]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/firewire/fw-sbp2.c
firewire: fw-sbp2: add support for multiple logical units per target
[karo-tx-linux.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/timer.h>
41
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46
47 #include "fw-transaction.h"
48 #include "fw-topology.h"
49 #include "fw-device.h"
50
51 /*
52  * So far only bridges from Oxford Semiconductor are known to support
53  * concurrent logins. Depending on firmware, four or two concurrent logins
54  * are possible on OXFW911 and newer Oxsemi bridges.
55  *
56  * Concurrent logins are useful together with cluster filesystems.
57  */
58 static int sbp2_param_exclusive_login = 1;
59 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
60 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
61                  "(default = Y, use N for concurrent initiators)");
62
63 /* I don't know why the SCSI stack doesn't define something like this... */
64 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
65
66 static const char sbp2_driver_name[] = "sbp2";
67
68 /*
69  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
70  * and one struct scsi_device per sbp2_logical_unit.
71  */
72 struct sbp2_logical_unit {
73         struct sbp2_target *tgt;
74         struct list_head link;
75         struct scsi_device *sdev;
76         struct fw_address_handler address_handler;
77         struct list_head orb_list;
78
79         u64 command_block_agent_address;
80         u16 lun;
81         int login_id;
82
83         /*
84          * The generation is updated once we've logged in or reconnected
85          * to the logical unit.  Thus, I/O to the device will automatically
86          * fail and get retried if it happens in a window where the device
87          * is not ready, e.g. after a bus reset but before we reconnect.
88          */
89         int generation;
90         int retries;
91         struct delayed_work work;
92 };
93
94 /*
95  * We create one struct sbp2_target per IEEE 1212 Unit Directory
96  * and one struct Scsi_Host per sbp2_target.
97  */
98 struct sbp2_target {
99         struct kref kref;
100         struct fw_unit *unit;
101
102         u64 management_agent_address;
103         int directory_id;
104         int node_id;
105         int address_high;
106
107         unsigned workarounds;
108         struct list_head lu_list;
109 };
110
111 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
112 #define SBP2_MAX_SECTORS                255     /* Max sectors supported */
113 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
114
115 #define SBP2_ORB_NULL                   0x80000000
116
117 #define SBP2_DIRECTION_TO_MEDIA         0x0
118 #define SBP2_DIRECTION_FROM_MEDIA       0x1
119
120 /* Unit directory keys */
121 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
122 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
123 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
124
125 /* Flags for detected oddities and brokeness */
126 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
127 #define SBP2_WORKAROUND_INQUIRY_36      0x2
128 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
129 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
130 #define SBP2_WORKAROUND_OVERRIDE        0x100
131
132 /* Management orb opcodes */
133 #define SBP2_LOGIN_REQUEST              0x0
134 #define SBP2_QUERY_LOGINS_REQUEST       0x1
135 #define SBP2_RECONNECT_REQUEST          0x3
136 #define SBP2_SET_PASSWORD_REQUEST       0x4
137 #define SBP2_LOGOUT_REQUEST             0x7
138 #define SBP2_ABORT_TASK_REQUEST         0xb
139 #define SBP2_ABORT_TASK_SET             0xc
140 #define SBP2_LOGICAL_UNIT_RESET         0xe
141 #define SBP2_TARGET_RESET_REQUEST       0xf
142
143 /* Offsets for command block agent registers */
144 #define SBP2_AGENT_STATE                0x00
145 #define SBP2_AGENT_RESET                0x04
146 #define SBP2_ORB_POINTER                0x08
147 #define SBP2_DOORBELL                   0x10
148 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
149
150 /* Status write response codes */
151 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
152 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
153 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
154 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
155
156 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
157 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
158 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
159 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
160 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
161 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
162 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
163 #define STATUS_GET_DATA(v)              ((v).data)
164
165 struct sbp2_status {
166         u32 status;
167         u32 orb_low;
168         u8 data[24];
169 };
170
171 struct sbp2_pointer {
172         u32 high;
173         u32 low;
174 };
175
176 struct sbp2_orb {
177         struct fw_transaction t;
178         struct kref kref;
179         dma_addr_t request_bus;
180         int rcode;
181         struct sbp2_pointer pointer;
182         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
183         struct list_head link;
184 };
185
186 #define MANAGEMENT_ORB_LUN(v)                   ((v))
187 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
188 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
189 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
190 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
191 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
192
193 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
194 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
195
196 struct sbp2_management_orb {
197         struct sbp2_orb base;
198         struct {
199                 struct sbp2_pointer password;
200                 struct sbp2_pointer response;
201                 u32 misc;
202                 u32 length;
203                 struct sbp2_pointer status_fifo;
204         } request;
205         __be32 response[4];
206         dma_addr_t response_bus;
207         struct completion done;
208         struct sbp2_status status;
209 };
210
211 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
212 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
213
214 struct sbp2_login_response {
215         u32 misc;
216         struct sbp2_pointer command_block_agent;
217         u32 reconnect_hold;
218 };
219 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
220 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
221 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
222 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
223 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
224 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
225 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
226 #define COMMAND_ORB_NOTIFY              ((1) << 31)
227
228 struct sbp2_command_orb {
229         struct sbp2_orb base;
230         struct {
231                 struct sbp2_pointer next;
232                 struct sbp2_pointer data_descriptor;
233                 u32 misc;
234                 u8 command_block[12];
235         } request;
236         struct scsi_cmnd *cmd;
237         scsi_done_fn_t done;
238         struct sbp2_logical_unit *lu;
239
240         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
241         dma_addr_t page_table_bus;
242 };
243
244 /*
245  * List of devices with known bugs.
