]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/firewire/core-transaction.c
firewire: octlet AT payloads can be stack-allocated
[karo-tx-linux.git] / drivers / firewire / core-transaction.c
1 /*
2  * Core IEEE1394 transaction logic
3  *
4  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/timer.h>
38 #include <linux/types.h>
39
40 #include <asm/byteorder.h>
41
42 #include "core.h"
43
44 #define HEADER_PRI(pri)                 ((pri) << 0)
45 #define HEADER_TCODE(tcode)             ((tcode) << 4)
46 #define HEADER_RETRY(retry)             ((retry) << 8)
47 #define HEADER_TLABEL(tlabel)           ((tlabel) << 10)
48 #define HEADER_DESTINATION(destination) ((destination) << 16)
49 #define HEADER_SOURCE(source)           ((source) << 16)
50 #define HEADER_RCODE(rcode)             ((rcode) << 12)
51 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
52 #define HEADER_DATA_LENGTH(length)      ((length) << 16)
53 #define HEADER_EXTENDED_TCODE(tcode)    ((tcode) << 0)
54
55 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
56 #define HEADER_GET_TLABEL(q)            (((q) >> 10) & 0x3f)
57 #define HEADER_GET_RCODE(q)             (((q) >> 12) & 0x0f)
58 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
59 #define HEADER_GET_SOURCE(q)            (((q) >> 16) & 0xffff)
60 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
61 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
62 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
63
64 #define HEADER_DESTINATION_IS_BROADCAST(q) \
65         (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
66
67 #define PHY_PACKET_CONFIG       0x0
68 #define PHY_PACKET_LINK_ON      0x1
69 #define PHY_PACKET_SELF_ID      0x2
70
71 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
72 #define PHY_CONFIG_ROOT_ID(node_id)     ((((node_id) & 0x3f) << 24) | (1 << 23))
73 #define PHY_IDENTIFIER(id)              ((id) << 30)
74
75 /* returns 0 if the split timeout handler is already running */
76 static int try_cancel_split_timeout(struct fw_transaction *t)
77 {
78         if (t->is_split_transaction)
79                 return del_timer(&t->split_timeout_timer);
80         else
81                 return 1;
82 }
83
84 static int close_transaction(struct fw_transaction *transaction,
85                              struct fw_card *card, int rcode)
86 {
87         struct fw_transaction *t;
88         unsigned long flags;
89
90         spin_lock_irqsave(&card->lock, flags);
91         list_for_each_entry(t, &card->transaction_list, link) {
92                 if (t == transaction) {
93                         if (!try_cancel_split_timeout(t)) {
94                                 spin_unlock_irqrestore(&card->lock, flags);
95                                 goto timed_out;
96                         }
97                         list_del_init(&t->link);
98                         card->tlabel_mask &= ~(1ULL << t->tlabel);
99                         break;
100                 }
101         }
102         spin_unlock_irqrestore(&card->lock, flags);
103
104         if (&t->link != &card->transaction_list) {
105                 t->callback(card, rcode, NULL, 0, t->callback_data);
106                 return 0;
107         }
108
109  timed_out:
110         return -ENOENT;
111 }
112
113 /*
114  * Only valid for transactions that are potentially pending (ie have
115  * been sent).
116  */
117 int fw_cancel_transaction(struct fw_card *card,
118                           struct fw_transaction *transaction)
119 {
120         /*
121          * Cancel the packet transmission if it's still queued.  That
122          * will call the packet transmission callback which cancels
123          * the transaction.
124          */
125
126         if (card->driver->cancel_packet(card, &transaction->packet) == 0)
127                 return 0;
128
129         /*
130          * If the request packet has already been sent, we need to see
131          * if the transaction is still pending and remove it in that case.
132          */
133
134         return close_transaction(transaction, card, RCODE_CANCELLED);
135 }
136 EXPORT_SYMBOL(fw_cancel_transaction);
137
138 static void split_transaction_timeout_callback(unsigned long data)
139 {
140         struct fw_transaction *t = (struct fw_transaction *)data;
141         struct fw_card *card = t->card;
142         unsigned long flags;
143
144         spin_lock_irqsave(&card->lock, flags);
145         if (list_empty(&t->link)) {
146                 spin_unlock_irqrestore(&card->lock, flags);
147                 return;
148         }
149         list_del(&t->link);
150         card->tlabel_mask &= ~(1ULL << t->tlabel);
151         spin_unlock_irqrestore(&card->lock, flags);
152
153         t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
154 }
155
156 static void start_split_transaction_timeout(struct fw_transaction *t,
157                                             struct fw_card *card)
158 {
159         unsigned long flags;
160
161         spin_lock_irqsave(&card->lock, flags);
162
163         if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
164                 spin_unlock_irqrestore(&card->lock, flags);
165                 return;
166         }
167
168         t->is_split_transaction = true;
169         mod_timer(&t->split_timeout_timer,
170                   jiffies + card->split_timeout_jiffies);
171
172         spin_unlock_irqrestore(&card->lock, flags);
173 }
174
175 static void transmit_complete_callback(struct fw_packet *packet,
176                                        struct fw_card *card, int status)
177 {
178         struct fw_transaction *t =
179             container_of(packet, struct fw_transaction, packet);
180
181         switch (status) {
182         case ACK_COMPLETE:
183                 close_transaction(t, card, RCODE_COMPLETE);
184                 break;
185         case ACK_PENDING:
186                 start_split_transaction_timeout(t, card);
187                 break;
188         case ACK_BUSY_X:
189         case ACK_BUSY_A:
190         case ACK_BUSY_B:
191                 close_transaction(t, card, RCODE_BUSY);
192                 break;
193         case ACK_DATA_ERROR:
194                 close_transaction(t, card, RCODE_DATA_ERROR);
195                 break;
196         case ACK_TYPE_ERROR:
197                 close_transaction(t, card, RCODE_TYPE_ERROR);
198                 break;
199         default:
200                 /*
201                  * In this case the ack is really a juju specific
202                  * rcode, so just forward that to the callback.
