major, "firewire");
1189         bus_unregister(&fw_bus_type);
1190         idr_destroy(&fw_device_idr);
1191 }
1192
1193 module_init(fw_core_init);
1194 module_exit(fw_core_cleanup);