246  *
247  * The firmware_revision field, masked with 0xffff00, is the best
248  * indicator for the type of bridge chip of a device.  It yields a few
249  * false positives but this did not break correctly behaving devices
250  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
251  * from the config rom can never match that.
252  */
253 static const struct {
254         u32 firmware_revision;
255         u32 model;
256         unsigned workarounds;
257 } sbp2_workarounds_table[] = {
258         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
259                 .firmware_revision      = 0x002800,
260                 .model                  = 0x001010,
261                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
262                                           SBP2_WORKAROUND_MODE_SENSE_8,
263         },
264         /* Initio bridges, actually only needed for some older ones */ {
265                 .firmware_revision      = 0x000200,
266                 .model                  = ~0,
267                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
268         },
269         /* Symbios bridge */ {
270                 .firmware_revision      = 0xa0b800,
271                 .model                  = ~0,
272                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
273         },
274
275         /*
276          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
277          * these iPods do not feature the read_capacity bug according
278          * to one report.  Read_capacity behaviour as well as model_id
279          * could change due to Apple-supplied firmware updates though.
280          */
281
282         /* iPod 4th generation. */ {
283                 .firmware_revision      = 0x0a2700,
284                 .model                  = 0x000021,
285                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
286         },
287         /* iPod mini */ {
288                 .firmware_revision      = 0x0a2700,
289                 .model                  = 0x000023,
290                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
291         },
292         /* iPod Photo */ {
293                 .firmware_revision      = 0x0a2700,
294                 .model                  = 0x00007e,
295                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
296         }
297 };
298
299 static void
300 free_orb(struct kref *kref)
301 {
302         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
303
304         kfree(orb);
305 }
306
307 static void
308 sbp2_status_write(struct fw_card *card, struct fw_request *request,
309                   int tcode, int destination, int source,
310                   int generation, int speed,
311                   unsigned long long offset,
312                   void *payload, size_t length, void *callback_data)
313 {
314         struct sbp2_logical_unit *lu = callback_data;
315         struct sbp2_orb *orb;
316         struct sbp2_status status;
317         size_t header_size;
318         unsigned long flags;
319
320         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
321             length == 0 || length > sizeof(status)) {
322                 fw_send_response(card, request, RCODE_TYPE_ERROR);
323                 return;
324         }
325
326         header_size = min(length, 2 * sizeof(u32));
327         fw_memcpy_from_be32(&status, payload, header_size);
328         if (length > header_size)
329                 memcpy(status.data, payload + 8, length - header_size);
330         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
331                 fw_notify("non-orb related status write, not handled\n");
332                 fw_send_response(card, request, RCODE_COMPLETE);
333                 return;
334         }
335
336         /* Lookup the orb corresponding to this status write. */
337         spin_lock_irqsave(&card->lock, flags);
338         list_for_each_entry(orb, &lu->orb_list, link) {
339                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
340                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
341                         orb->rcode = RCODE_COMPLETE;
342                         list_del(&orb->link);
343                         break;
344                 }
345         }
346         spin_unlock_irqrestore(&card->lock, flags);
347
348         if (&orb->link != &lu->orb_list)
349                 orb->callback(orb, &status);
350         else
351                 fw_error("status write for unknown orb\n");
352
353         kref_put(&orb->kref, free_orb);
354
355         fw_send_response(card, request, RCODE_COMPLETE);
356 }
357
358 static void
359 complete_transaction(struct fw_card *card, int rcode,
360                      void *payload, size_t length, void *data)
361 {
362         struct sbp2_orb *orb = data;
363         unsigned long flags;
364
365         /*
366          * This is a little tricky.  We can get the status write for
367          * the orb before we get this callback.  The status write
368          * handler above will assume the orb pointer transaction was
369          * successful and set the rcode to RCODE_COMPLETE for the orb.
370          * So this callback only sets the rcode if it hasn't already
371          * been set and only does the cleanup if the transaction
372          * failed and we didn't already get a status write.