203                  */
204                 close_transaction(t, card, status);
205                 break;
206         }
207 }
208
209 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
210                 int destination_id, int source_id, int generation, int speed,
211                 unsigned long long offset, void *payload, size_t length)
212 {
213         int ext_tcode;
214
215         if (tcode == TCODE_STREAM_DATA) {
216                 packet->header[0] =
217                         HEADER_DATA_LENGTH(length) |
218                         destination_id |
219                         HEADER_TCODE(TCODE_STREAM_DATA);
220                 packet->header_length = 4;
221                 packet->payload = payload;
222                 packet->payload_length = length;
223
224                 goto common;
225         }
226
227         if (tcode > 0x10) {
228                 ext_tcode = tcode & ~0x10;
229                 tcode = TCODE_LOCK_REQUEST;
230         } else
231                 ext_tcode = 0;
232
233         packet->header[0] =
234                 HEADER_RETRY(RETRY_X) |
235                 HEADER_TLABEL(tlabel) |
236                 HEADER_TCODE(tcode) |
237                 HEADER_DESTINATION(destination_id);
238         packet->header[1] =
239                 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
240         packet->header[2] =
241                 offset;
242
243         switch (tcode) {
244         case TCODE_WRITE_QUADLET_REQUEST:
245                 packet->header[3] = *(u32 *)payload;
246                 packet->header_length = 16;
247                 packet->payload_length = 0;
248                 break;
249
250         case TCODE_LOCK_REQUEST:
251         case TCODE_WRITE_BLOCK_REQUEST:
252                 packet->header[3] =
253                         HEADER_DATA_LENGTH(length) |
254                         HEADER_EXTENDED_TCODE(ext_tcode);
255                 packet->header_length = 16;
256                 packet->payload = payload;
257                 packet->payload_length = length;
258                 break;
259
260         case TCODE_READ_QUADLET_REQUEST:
261                 packet->header_length = 12;
262                 packet->payload_length = 0;
263                 break;
264
265         case TCODE_READ_BLOCK_REQUEST:
266                 packet->header[3] =
267                         HEADER_DATA_LENGTH(length) |
268                         HEADER_EXTENDED_TCODE(ext_tcode);
269                 packet->header_length = 16;
270                 packet->payload_length = 0;
271                 break;
272
273         default:
274                 WARN(1, "wrong tcode %d\n", tcode);
275         }
276  common:
277         packet->speed = speed;
278         packet->generation = generation;
279         packet->ack = 0;
280         packet->payload_mapped = false;
281 }
282
283 static int allocate_tlabel(struct fw_card *card)
284 {
285         int tlabel;
286
287         tlabel = card->current_tlabel;
288         while (card->tlabel_mask & (1ULL << tlabel)) {
289                 tlabel = (tlabel + 1) & 0x3f;
290                 if (tlabel == card->current_tlabel)
291                         return -EBUSY;
292         }
293
294         card->current_tlabel = (tlabel + 1) & 0x3f;
295         card->tlabel_mask |= 1ULL << tlabel;
296
297         return tlabel;
298 }
299
300 /**
301  * fw_send_request() - submit a request packet for transmission
302  * @card:               interface to send the request at
303  * @t:                  transaction instance to which the request belongs
304  * @tcode:              transaction code
305  * @destination_id:     destination node ID, consisting of bus_ID and phy_ID
306  * @generation:         bus generation in which request and response are valid
307  * @speed:              transmission speed
308  * @offset:             48bit wide offset into destination's address space
309  * @payload:            data payload for the request subaction
310  * @length:             length of the payload, in bytes
311  * @callback:           function to be called when the transaction is completed
312  * @callback_data:      data to be passed to the transaction completion callback
313  *
314  * Submit a request packet into the asynchronous request transmission queue.
315  * Can be called from atomic context.  If you prefer a blocking API, use
316  * fw_run_transaction() in a context that can sleep.
