]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/firewire/fw-sbp2.c
661a5b66f661666a55e6823268c5f883444d95f4
[mv-sheeva.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
43
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48
49 #include "fw-transaction.h"
50 #include "fw-topology.h"
51 #include "fw-device.h"
52
53 /*
54  * So far only bridges from Oxford Semiconductor are known to support
55  * concurrent logins. Depending on firmware, four or two concurrent logins
56  * are possible on OXFW911 and newer Oxsemi bridges.
57  *
58  * Concurrent logins are useful together with cluster filesystems.
59  */
60 static int sbp2_param_exclusive_login = 1;
61 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
62 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
63                  "(default = Y, use N for concurrent initiators)");
64
65 /*
66  * Flags for firmware oddities
67  *
68  * - 128kB max transfer
69  *   Limit transfer size. Necessary for some old bridges.
70  *
71  * - 36 byte inquiry
72  *   When scsi_mod probes the device, let the inquiry command look like that
73  *   from MS Windows.
74  *
75  * - skip mode page 8
76  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
77  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
78  *
79  * - fix capacity
80  *   Tell sd_mod to correct the last sector number reported by read_capacity.
81  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
82  *   Don't use this with devices which don't have this bug.
83  *
84  * - override internal blacklist
85  *   Instead of adding to the built-in blacklist, use only the workarounds
86  *   specified in the module load parameter.
87  *   Useful if a blacklist entry interfered with a non-broken device.
88  */
89 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
90 #define SBP2_WORKAROUND_INQUIRY_36      0x2
91 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
92 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
93 #define SBP2_WORKAROUND_OVERRIDE        0x100
94
95 static int sbp2_param_workarounds;
96 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
97 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
98         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
99         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
100         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
101         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
102         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
103         ", or a combination)");
104
105 /* I don't know why the SCSI stack doesn't define something like this... */
106 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
107
108 static const char sbp2_driver_name[] = "sbp2";
109
110 /*
111  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
112  * and one struct scsi_device per sbp2_logical_unit.
113  */
114 struct sbp2_logical_unit {
115         struct sbp2_target *tgt;
116         struct list_head link;
117         struct scsi_device *sdev;
118         struct fw_address_handler address_handler;
119         struct list_head orb_list;
120
121         u64 command_block_agent_address;
122         u16 lun;
123         int login_id;
124
125         /*
126          * The generation is updated once we've logged in or reconnected
127          * to the logical unit.  Thus, I/O to the device will automatically
128          * fail and get retried if it happens in a window where the device
129          * is not ready, e.g. after a bus reset but before we reconnect.
130          */
131         int generation;
132         int retries;
133         struct delayed_work work;
134 };
135
136 /*
137  * We create one struct sbp2_target per IEEE 1212 Unit Directory
138  * and one struct Scsi_Host per sbp2_target.
139  */
140 struct sbp2_target {
141         struct kref kref;
142         struct fw_unit *unit;
143
144         u64 management_agent_address;
145         int directory_id;
146         int node_id;
147         int address_high;
148
149         unsigned workarounds;
150         struct list_head lu_list;
151 };
152
153 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
154 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
155 #define SBP2_ORB_NULL                   0x80000000
156
157 #define SBP2_DIRECTION_TO_MEDIA         0x0
158 #define SBP2_DIRECTION_FROM_MEDIA       0x1
159
160 /* Unit directory keys */
161 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
162 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
163 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
164
165 /* Management orb opcodes */
166 #define SBP2_LOGIN_REQUEST              0x0
167 #define SBP2_QUERY_LOGINS_REQUEST       0x1
168 #define SBP2_RECONNECT_REQUEST          0x3
169 #define SBP2_SET_PASSWORD_REQUEST       0x4
170 #define SBP2_LOGOUT_REQUEST             0x7
171 #define SBP2_ABORT_TASK_REQUEST         0xb
172 #define SBP2_ABORT_TASK_SET             0xc
173 #define SBP2_LOGICAL_UNIT_RESET         0xe
174 #define SBP2_TARGET_RESET_REQUEST       0xf
175
176 /* Offsets for command block agent registers */
177 #define SBP2_AGENT_STATE                0x00
178 #define SBP2_AGENT_RESET                0x04
179 #define SBP2_ORB_POINTER                0x08
180 #define SBP2_DOORBELL                   0x10
181 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
182
183 /* Status write response codes */
184 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
185 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
186 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
187 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
188
189 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
190 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
191 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
192 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
193 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
194 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
195 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
196 #define STATUS_GET_DATA(v)              ((v).data)
197
198 struct sbp2_status {
199         u32 status;
200         u32 orb_low;
201         u8 data[24];
202 };
203
204 struct sbp2_pointer {
205         u32 high;
206         u32 low;
207 };
208
209 struct sbp2_orb {
210         struct fw_transaction t;
211         struct kref kref;
212         dma_addr_t request_bus;
213         int rcode;
214         struct sbp2_pointer pointer;
215         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
216         struct list_head link;
217 };
218
219 #define MANAGEMENT_ORB_LUN(v)                   ((v))
220 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
221 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
222 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
223 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
224 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
225
226 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