373          */
374         spin_lock_irqsave(&card->lock, flags);
375
376         if (orb->rcode == -1)
377                 orb->rcode = rcode;
378         if (orb->rcode != RCODE_COMPLETE) {
379                 list_del(&orb->link);
380                 spin_unlock_irqrestore(&card->lock, flags);
381                 orb->callback(orb, NULL);
382         } else {
383                 spin_unlock_irqrestore(&card->lock, flags);
384         }
385
386         kref_put(&orb->kref, free_orb);
387 }
388
389 static void
390 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
391               int node_id, int generation, u64 offset)
392 {
393         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
394         unsigned long flags;
395
396         orb->pointer.high = 0;
397         orb->pointer.low = orb->request_bus;
398         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
399
400         spin_lock_irqsave(&device->card->lock, flags);
401         list_add_tail(&orb->link, &lu->orb_list);
402         spin_unlock_irqrestore(&device->card->lock, flags);
403
404         /* Take a ref for the orb list and for the transaction callback. */
405         kref_get(&orb->kref);
406         kref_get(&orb->kref);
407
408         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
409                         node_id, generation, device->max_speed, offset,
410                         &orb->pointer, sizeof(orb->pointer),
411                         complete_transaction, orb);
412 }
413
414 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
415 {
416         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
417         struct sbp2_orb *orb, *next;
418         struct list_head list;
419         unsigned long flags;
420         int retval = -ENOENT;
421
422         INIT_LIST_HEAD(&list);
423         spin_lock_irqsave(&device->card->lock, flags);
424         list_splice_init(&lu->orb_list, &list);
425         spin_unlock_irqrestore(&device->card->lock, flags);
426
427         list_for_each_entry_safe(orb, next, &list, link) {
428                 retval = 0;
429                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
430                         continue;
431
432                 orb->rcode = RCODE_CANCELLED;
433                 orb->callback(orb, NULL);
434         }
435
436         return retval;
437 }
438
439 static void
440 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
441 {
442         struct sbp2_management_orb *orb =
443                 container_of(base_orb, struct sbp2_management_orb, base);
444
445         if (status)
446                 memcpy(&orb->status, status, sizeof(*status));
447         complete(&orb->done);
448 }
449
450 static int
451 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
452                          int generation, int function, int lun_or_login_id,
453                          void *response)
454 {
455         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
456         struct sbp2_management_orb *orb;
457         int retval = -ENOMEM;
458
459         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
460         if (orb == NULL)
461                 return -ENOMEM;
462
463         kref_init(&orb->base.kref);
464         orb->response_bus =
465                 dma_map_single(device->card->device, &orb->response,
466                                sizeof(orb->response), DMA_FROM_DEVICE);
467         if (dma_mapping_error(orb->response_bus))
468                 goto fail_mapping_response;
469
470         orb->request.response.high    = 0;
471         orb->request.response.low     = orb->response_bus;
472
473         orb->request.misc =
474                 MANAGEMENT_ORB_NOTIFY |
475                 MANAGEMENT_ORB_FUNCTION(function) |
476                 MANAGEMENT_ORB_LUN(lun_or_login_id);
477         orb->request.length =
478                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
479
480         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
481         orb->request.status_fifo.low  = lu->address_handler.offset;
482
483         if (function == SBP2_LOGIN_REQUEST) {
484                 orb->request.misc |=
485                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
486                         MANAGEMENT_ORB_RECONNECT(0);
487         }
488
489         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
490
491         init_completion(&orb->done);
492         orb->base.callback = complete_management_orb;
493
494         orb->base.request_bus =
495                 dma_map_single(device->card->device, &orb->request,
496                                sizeof(orb->request), DMA_TO_DEVICE);
497         if (dma_mapping_error(orb->base.request_bus))
498                 goto fail_mapping_request;
499
500         sbp2_send_orb(&orb->base, lu, node_id, generation,
501                       lu->tgt->management_agent_address);
502
503         wait_for_completion_timeout(&orb->done,
504                                     msecs_to_jiffies(SBP2_ORB_TIMEOUT));
505
506         retval = -EIO;
507         if (sbp2_cancel_orbs(lu) == 0) {
508                 fw_error("orb reply timed out, rcode=0x%02x\n",
509                          orb->base.rcode);
510                 goto out;
511         }
512
513         if (orb->base.rcode != RCODE_COMPLETE) {
514                 fw_error("management write failed, rcode 0x%02x\n",
515                          orb->base.rcode);
516                 goto out;
517         }
518
519         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
520             STATUS_GET_SBP_STATUS(orb->status) != 0) {