317  *
318  * In case of lock requests, specify one of the firewire-core specific %TCODE_
319  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
320  *
321  * Make sure that the value in @destination_id is not older than the one in
322  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
323  *
324  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
325  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
326  * It will contain tag, channel, and sy data instead of a node ID then.
327  *
328  * The payload buffer at @data is going to be DMA-mapped except in case of
329  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
330  * buffer complies with the restrictions of the streaming DMA mapping API.
331  * @payload must not be freed before the @callback is called.
332  *
333  * In case of request types without payload, @data is NULL and @length is 0.
334  *
335  * After the transaction is completed successfully or unsuccessfully, the
336  * @callback will be called.  Among its parameters is the response code which
337  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
338  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
339  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
340  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
341  * generation, or missing ACK respectively.
342  *
343  * Note some timing corner cases:  fw_send_request() may complete much earlier
344  * than when the request packet actually hits the wire.  On the other hand,
345  * transaction completion and hence execution of @callback may happen even
346  * before fw_send_request() returns.
347  */
348 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
349                      int destination_id, int generation, int speed,
350                      unsigned long long offset, void *payload, size_t length,
351                      fw_transaction_callback_t callback, void *callback_data)
352 {
353         unsigned long flags;
354         int tlabel;
355
356         /*
357          * Allocate tlabel from the bitmap and put the transaction on
358          * the list while holding the card spinlock.
359          */
360
361         spin_lock_irqsave(&card->lock, flags);
362
363         tlabel = allocate_tlabel(card);
364         if (tlabel < 0) {
365                 spin_unlock_irqrestore(&card->lock, flags);
366                 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
367                 return;
368         }
369
370         t->node_id = destination_id;
371         t->tlabel = tlabel;
372         t->card = card;
373         t->is_split_transaction = false;
374         setup_timer(&t->split_timeout_timer,
375                     split_transaction_timeout_callback, (unsigned long)t);
376         t->callback = callback;
377         t->callback_data = callback_data;
378
379         fw_fill_request(&t->packet, tcode, t->tlabel,
380                         destination_id, card->node_id, generation,
381                         speed, offset, payload, length);
382         t->packet.callback = transmit_complete_callback;
383
384         list_add_tail(&t->link, &card->transaction_list);
385
386         spin_unlock_irqrestore(&card->lock, flags);
387
388         card->driver->send_request(card, &t->packet);
389 }
390 EXPORT_SYMBOL(fw_send_request);
391
392 struct transaction_callback_data {
393         struct completion done;
394         void *payload;
395         int rcode;
396 };
397
398 static void transaction_callback(struct fw_card *card, int rcode,
399                                  void *payload, size_t length, void *data)
400 {
401         struct transaction_callback_data *d = data;
402
403         if (rcode == RCODE_COMPLETE)
404                 memcpy(d->payload, payload, length);
405         d->rcode = rcode;
406         complete(&d->done);
407 }
408
409 /**
410  * fw_run_transaction() - send request and sleep until transaction is completed
411  *
412  * Returns the RCODE.  See fw_send_request() for parameter documentation.
413  * Unlike fw_send_request(), @data points to the payload of the request or/and
414  * to the payload of the response.  DMA mapping restrictions apply to outbound
415  * request payloads of >= 8 bytes but not to inbound response payloads.
416  */
417 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
418                        int generation, int speed, unsigned long long offset,
419                        void *payload, size_t length)
420 {
421         struct transaction_callback_data d;
422         struct fw_transaction t;
423
424         init_timer_on_stack(&t.split_timeout_timer);
425         init_completion(&d.done);
426         d.payload = payload;
427         fw_send_request(card, &t, tcode, destination_id, generation, speed,
428                         offset, payload, length, transaction_callback, &d);
429         wait_for_completion(&d.done);
430         destroy_timer_on_stack(&t.split_timeout_timer);
431
432         return d.rcode;
433 }
434 EXPORT_SYMBOL(fw_run_transaction);
435
436 static DEFINE_MUTEX(phy_config_mutex);
437 static DECLARE_COMPLETION(phy_config_done);
438
439 static void transmit_phy_packet_callback(struct fw_packet *packet,
440                                          struct fw_card *card, int status)
441 {
442         complete(&phy_config_done);
443 }
444
445 static struct fw_packet phy_config_packet = {
446         .header_length  = 12,
447         .header[0]      = TCODE_LINK_INTERNAL << 4,
448         .payload_length = 0,
449         .speed          = SCODE_100,
450         .callback       = transmit_phy_packet_callback,
451 };
452
453 void fw_send_phy_config(struct fw_card *card,
454                         int node_id, int generation, int gap_count)
455 {
456         long timeout = DIV_ROUND_UP(HZ, 10);
457         u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
458
459         if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
460                 data |= PHY_CONFIG_ROOT_ID(node_id);
461
462         if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
463                 gap_count = card->driver->read_phy_reg(card, 1);
464                 if (gap_count < 0)
465                         return;
466
467                 gap_count &= 63;
468                 if (gap_count == 63)
469                         return;
470         }
471         data |= PHY_CONFIG_GAP_COUNT(gap_count);
472
473         mutex_lock(&phy_config_mutex);
474