227 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
228
229 struct sbp2_management_orb {
230         struct sbp2_orb base;
231         struct {
232                 struct sbp2_pointer password;
233                 struct sbp2_pointer response;
234                 u32 misc;
235                 u32 length;
236                 struct sbp2_pointer status_fifo;
237         } request;
238         __be32 response[4];
239         dma_addr_t response_bus;
240         struct completion done;
241         struct sbp2_status status;
242 };
243
244 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
245 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
246
247 struct sbp2_login_response {
248         u32 misc;
249         struct sbp2_pointer command_block_agent;
250         u32 reconnect_hold;
251 };
252 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
253 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
254 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
255 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
256 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
257 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
258 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
259 #define COMMAND_ORB_NOTIFY              ((1) << 31)
260
261 struct sbp2_command_orb {
262         struct sbp2_orb base;
263         struct {
264                 struct sbp2_pointer next;
265                 struct sbp2_pointer data_descriptor;
266                 u32 misc;
267                 u8 command_block[12];
268         } request;
269         struct scsi_cmnd *cmd;
270         scsi_done_fn_t done;
271         struct sbp2_logical_unit *lu;
272
273         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
274         dma_addr_t page_table_bus;
275 };
276
277 /*
278  * List of devices with known bugs.
279  *
280  * The firmware_revision field, masked with 0xffff00, is the best
281  * indicator for the type of bridge chip of a device.  It yields a few
282  * false positives but this did not break correctly behaving devices
283  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
284  * from the config rom can never match that.
285  */
286 static const struct {
287         u32 firmware_revision;
288         u32 model;
289         unsigned workarounds;
290 } sbp2_workarounds_table[] = {
291         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
292                 .firmware_revision      = 0x002800,
293                 .model                  = 0x001010,
294                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
295                                           SBP2_WORKAROUND_MODE_SENSE_8,
296         },
297         /* Initio bridges, actually only needed for some older ones */ {
298                 .firmware_revision      = 0x000200,
299                 .model                  = ~0,
300                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
301         },
302         /* Symbios bridge */ {
303                 .firmware_revision      = 0xa0b800,
304                 .model                  = ~0,
305                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
306         },
307
308         /*
309          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
310          * these iPods do not feature the read_capacity bug according
311          * to one report.  Read_capacity behaviour as well as model_id
312          * could change due to Apple-supplied firmware updates though.
313          */
314
315         /* iPod 4th generation. */ {
316                 .firmware_revision      = 0x0a2700,
317                 .model                  = 0x000021,
318                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
319         },
320         /* iPod mini */ {
321                 .firmware_revision      = 0x0a2700,
322                 .model                  = 0x000023,
323                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
324         },
325         /* iPod Photo */ {
326                 .firmware_revision      = 0x0a2700,
327                 .model                  = 0x00007e,
328                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
329         }
330 };
331
332 static void
333 free_orb(struct kref *kref)
334 {
335         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
336
337         kfree(orb);
338 }
339
340 static void
341 sbp2_status_write(struct fw_card *card, struct fw_request *request,
342                   int tcode, int destination, int source,
343                   int generation, int speed,
344                   unsigned long long offset,
345                   void *payload, size_t length, void *callback_data)
346 {
347         struct sbp2_logical_unit *lu = callback_data;
348         struct sbp2_orb *orb;
349         struct sbp2_status status;
350         size_t header_size;
351         unsigned long flags;
352
353         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
354             length == 0 || length > sizeof(status)) {
355                 fw_send_response(card, request, RCODE_TYPE_ERROR);
356                 return;
357         }
358
359         header_size = min(length, 2 * sizeof(u32));
360         fw_memcpy_from_be32(&status, payload, header_size);
361         if (length > header_size)
362                 memcpy(status.data, payload + 8, length - header_size);
363         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
364                 fw_notify("non-orb related status write, not handled\n");
365                 fw_send_response(card, request, RCODE_COMPLETE);
366                 return;
367         }
368
369         /* Lookup the orb corresponding to this status write. */
370         spin_lock_irqsave(&card->lock, flags);
371         list_for_each_entry(orb, &lu->orb_list, link) {
372                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
373                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
374                         orb->rcode = RCODE_COMPLETE;
375                         list_del(&orb->link);
376                         break;
377                 }
378         }
379         spin_unlock_irqrestore(&card->lock, flags);
380
381         if (&orb->link != &lu->orb_list)
382                 orb->callback(orb, &status);
383         else
384                 fw_error("status write for unknown orb\n");
385
386         kref_put(&orb->kref, free_orb);
387
388         fw_send_response(card, request, RCODE_COMPLETE);
389 }
390
391 static void
392 complete_transaction(struct fw_card *card, int rcode,
393                      void *payload, size_t length, void *data)
394 {
395         struct sbp2_orb *orb = data;
396         unsigned long flags;
397
398         /*
399          * This is a little tricky.  We can get the status write for
400          * the orb before we get this callback.  The status write
401          * handler above will assume the orb pointer transaction was
402          * successful and set the rcode to RCODE_COMPLETE for the orb.