521                 fw_error("error status: %d:%d\n",
522                          STATUS_GET_RESPONSE(orb->status),
523                          STATUS_GET_SBP_STATUS(orb->status));
524                 goto out;
525         }
526
527         retval = 0;
528  out:
529         dma_unmap_single(device->card->device, orb->base.request_bus,
530                          sizeof(orb->request), DMA_TO_DEVICE);
531  fail_mapping_request:
532         dma_unmap_single(device->card->device, orb->response_bus,
533                          sizeof(orb->response), DMA_FROM_DEVICE);
534  fail_mapping_response:
535         if (response)
536                 fw_memcpy_from_be32(response,
537                                     orb->response, sizeof(orb->response));
538         kref_put(&orb->base.kref, free_orb);
539
540         return retval;
541 }
542
543 static void
544 complete_agent_reset_write(struct fw_card *card, int rcode,
545                            void *payload, size_t length, void *data)
546 {
547         struct fw_transaction *t = data;
548
549         kfree(t);
550 }
551
552 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
553 {
554         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
555         struct fw_transaction *t;
556         static u32 zero;
557
558         t = kzalloc(sizeof(*t), GFP_ATOMIC);
559         if (t == NULL)
560                 return -ENOMEM;
561
562         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
563                         lu->tgt->node_id, lu->generation, device->max_speed,
564                         lu->command_block_agent_address + SBP2_AGENT_RESET,
565                         &zero, sizeof(zero), complete_agent_reset_write, t);
566
567         return 0;
568 }
569
570 static void sbp2_release_target(struct kref *kref)
571 {
572         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
573         struct sbp2_logical_unit *lu, *next;
574         struct Scsi_Host *shost =
575                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
576
577         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
578                 if (lu->sdev)
579                         scsi_remove_device(lu->sdev);
580
581                 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
582                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
583                 fw_core_remove_address_handler(&lu->address_handler);
584                 list_del(&lu->link);
585                 kfree(lu);
586         }
587         scsi_remove_host(shost);
588         fw_notify("released %s\n", tgt->unit->device.bus_id);
589
590         put_device(&tgt->unit->device);
591         scsi_host_put(shost);
592 }
593
594 static void sbp2_reconnect(struct work_struct *work);
595
596 static void sbp2_login(struct work_struct *work)
597 {
598         struct sbp2_logical_unit *lu =
599                 container_of(work, struct sbp2_logical_unit, work.work);
600         struct Scsi_Host *shost =
601                 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
602         struct scsi_device *sdev;
603         struct scsi_lun eight_bytes_lun;
604         struct fw_unit *unit = lu->tgt->unit;
605         struct fw_device *device = fw_device(unit->device.parent);
606         struct sbp2_login_response response;
607         int generation, node_id, local_node_id;
608
609         generation    = device->card->generation;
610         node_id       = device->node->node_id;
611         local_node_id = device->card->local_node->node_id;
612
613         if (sbp2_send_management_orb(lu, node_id, generation,
614                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
615                 if (lu->retries++ < 5) {
616                         schedule_delayed_work(&lu->work, DIV_ROUND_UP(HZ, 5));
617                 } else {
618                         fw_error("failed to login to %s LUN %04x\n",
619                                  unit->device.bus_id, lu->lun);
620                         kref_put(&lu->tgt->kref, sbp2_release_target);
621                 }
622                 return;
623         }
624
625         lu->generation        = generation;
626         lu->tgt->node_id      = node_id;
627         lu->tgt->address_high = local_node_id << 16;
628
629         /* Get command block agent offset and login id. */
630         lu->command_block_agent_address =
631                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
632                 response.command_block_agent.low;
633         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
634
635         fw_notify("logged in to %s LUN %04x (%d retries)\n",
636                   unit->device.bus_id, lu->lun, lu->retries);
637
638 #if 0
639         /* FIXME: The linux1394 sbp2 does this last step. */
640         sbp2_set_busy_timeout(scsi_id);
641 #endif
642
643         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
644         sbp2_agent_reset(lu);
645
646         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
647         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
648         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
649
650         sdev = __scsi_add_device(shost, 0, 0,
651                                  scsilun_to_int(&eight_bytes_lun), lu);
652         if (IS_ERR(sdev)) {
653                 sbp2_send_management_orb(lu, node_id, generation,
654                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
655                 /*
656                  * Set this back to sbp2_login so we fall back and
657                  * retry login on bus reset.