475         phy_config_packet.header[1] = data;
476         phy_config_packet.header[2] = ~data;
477         phy_config_packet.generation = generation;
478         INIT_COMPLETION(phy_config_done);
479
480         card->driver->send_request(card, &phy_config_packet);
481         wait_for_completion_timeout(&phy_config_done, timeout);
482
483         mutex_unlock(&phy_config_mutex);
484 }
485
486 static struct fw_address_handler *lookup_overlapping_address_handler(
487         struct list_head *list, unsigned long long offset, size_t length)
488 {
489         struct fw_address_handler *handler;
490
491         list_for_each_entry(handler, list, link) {
492                 if (handler->offset < offset + length &&
493                     offset < handler->offset + handler->length)
494                         return handler;
495         }
496
497         return NULL;
498 }
499
500 static bool is_enclosing_handler(struct fw_address_handler *handler,
501                                  unsigned long long offset, size_t length)
502 {
503         return handler->offset <= offset &&
504                 offset + length <= handler->offset + handler->length;
505 }
506
507 static struct fw_address_handler *lookup_enclosing_address_handler(
508         struct list_head *list, unsigned long long offset, size_t length)
509 {
510         struct fw_address_handler *handler;
511
512         list_for_each_entry(handler, list, link) {
513                 if (is_enclosing_handler(handler, offset, length))
514                         return handler;
515         }
516
517         return NULL;
518 }
519
520 static DEFINE_SPINLOCK(address_handler_lock);
521 static LIST_HEAD(address_handler_list);
522
523 const struct fw_address_region fw_high_memory_region =
524         { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
525 EXPORT_SYMBOL(fw_high_memory_region);
526
527 #if 0
528 const struct fw_address_region fw_low_memory_region =
529         { .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
530 const struct fw_address_region fw_private_region =
531         { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
532 const struct fw_address_region fw_csr_region =
533         { .start = CSR_REGISTER_BASE,
534           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
535 const struct fw_address_region fw_unit_space_region =
536         { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
537 #endif  /*  0  */
538
539 static bool is_in_fcp_region(u64 offset, size_t length)
540 {
541         return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
542                 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
543 }
544
545 /**
546  * fw_core_add_address_handler() - register for incoming requests
547  * @handler:    callback
548  * @region:     region in the IEEE 1212 node space address range
549  *
550  * region->start, ->end, and handler->length have to be quadlet-aligned.
551  *
552  * When a request is received that falls within the specified address range,
553  * the specified callback is invoked.  The parameters passed to the callback
554  * give the details of the particular request.
555  *
556  * Return value:  0 on success, non-zero otherwise.
557  *
558  * The start offset of the handler's address region is determined by
559  * fw_core_add_address_handler() and is returned in handler->offset.
560  *
561  * Address allocations are exclusive, except for the FCP registers.
562  */
563 int fw_core_add_address_handler(struct fw_address_handler *handler,
564                                 const struct fw_address_region *region)
565 {
566         struct fw_address_handler *other;
567         unsigned long flags;
568         int ret = -EBUSY;
569
570         if (region->start & 0xffff000000000003ULL ||
571             region->start >= region->end ||
572             region->end   > 0x0001000000000000ULL ||
573             handler->length & 3 ||
574             handler->length == 0)
575                 return -EINVAL;
576
577         spin_lock_irqsave(&address_handler_lock, flags);
578
579         handler->offset = region->start;
580         while (handler->offset + handler->length <= region->end) {
581                 if (is_in_fcp_region(handler->offset, handler->length))
582                         other = NULL;
583                 else
584                         other = lookup_overlapping_address_handler
585                                         (&address_handler_list,
586                                          handler->offset, handler->length);
587                 if (other != NULL) {
588                         handler->offset += other->length;
589                 } else {
590                         list_add_tail(&handler->link, &address_handler_list);
591                         ret = 0;
592                         break;
593                 }
594         }
595
596         spin_unlock_irqrestore(&address_handler_lock, flags);
597
598         return ret;
599 }
600 EXPORT_SYMBOL(fw_core_add_address_handler);
601
602 /**
603  * fw_core_remove_address_handler() - unregister an address handler
604  */
605 void fw_core_remove_address_handler(struct fw_address_handler *handler)
606 {
607         unsigned long flags;
608
609         spin_lock_irqsave(&address_handler_lock, flags);
610         list_del(&handler->link);
611         spin_unlock_irqrestore(&address_handler_lock, flags);
612 }
613 EXPORT_SYMBOL(fw_core_remove_address_handler);
614
615 struct fw_request {
616         struct fw_packet response;
617         u32 request_header[4];
618         int ack;
619         u32 length;
620         u32 data[0];
621 };
622
623 static void free_response_callback(struct fw_packet *packet,
624                                    struct fw_card *card, int status)
625 {
626         struct fw_request *request;
627
628         request = container_of(packet, struct fw_request, response);
629         kfree(request);
630 }
631
632 int fw_get_response_length(struct fw_request *r)
633 {
634         int tcode, ext_tcode, data_length;
635
636         tcode = HEADER_GET_TCODE(r->request_header[0]);
637
638         switch (tcode) {
639         case TCODE_WRITE_QUADLET_REQUEST:
640         case TCODE_WRITE_BLOCK_REQUEST:
641                 return 0;
642
643         case TCODE_READ_QUADLET_REQUEST:
644                 return 4;
645
646         case TCODE_READ_BLOCK_REQUEST:
647                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
648                 return data_length;
649
650         case TCODE_LOCK_REQUEST:
651                 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
652                 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
653                 switch (ext_tcode) {
654                 case EXTCODE_FETCH_ADD:
655                 case EXTCODE_LITTLE_ADD:
656                         return data_length;
657                 default:
658                         return data_length / 2;
659                 }
660
661         default:
662                 WARN(1, "wrong tcode %d\n", tcode);
663                 return 0;
664         }
665 }
666
667 void fw_fill_response(struct fw_packet *response, u32 *request_header,
668                       int rcode, void *payload, size_t length)
669 {
670         int tcode, tlabel, extended_tcode, source, destination;
671
672         tcode          = HEADER_GET_TCODE(request_header[0]);
673         tlabel         = HEADER_GET_TLABEL(request_header[0]);
674         source         = HEADER_GET_DESTINATION(request_header[0]);
675         destination    = HEADER_GET_SOURCE(request_header[1]);
676         extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
677
678         response->header[0] =
679                 HEADER_RETRY(RETRY_1) |
680                 HEADER_TLABEL(tlabel) |
681                 HEADER_DESTINATION(destination);
682         response->header[1] =
683                 HEADER_SOURCE(source) |
684                 HEADER_RCODE(rcode);
685         response->header[2] = 0;
686
687         switch (tcode) {
688         case TCODE_WRITE_QUADLET_REQUEST:
689         case TCODE_WRITE_BLOCK_REQUEST:
690                 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
691                 response->header_length = 12;
692                 response->payload_length = 0;
693                 break;
694
695         case TCODE_READ_QUADLET_REQUEST:
696                 response->header[0] |=
697                         HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
698                 if (payload != NULL)
699                         response->header[3] = *(u32 *)payload;
700                 else
701                         response->header[3] = 0;
702                 response->header_length = 16;
703                 response->payload_length = 0;
704                 break;
705
706         case TCODE_READ_BLOCK_REQUEST:
707         case TCODE_LOCK_REQUEST:
708                 response->header[0] |= HEADER_TCODE(tcode + 2);
709                 response->header[3] =
710                         HEADER_DATA_LENGTH(length) |
711                         HEADER_EXTENDED_TCODE(extended_tcode);
712                 response->header_length = 16;
713                 response->payload = payload;
714                 response->payload_length = length;
715                 break;
716
717         default:
718                 WARN(1, "wrong tcode %d\n", tcode);
719         }
720
721         response->payload_mapped = false;
722 }
723 EXPORT_SYMBOL(fw_fill_response);
724
725 static u32 compute_split_timeout_timestamp(struct fw_card *card,
726                                            u32 request_timestamp)
727 {
728         unsigned int cycles;
729         u32 timestamp;
730
731         cycles = card->split_timeout_cycles;
732         cycles += request_timestamp & 0x1fff;
733
734         timestamp = request_timestamp & ~0x1fff;
735         timestamp += (cycles / 8000) << 13;
736         timestamp |= cycles % 8000;
737
738         return timestamp;
739 }
740
741 static struct fw_request *allocate_request(struct fw_card *card,
742                                            struct fw_packet *p)
743 {
744         struct fw_request *request;
745         u32 *data, length;
746         int request_tcode;
747
748         request_tcode = HEADER_GET_TCODE(p->header[0]);
749         switch (request_tcode) {
750         case TCODE_WRITE_QUADLET_REQUEST:
751                 data = &p->header[3];
752                 length = 4;
753                 break;
754
755         case TCODE_WRITE_BLOCK_REQUEST:
756         case TCODE_LOCK_REQUEST:
757                 data = p->payload;
758                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
759                 break;
760
761         case TCODE_READ_QUADLET_REQUEST:
762                 data = NULL;
763                 length = 4;
764                 break;
765
766         case TCODE_READ_BLOCK_REQUEST:
767                 data = NULL;
768                 length = HEADER_GET_DATA_LENGTH(p->header[3]);
769                 break;
770
771         default:
772                 fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
773                          p->header[0], p->header[1], p->header[2]);
774                 return NULL;
775         }
776
777         request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
778         if (request == NULL)
779                 return NULL;
780
781         request->response.speed = p->speed;
782         request->response.timestamp =
783                         compute_split_timeout_timestamp(card, p->timestamp);
784         request->response.generation = p->generation;
785         request->response.ack = 0;
786         request->response.callback = free_response_callback;
787         request->ack = p->ack;
788         request->length = length;
789         if (data)
790                 memcpy(request->data, data, length);
791
792         memcpy(request->request_header, p->header, sizeof(p->header));
793
794         return request;
795 }
796
797 void fw_send_response(struct fw_card *card,
798                       struct fw_request *request, int rcode)
799 {
800         if (WARN_ONCE(!request, "invalid for FCP address handlers"))
801                 return;
802
803         /* unified transaction or broadcast transaction: don't respond */
804         if (request->ack != ACK_PENDING ||
805             HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
806                 kfree(request);
807                 return;
808         }
809
810         if (rcode == RCODE_COMPLETE)
811                 fw_fill_response(&request->response, request->request_header,
812                                  rcode, request->data,
813                                  fw_get_response_length(request));
814         else
815                 fw_fill_response(&request->response, request->request_header,
816                                  rcode, NULL, 0);
817