658                  */
659                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
660         } else {
661                 lu->sdev = sdev;
662                 scsi_device_put(sdev);
663         }
664         kref_put(&lu->tgt->kref, sbp2_release_target);
665 }
666
667 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
668 {
669         struct sbp2_logical_unit *lu;
670
671         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
672         if (!lu)
673                 return -ENOMEM;
674
675         lu->address_handler.length           = 0x100;
676         lu->address_handler.address_callback = sbp2_status_write;
677         lu->address_handler.callback_data    = lu;
678
679         if (fw_core_add_address_handler(&lu->address_handler,
680                                         &fw_high_memory_region) < 0) {
681                 kfree(lu);
682                 return -ENOMEM;
683         }
684
685         lu->tgt  = tgt;
686         lu->sdev = NULL;
687         lu->lun  = lun_entry & 0xffff;
688         lu->retries = 0;
689         INIT_LIST_HEAD(&lu->orb_list);
690         INIT_DELAYED_WORK(&lu->work, sbp2_login);
691
692         list_add_tail(&lu->link, &tgt->lu_list);
693         return 0;
694 }
695
696 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
697 {
698         struct fw_csr_iterator ci;
699         int key, value;
700
701         fw_csr_iterator_init(&ci, directory);
702         while (fw_csr_iterator_next(&ci, &key, &value))
703                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
704                     sbp2_add_logical_unit(tgt, value) < 0)
705                         return -ENOMEM;
706         return 0;
707 }
708
709 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
710                               u32 *model, u32 *firmware_revision)
711 {
712         struct fw_csr_iterator ci;
713         int key, value;
714
715         fw_csr_iterator_init(&ci, directory);
716         while (fw_csr_iterator_next(&ci, &key, &value)) {
717                 switch (key) {
718
719                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
720                         tgt->management_agent_address =
721                                         CSR_REGISTER_BASE + 4 * value;
722                         break;
723
724                 case CSR_DIRECTORY_ID:
725                         tgt->directory_id = value;
726                         break;
727
728                 case CSR_MODEL:
729                         *model = value;
730                         break;
731
732                 case SBP2_CSR_FIRMWARE_REVISION:
733                         *firmware_revision = value;
734                         break;
735
736                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
737                         if (sbp2_add_logical_unit(tgt, value) < 0)
738                                 return -ENOMEM;
739                         break;
740
741                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
742                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
743                                 return -ENOMEM;
744                         break;
745                 }
746         }
747         return 0;
748 }
749
750 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
751                                   u32 firmware_revision)
752 {
753         int i;
754
755         tgt->workarounds = 0;
756
757         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
758
759                 if (sbp2_workarounds_table[i].firmware_revision !=
760                     (firmware_revision & 0xffffff00))
761                         continue;
762
763                 if (sbp2_workarounds_table[i].model != model &&
764                     sbp2_workarounds_table[i].model != ~0)
765                         continue;
766
767                 tgt->workarounds |= sbp2_workarounds_table[i].workarounds;
768                 break;
769         }
770
771         if (tgt->workarounds)
772                 fw_notify("Workarounds for %s: 0x%x "
773                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
774                           tgt->unit->device.bus_id,
775                           tgt->workarounds, firmware_revision, model);
776 }
777
778 static struct scsi_host_template scsi_driver_template;
779
780 static int sbp2_probe(struct device *dev)
781 {
782         struct fw_unit *unit = fw_unit(dev);
783         struct fw_device *device = fw_device(unit->device.parent);
784         struct sbp2_target *tgt;
785         struct sbp2_logical_unit *lu;
786         struct Scsi_Host *shost;
787         u32 model, firmware_revision;
788
789         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
790         if (shost == NULL)
791                 return -ENOMEM;
792
793         tgt = (struct sbp2_target *)shost->hostdata;
794         unit->device.driver_data = tgt;
795         tgt->unit = unit;
796         kref_init(&tgt->kref);
797         INIT_LIST_HEAD(&tgt->lu_list);
798
799         if (fw_device_enable_phys_dma(device) < 0)
800                 goto fail_shost_put;
801
802         if (scsi_add_host(shost, &unit->device) < 0)
803                 goto fail_shost_put;
804
805         /* Initialize to values that won't match anything in our table. */
806         firmware_revision = 0xff000000;
807         model = 0xff000000;
808
809         /* implicit directory ID */
810         tgt->directory_id = ((unit->directory - device->config_rom) * 4
811                              + CSR_CONFIG_ROM) & 0xffffff;
812
813         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
814                                &firmware_revision) < 0)
815                 goto fail_tgt_put;
816
817         sbp2_init_workarounds(tgt, model, firmware_revision);
818
819         get_device(&unit->device);
820
821         /*
822          * We schedule work to do the login so we can easily
823          * reschedule retries. Always get the ref before scheduling
824          * work.