818         card->driver->send_response(card, &request->response);
819 }
820 EXPORT_SYMBOL(fw_send_response);
821
822 static void handle_exclusive_region_request(struct fw_card *card,
823                                             struct fw_packet *p,
824                                             struct fw_request *request,
825                                             unsigned long long offset)
826 {
827         struct fw_address_handler *handler;
828         unsigned long flags;
829         int tcode, destination, source;
830
831         destination = HEADER_GET_DESTINATION(p->header[0]);
832         source      = HEADER_GET_SOURCE(p->header[1]);
833         tcode       = HEADER_GET_TCODE(p->header[0]);
834         if (tcode == TCODE_LOCK_REQUEST)
835                 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
836
837         spin_lock_irqsave(&address_handler_lock, flags);
838         handler = lookup_enclosing_address_handler(&address_handler_list,
839                                                    offset, request->length);
840         spin_unlock_irqrestore(&address_handler_lock, flags);
841
842         /*
843          * FIXME: lookup the fw_node corresponding to the sender of
844          * this request and pass that to the address handler instead
845          * of the node ID.  We may also want to move the address
846          * allocations to fw_node so we only do this callback if the
847          * upper layers registered it for this node.
848          */
849
850         if (handler == NULL)
851                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
852         else
853                 handler->address_callback(card, request,
854                                           tcode, destination, source,
855                                           p->generation, offset,
856                                           request->data, request->length,
857                                           handler->callback_data);
858 }
859
860 static void handle_fcp_region_request(struct fw_card *card,
861                                       struct fw_packet *p,
862                                       struct fw_request *request,
863                                       unsigned long long offset)
864 {
865         struct fw_address_handler *handler;
866         unsigned long flags;
867         int tcode, destination, source;
868
869         if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
870              offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
871             request->length > 0x200) {
872                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
873
874                 return;
875         }
876
877         tcode       = HEADER_GET_TCODE(p->header[0]);
878         destination = HEADER_GET_DESTINATION(p->header[0]);
879         source      = HEADER_GET_SOURCE(p->header[1]);
880
881         if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
882             tcode != TCODE_WRITE_BLOCK_REQUEST) {
883                 fw_send_response(card, request, RCODE_TYPE_ERROR);
884
885                 return;
886         }
887
888         spin_lock_irqsave(&address_handler_lock, flags);
889         list_for_each_entry(handler, &address_handler_list, link) {
890                 if (is_enclosing_handler(handler, offset, request->length))
891                         handler->address_callback(card, NULL, tcode,
892                                                   destination, source,
893                                                   p->generation, offset,
894                                                   request->data,
895                                                   request->length,
896                                                   handler->callback_data);
897         }
898         spin_unlock_irqrestore(&address_handler_lock, flags);
899
900         fw_send_response(card, request, RCODE_COMPLETE);
901 }
902
903 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
904 {
905         struct fw_request *request;
906         unsigned long long offset;
907
908         if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
909                 return;
910
911         if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
912                 fw_cdev_handle_phy_packet(card, p);
913                 return;
914         }
915
916         request = allocate_request(card, p);
917         if (request == NULL) {
918                 /* FIXME: send statically allocated busy packet. */
919                 return;
920         }
921
922         offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
923                 p->header[2];
924
925         if (!is_in_fcp_region(offset, request->length))
926                 handle_exclusive_region_request(card, p, request, offset);
927         else
928                 handle_fcp_region_request(card, p, request, offset);
929
930 }
931 EXPORT_SYMBOL(fw_core_handle_request);
932
933 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
934 {
935         struct fw_transaction *t;
936         unsigned long flags;
937         u32 *data;
938         size_t data_length;
939         int tcode, tlabel, source, rcode;
940
941         tcode   = HEADER_GET_TCODE(p->header[0]);
942         tlabel  = HEADER_GET_TLABEL(p->header[0]);
943         source  = HEADER_GET_SOURCE(p->header[1]);
944         rcode   = HEADER_GET_RCODE(p->header[1]);
945
946         spin_lock_irqsave(&card->lock, flags);
947         list_for_each_entry(t, &card->transaction_list, link) {
948                 if (t->node_id == source && t->tlabel == tlabel) {
949                         if (!try_cancel_split_timeout(t)) {
950                                 spin_unlock_irqrestore(&card->lock, flags);
951                                 goto timed_out;
952                         }
953                         list_del_init(&t->link);
954                         card->tlabel_mask &= ~(1ULL << t->tlabel);
955                         break;
956                 }
957         }
958         spin_unlock_irqrestore(&card->lock, flags);
959
960         if (&t->link == &card->transaction_list) {
961  timed_out:
962                 fw_notify("Unsolicited response (source %x, tlabel %x)\n",
963                           source, tlabel);
964                 return;
965         }
966
967         /*
968          * FIXME: sanity check packet, is length correct, does tcodes
969          * and addresses match.