825          */
826         list_for_each_entry(lu, &tgt->lu_list, link)
827                 if (schedule_delayed_work(&lu->work, 0))
828                         kref_get(&tgt->kref);
829         return 0;
830
831  fail_tgt_put:
832         kref_put(&tgt->kref, sbp2_release_target);
833         return -ENOMEM;
834
835  fail_shost_put:
836         scsi_host_put(shost);
837         return -ENOMEM;
838 }
839
840 static int sbp2_remove(struct device *dev)
841 {
842         struct fw_unit *unit = fw_unit(dev);
843         struct sbp2_target *tgt = unit->device.driver_data;
844
845         kref_put(&tgt->kref, sbp2_release_target);
846         return 0;
847 }
848
849 static void sbp2_reconnect(struct work_struct *work)
850 {
851         struct sbp2_logical_unit *lu =
852                 container_of(work, struct sbp2_logical_unit, work.work);
853         struct fw_unit *unit = lu->tgt->unit;
854         struct fw_device *device = fw_device(unit->device.parent);
855         int generation, node_id, local_node_id;
856
857         generation    = device->card->generation;
858         node_id       = device->node->node_id;
859         local_node_id = device->card->local_node->node_id;
860
861         if (sbp2_send_management_orb(lu, node_id, generation,
862                                      SBP2_RECONNECT_REQUEST,
863                                      lu->login_id, NULL) < 0) {
864                 if (lu->retries++ >= 5) {
865                         fw_error("failed to reconnect to %s\n",
866                                  unit->device.bus_id);
867                         /* Fall back and try to log in again. */
868                         lu->retries = 0;
869                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
870                 }
871                 schedule_delayed_work(&lu->work, DIV_ROUND_UP(HZ, 5));
872                 return;
873         }
874
875         lu->generation        = generation;
876         lu->tgt->node_id      = node_id;
877         lu->tgt->address_high = local_node_id << 16;
878
879         fw_notify("reconnected to %s LUN %04x (%d retries)\n",
880                   unit->device.bus_id, lu->lun, lu->retries);
881
882         sbp2_agent_reset(lu);
883         sbp2_cancel_orbs(lu);
884
885         kref_put(&lu->tgt->kref, sbp2_release_target);
886 }
887
888 static void sbp2_update(struct fw_unit *unit)
889 {
890         struct sbp2_target *tgt = unit->device.driver_data;
891         struct sbp2_logical_unit *lu;
892
893         fw_device_enable_phys_dma(fw_device(unit->device.parent));
894
895         /*
896          * Fw-core serializes sbp2_update() against sbp2_remove().
897          * Iteration over tgt->lu_list is therefore safe here.
898          */
899         list_for_each_entry(lu, &tgt->lu_list, link) {
900                 lu->retries = 0;
901                 if (schedule_delayed_work(&lu->work, 0))
902                         kref_get(&tgt->kref);
903         }
904 }
905
906 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
907 #define SBP2_SW_VERSION_ENTRY   0x00010483
908
909 static const struct fw_device_id sbp2_id_table[] = {
910         {
911                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
912                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
913                 .version      = SBP2_SW_VERSION_ENTRY,
914         },
915         { }
916 };
917
918 static struct fw_driver sbp2_driver = {
919         .driver   = {
920                 .owner  = THIS_MODULE,
921                 .name   = sbp2_driver_name,
922                 .bus    = &fw_bus_type,
923                 .probe  = sbp2_probe,
924                 .remove = sbp2_remove,
925         },
926         .update   = sbp2_update,
927         .id_table = sbp2_id_table,
928 };
929
930 static unsigned int
931 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
932 {
933         int sam_status;
934
935         sense_data[0] = 0x70;
936         sense_data[1] = 0x0;
937         sense_data[2] = sbp2_status[1];
938         sense_data[3] = sbp2_status[4];
939         sense_data[4] = sbp2_status[5];
940         sense_data[5] = sbp2_status[6];
941         sense_data[6] = sbp2_status[7];
942         sense_data[7] = 10;
943         sense_data[8] = sbp2_status[8];
944         sense_data[9] = sbp2_status[9];
945         sense_data[10] = sbp2_status[10];
946         sense_data[11] = sbp2_status[11];
947         sense_data[12] = sbp2_status[2];
948         sense_data[13] = sbp2_status[3];
949         sense_data[14] = sbp2_status[12];
950         sense_data[15] = sbp2_status[13];
951
952         sam_status = sbp2_status[0] & 0x3f;
953
954         switch (sam_status) {
955         case SAM_STAT_GOOD:
956         case SAM_STAT_CHECK_CONDITION:
957         case SAM_STAT_CONDITION_MET:
958         case SAM_STAT_BUSY:
959         case SAM_STAT_RESERVATION_CONFLICT:
960         case SAM_STAT_COMMAND_TERMINATED:
961                 return DID_OK << 16 | sam_status;
962
963         default:
964                 return DID_ERROR << 16;
965         }
966 }
967
968 static void
969 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
970 {
971         struct sbp2_command_orb *orb =
972                 container_of(base_orb, struct sbp2_command_orb, base);
973         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
974         int result;
975
976         if (status != NULL) {
977                 if (STATUS_GET_DEAD(*status))
978                         sbp2_agent_reset(orb->lu);
979
980                 switch (STATUS_GET_RESPONSE(*status)) {
981                 case SBP2_STATUS_REQUEST_COMPLETE:
982                         result = DID_OK << 16;
983                         break;
984                 case SBP2_STATUS_TRANSPORT_FAILURE:
985                         result = DID_BUS_BUSY << 16;
986                         break;
987                 case SBP2_STATUS_ILLEGAL_REQUEST:
988                 case SBP2_STATUS_VENDOR_DEPENDENT:
989                 default:
990                         result = DID_ERROR << 16;
991                         break;
992                 }
993
994                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
995                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
996                                                            orb->cmd->sense_buffer);
997         } else {
998                 /*
999                  * If the orb completes with status == NULL, something
1000                  * went wrong, typically a bus reset happened mid-orb
1001                  * or when sending the write (less likely).
1002                  */
1003                 result = DID_BUS_BUSY << 16;
1004         }
1005
1006         dma_unmap_single(device->card->device, orb->base.request_bus,
1007                          sizeof(orb->request), DMA_TO_DEVICE);
1008
1009         if (scsi_sg_count(orb->cmd) > 0)
1010                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1011                              scsi_sg_count(orb->cmd),
1012                              orb->cmd->sc_data_direction);
1013
1014         if (orb->page_table_bus != 0)
1015                 dma_unmap_single(device->card->device, orb->page_table_bus,
1016                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1017
1018         orb->cmd->result = result;
1019         orb->done(orb->cmd);
1020 }
1021
1022 static int
1023 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1024                      struct sbp2_logical_unit *lu)
1025 {
1026         struct scatterlist *sg;
1027         int sg_len, l, i, j, count;
1028         dma_addr_t sg_addr;
1029
1030         sg = scsi_sglist(orb->cmd);
1031         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1032                            orb->cmd->sc_data_direction);
1033         if (count == 0)
1034                 goto fail;
1035
1036         /*
1037          * Handle the special case where there is only one element in
1038          * the scatter list by converting it to an immediate block
1039          * request. This is also a workaround for broken devices such
1040          * as the second generation iPod which doesn't support page
1041          * tables.
1042          */
1043         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1044                 orb->request.data_descriptor.high = lu->tgt->address_high;
1045                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1046                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1047                 return 0;
1048         }
1049
1050         /*
1051          * Convert the scatterlist to an sbp2 page table.  If any
1052          * scatterlist entries are too big for sbp2, we split them as we
1053          * go.  Even if we ask the block I/O layer to not give us sg
1054          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1055          * during DMA mapping, and Linux currently doesn't prevent this.
1056          */
1057         for (i = 0, j = 0; i < count; i++) {
1058                 sg_len = sg_dma_len(sg + i);
1059                 sg_addr = sg_dma_address(sg + i);
1060                 while (sg_len) {
1061                         /* FIXME: This won't get us out of the pinch. */
1062                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1063                                 fw_error("page table overflow\n");
1064                                 goto fail_page_table;
1065                         }
1066                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1067                         orb->page_table[j].low = sg_addr;
1068                         orb->page_table[j].high = (l << 16);
1069                         sg_addr += l;
1070                         sg_len -= l;
1071                         j++;
1072                 }
1073         }
1074
1075         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1076                           sizeof(orb->page_table[0]) * j);
1077         orb->page_table_bus =
1078                 dma_map_single(device->card->device, orb->page_table,
1079                                sizeof(orb->page_table), DMA_TO_DEVICE);
1080         if (dma_mapping_error(orb->page_table_bus))
1081                 goto fail_page_table;
1082
1083         /*
1084          * The data_descriptor pointer is the one case where we need
1085          * to fill in the node ID part of the address.  All other
1086          * pointers assume that the data referenced reside on the
1087          * initiator (i.e. us), but data_descriptor can refer to data
1088          * on other nodes so we need to put our ID in descriptor.high.
1089          */
1090         orb->request.data_descriptor.high = lu->tgt->address_high;
1091         orb->request.data_descriptor.low  = orb->page_table_bus;
1092         orb->request.misc |=
1093                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1094                 COMMAND_ORB_DATA_SIZE(j);
1095
1096         return 0;
1097
1098  fail_page_table:
1099         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1100                      orb->cmd->sc_data_direction);
1101  fail:
1102         return -ENOMEM;
1103 }
1104
1105 /* SCSI stack integration */
1106
1107 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1108 {
1109         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1110         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1111         struct sbp2_command_orb *orb;
1112         unsigned max_payload;
1113         int retval = SCSI_MLQUEUE_HOST_BUSY;
1114
1115         /*
1116          * Bidirectional commands are not yet implemented, and unknown
1117          * transfer direction not handled.
1118          */
1119         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1120                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1121                 cmd->result = DID_ERROR << 16;
1122                 done(cmd);
1123                 return 0;
1124         }
1125
1126         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1127         if (orb == NULL) {
1128                 fw_notify("failed to alloc orb\n");
1129                 return SCSI_MLQUEUE_HOST_BUSY;
1130         }
1131
1132         /* Initialize rcode to something not RCODE_COMPLETE. */
1133         orb->base.rcode = -1;
1134         kref_init(&orb->base.kref);
1135
1136         orb->lu   = lu;
1137         orb->done = done;
1138         orb->cmd  = cmd;
1139
1140         orb->request.next.high   = SBP2_ORB_NULL;
1141         orb->request.next.low    = 0x0;
1142         /*
1143          * At speed 100 we can do 512 bytes per packet, at speed 200,
1144          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1145          * specifies the max payload size as 2 ^ (max_payload + 2), so
1146          * if we set this to max_speed + 7, we get the right value.