970          */
971
972         switch (tcode) {
973         case TCODE_READ_QUADLET_RESPONSE:
974                 data = (u32 *) &p->header[3];
975                 data_length = 4;
976                 break;
977
978         case TCODE_WRITE_RESPONSE:
979                 data = NULL;
980                 data_length = 0;
981                 break;
982
983         case TCODE_READ_BLOCK_RESPONSE:
984         case TCODE_LOCK_RESPONSE:
985                 data = p->payload;
986                 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
987                 break;
988
989         default:
990                 /* Should never happen, this is just to shut up gcc. */
991                 data = NULL;
992                 data_length = 0;
993                 break;
994         }
995
996         /*
997          * The response handler may be executed while the request handler
998          * is still pending.  Cancel the request handler.
999          */
1000         card->driver->cancel_packet(card, &t->packet);
1001
1002         t->callback(card, rcode, data, data_length, t->callback_data);
1003 }
1004 EXPORT_SYMBOL(fw_core_handle_response);
1005
1006 static const struct fw_address_region topology_map_region =
1007         { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1008           .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1009
1010 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1011                 int tcode, int destination, int source, int generation,
1012                 unsigned long long offset, void *payload, size_t length,
1013                 void *callback_data)
1014 {
1015         int start;
1016
1017         if (!TCODE_IS_READ_REQUEST(tcode)) {
1018                 fw_send_response(card, request, RCODE_TYPE_ERROR);
1019                 return;
1020         }
1021
1022         if ((offset & 3) > 0 || (length & 3) > 0) {
1023                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1024                 return;
1025         }
1026
1027         start = (offset - topology_map_region.start) / 4;
1028         memcpy(payload, &card->topology_map[start], length);
1029
1030         fw_send_response(card, request, RCODE_COMPLETE);
1031 }
1032
1033 static struct fw_address_handler topology_map = {
1034         .length                 = 0x400,
1035         .address_callback       = handle_topology_map,
1036 };
1037
1038 static const struct fw_address_region registers_region =
1039         { .start = CSR_REGISTER_BASE,
1040           .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1041
1042 static void update_split_timeout(struct fw_card *card)
1043 {
1044         unsigned int cycles;
1045
1046         cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1047
1048         cycles = max(cycles, 800u); /* minimum as per the spec */
1049         cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */
1050
1051         card->split_timeout_cycles = cycles;
1052         card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1053 }
1054
1055 static void handle_registers(struct fw_card *card, struct fw_request *request,
1056                 int tcode, int destination, int source, int generation,
1057                 unsigned long long offset, void *payload, size_t length,
1058                 void *callback_data)
1059 {
1060         int reg = offset & ~CSR_REGISTER_BASE;
1061         __be32 *data = payload;
1062         int rcode = RCODE_COMPLETE;
1063         unsigned long flags;
1064
1065         switch (reg) {
1066         case CSR_PRIORITY_BUDGET:
1067                 if (!card->priority_budget_implemented) {
1068                         rcode = RCODE_ADDRESS_ERROR;
1069                         break;
1070                 }
1071                 /* else fall through */
1072
1073         case CSR_NODE_IDS:
1074                 /*
1075                  * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1076                  * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1077                  */
1078                 /* fall through */
1079
1080         case CSR_STATE_CLEAR:
1081         case CSR_STATE_SET:
1082         case CSR_CYCLE_TIME:
1083         case CSR_BUS_TIME:
1084         case CSR_BUSY_TIMEOUT:
1085                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1086                         *data = cpu_to_be32(card->driver->read_csr(card, reg));
1087                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1088                         card->driver->write_csr(card, reg, be32_to_cpu(*data));
1089                 else
1090                         rcode = RCODE_TYPE_ERROR;
1091                 break;
1092
1093         case CSR_RESET_START:
1094                 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1095                         card->driver->write_csr(card, CSR_STATE_CLEAR,
1096                                                 CSR_STATE_BIT_ABDICATE);
1097                 else
1098                         rcode = RCODE_TYPE_ERROR;
1099                 break;
1100
1101         case CSR_SPLIT_TIMEOUT_HI:
1102                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1103                         *data = cpu_to_be32(card->split_timeout_hi);
1104                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1105                         spin_lock_irqsave(&card->lock, flags);
1106                         card->split_timeout_hi = be32_to_cpu(*data) & 7;
1107                         update_split_timeout(card);
1108                         spin_unlock_irqrestore(&card->lock, flags);
1109                 } else {
1110                         rcode = RCODE_TYPE_ERROR;
1111                 }
1112                 break;
1113
1114         case CSR_SPLIT_TIMEOUT_LO:
1115                 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1116                         *data = cpu_to_be32(card->split_timeout_lo);
1117                 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1118                         spin_lock_irqsave(&card->lock, flags);
1119                         card->split_timeout_lo =
1120                                         be32_to_cpu(*data) & 0xfff80000;
1121                         update_split_timeout(card);
1122                         spin_unlock_irqrestore(&card->lock, flags);
1123                 } else {
1124                         rcode = RCODE_TYPE_ERROR;
1125                 }
1126                 break;
1127
1128         case CSR_MAINT_UTILITY:
1129                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1130                         *data = card->maint_utility_register;
1131                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1132                         card->maint_utility_register = *data;
1133                 else
1134                         rcode = RCODE_TYPE_ERROR;
1135                 break;
1136
1137         case CSR_BROADCAST_CHANNEL:
1138                 if (tcode == TCODE_READ_QUADLET_REQUEST)
1139                         *data = cpu_to_be32(card->broadcast_channel);
1140                 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1141                         card->broadcast_channel =
1142                             (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1143                             BROADCAST_CHANNEL_INITIAL;
1144                 else
1145                         rcode = RCODE_TYPE_ERROR;
1146                 break;
1147
1148         case CSR_BUS_MANAGER_ID:
1149         case CSR_BANDWIDTH_AVAILABLE:
1150         case CSR_CHANNELS_AVAILABLE_HI:
1151         case CSR_CHANNELS_AVAILABLE_LO:
1152                 /*
1153                  * FIXME: these are handled by the OHCI hardware and
1154                  * the stack never sees these request. If we add
1155                  * support for a new type of controller that doesn't
1156                  * handle this in hardware we need to deal with these
1157                  * transactions.
1158                  */
1159                 BUG();
1160                 break;
1161
1162         default:
1163                 rcode = RCODE_ADDRESS_ERROR;
1164                 break;
1165         }
1166
1167         fw_send_response(card, request, rcode);
1168 }
1169
1170 static struct fw_address_handler registers = {
1171         .length                 = 0x400,
1172         .address_callback       = handle_registers,
1173 };
1174
1175 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1176 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1177 MODULE_LICENSE("GPL");
1178
1179 static const u32 vendor_textual_descriptor[] = {
1180         /* textual descriptor leaf () */
1181         0x00060000,
1182         0x00000000,
1183         0x00000000,
1184         0x4c696e75,             /* L i n u */
1185         0x78204669,             /* x   F i */
1186         0x72657769,             /* r e w i */
1187         0x72650000,             /* r e     */
1188 };
1189
1190 static const u32 model_textual_descriptor[] = {
1191         /* model descriptor leaf () */
1192         0x00030000,
1193         0x00000000,
1194         0x00000000,
1195         0x4a756a75,             /* J u j u */
1196 };
1197
1198 static struct fw_descriptor vendor_id_descriptor = {
1199         .length = ARRAY_SIZE(vendor_textual_descriptor),
1200         .immediate = 0x03d00d1e,
1201         .key = 0x81000000,
1202         .data = vendor_textual_descriptor,
1203 };
1204
1205 static struct fw_descriptor model_id_descriptor = {
1206         .length = ARRAY_SIZE(model_textual_descriptor),
1207         .immediate = 0x17000001,
1208         .key = 0x81000000,
1209         .data = model_textual_descriptor,
1210 };
1211
1212 static int __init fw_core_init(void)
1213 {
1214         int ret;
1215
1216         ret = bus_register(&fw_bus_type);
1217         if (ret < 0)
1218                 return ret;
1219
1220         fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1221         if (fw_cdev_major < 0) {
1222                 bus_unregister(&fw_bus_type);
1223                 return fw_cdev_major;
1224         }
1225
1226         fw_core_add_address_handler(&topology_map, &topology_map_region);
1227         fw_core_add_address_handler(&registers, &registers_region);
1228         fw_core_add_descriptor(&vendor_id_descriptor);
1229         fw_core_add_descriptor(&model_id_descriptor);
1230
1231         return 0;
1232 }
1233
1234 static void __exit fw_core_cleanup(void)
1235 {
1236         unregister_chrdev(fw_cdev_major, "firewire");
1237         bus_unregister(&fw_bus_type);
1238         idr_destroy(&fw_device_idr);
1239 }
1240
1241 module_init(fw_core_init);
1242 module_exit(fw_core_cleanup);