1147          */
1148         max_payload = min(device->max_speed + 7,
1149                           device->card->max_receive - 1);
1150         orb->request.misc =
1151                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1152                 COMMAND_ORB_SPEED(device->max_speed) |
1153                 COMMAND_ORB_NOTIFY;
1154
1155         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1156                 orb->request.misc |=
1157                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1158         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1159                 orb->request.misc |=
1160                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1161
1162         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1163                 goto out;
1164
1165         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1166
1167         memset(orb->request.command_block,
1168                0, sizeof(orb->request.command_block));
1169         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1170
1171         orb->base.callback = complete_command_orb;
1172         orb->base.request_bus =
1173                 dma_map_single(device->card->device, &orb->request,
1174                                sizeof(orb->request), DMA_TO_DEVICE);
1175         if (dma_mapping_error(orb->base.request_bus))
1176                 goto out;
1177
1178         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1179                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1180         retval = 0;
1181  out:
1182         kref_put(&orb->base.kref, free_orb);
1183         return retval;
1184 }
1185
1186 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1187 {
1188         struct sbp2_logical_unit *lu = sdev->hostdata;
1189
1190         sdev->allow_restart = 1;
1191
1192         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1193                 sdev->inquiry_len = 36;
1194
1195         return 0;
1196 }
1197
1198 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1199 {
1200         struct sbp2_logical_unit *lu = sdev->hostdata;
1201
1202         sdev->use_10_for_rw = 1;
1203
1204         if (sdev->type == TYPE_ROM)
1205                 sdev->use_10_for_ms = 1;
1206
1207         if (sdev->type == TYPE_DISK &&
1208             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1209                 sdev->skip_ms_page_8 = 1;
1210
1211         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1212                 sdev->fix_capacity = 1;
1213
1214         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1215                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1216
1217         return 0;
1218 }
1219
1220 /*
1221  * Called by scsi stack when something has really gone wrong.  Usually
1222  * called when a command has timed-out for some reason.
1223  */
1224 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1225 {
1226         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1227
1228         fw_notify("sbp2_scsi_abort\n");
1229         sbp2_agent_reset(lu);
1230         sbp2_cancel_orbs(lu);
1231
1232         return SUCCESS;
1233 }
1234
1235 /*
1236  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1237  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1238  *
1239  * This is the concatenation of target port identifier and logical unit
1240  * identifier as per SAM-2...SAM-4 annex A.
1241  */
1242 static ssize_t
1243 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1244                             char *buf)
1245 {
1246         struct scsi_device *sdev = to_scsi_device(dev);
1247         struct sbp2_logical_unit *lu;
1248         struct fw_device *device;
1249
1250         if (!sdev)
1251                 return 0;
1252
1253         lu = sdev->hostdata;
1254         device = fw_device(lu->tgt->unit->device.parent);
1255
1256         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1257                         device->config_rom[3], device->config_rom[4],
1258                         lu->tgt->directory_id, lu->lun);
1259 }
1260
1261 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1262
1263 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1264         &dev_attr_ieee1394_id,
1265         NULL
1266 };
1267
1268 static struct scsi_host_template scsi_driver_template = {
1269         .module                 = THIS_MODULE,
1270         .name                   = "SBP-2 IEEE-1394",
1271         .proc_name              = sbp2_driver_name,
1272         .queuecommand           = sbp2_scsi_queuecommand,
1273         .slave_alloc            = sbp2_scsi_slave_alloc,
1274         .slave_configure        = sbp2_scsi_slave_configure,
1275         .eh_abort_handler       = sbp2_scsi_abort,
1276         .this_id                = -1,
1277         .sg_tablesize           = SG_ALL,
1278         .use_clustering         = ENABLE_CLUSTERING,
1279         .cmd_per_lun            = 1,
1280         .can_queue              = 1,
1281         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1282 };
1283
1284 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1285 MODULE_DESCRIPTION("SCSI over IEEE1394");
1286 MODULE_LICENSE("GPL");
1287 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1288
1289 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1290 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1291 MODULE_ALIAS("sbp2");
1292 #endif
1293
1294 static int __init sbp2_init(void)
1295 {
1296         return driver_register(&sbp2_driver.driver);
1297 }
1298
1299 static void __exit sbp2_cleanup(void)
1300 {
1301         driver_unregister(&sbp2_driver.driver);
1302 }
1303
1304 module_init(sbp2_init);
1305 module_exit(sbp2_cleanup);