403          * So this callback only sets the rcode if it hasn't already
404          * been set and only does the cleanup if the transaction
405          * failed and we didn't already get a status write.
406          */
407         spin_lock_irqsave(&card->lock, flags);
408
409         if (orb->rcode == -1)
410                 orb->rcode = rcode;
411         if (orb->rcode != RCODE_COMPLETE) {
412                 list_del(&orb->link);
413                 spin_unlock_irqrestore(&card->lock, flags);
414                 orb->callback(orb, NULL);
415         } else {
416                 spin_unlock_irqrestore(&card->lock, flags);
417         }
418
419         kref_put(&orb->kref, free_orb);
420 }
421
422 static void
423 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
424               int node_id, int generation, u64 offset)
425 {
426         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
427         unsigned long flags;
428
429         orb->pointer.high = 0;
430         orb->pointer.low = orb->request_bus;
431         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
432
433         spin_lock_irqsave(&device->card->lock, flags);
434         list_add_tail(&orb->link, &lu->orb_list);
435         spin_unlock_irqrestore(&device->card->lock, flags);
436
437         /* Take a ref for the orb list and for the transaction callback. */
438         kref_get(&orb->kref);
439         kref_get(&orb->kref);
440
441         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
442                         node_id, generation, device->max_speed, offset,
443                         &orb->pointer, sizeof(orb->pointer),
444                         complete_transaction, orb);
445 }
446
447 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
448 {
449         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
450         struct sbp2_orb *orb, *next;
451         struct list_head list;
452         unsigned long flags;
453         int retval = -ENOENT;
454
455         INIT_LIST_HEAD(&list);
456         spin_lock_irqsave(&device->card->lock, flags);
457         list_splice_init(&lu->orb_list, &list);
458         spin_unlock_irqrestore(&device->card->lock, flags);
459
460         list_for_each_entry_safe(orb, next, &list, link) {
461                 retval = 0;
462                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
463                         continue;
464
465                 orb->rcode = RCODE_CANCELLED;
466                 orb->callback(orb, NULL);
467         }
468
469         return retval;
470 }
471
472 static void
473 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
474 {
475         struct sbp2_management_orb *orb =
476                 container_of(base_orb, struct sbp2_management_orb, base);
477
478         if (status)
479                 memcpy(&orb->status, status, sizeof(*status));
480         complete(&orb->done);
481 }
482
483 static int
484 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
485                          int generation, int function, int lun_or_login_id,
486                          void *response)
487 {
488         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
489         struct sbp2_management_orb *orb;
490         int retval = -ENOMEM;
491
492         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
493         if (orb == NULL)
494                 return -ENOMEM;
495
496         kref_init(&orb->base.kref);
497         orb->response_bus =
498                 dma_map_single(device->card->device, &orb->response,
499                                sizeof(orb->response), DMA_FROM_DEVICE);
500         if (dma_mapping_error(orb->response_bus))
501                 goto fail_mapping_response;
502
503         orb->request.response.high    = 0;
504         orb->request.response.low     = orb->response_bus;
505
506         orb->request.misc =
507                 MANAGEMENT_ORB_NOTIFY |
508                 MANAGEMENT_ORB_FUNCTION(function) |
509                 MANAGEMENT_ORB_LUN(lun_or_login_id);
510         orb->request.length =
511                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
512
513         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
514         orb->request.status_fifo.low  = lu->address_handler.offset;
515
516         if (function == SBP2_LOGIN_REQUEST) {
517                 orb->request.misc |=
518                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
519                         MANAGEMENT_ORB_RECONNECT(0);
520         }
521
522         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
523
524         init_completion(&orb->done);
525         orb->base.callback = complete_management_orb;
526
527         orb->base.request_bus =
528                 dma_map_single(device->card->device, &orb->request,
529                                sizeof(orb->request), DMA_TO_DEVICE);
530         if (dma_mapping_error(orb->base.request_bus))
531                 goto fail_mapping_request;
532
533         sbp2_send_orb(&orb->base, lu, node_id, generation,
534                       lu->tgt->management_agent_address);
535
536         wait_for_completion_timeout(&orb->done,
537                                     msecs_to_jiffies(SBP2_ORB_TIMEOUT));
538
539         retval = -EIO;
540         if (sbp2_cancel_orbs(lu) == 0) {
541                 fw_error("orb reply timed out, rcode=0x%02x\n",
542                          orb->base.rcode);
543                 goto out;
544         }
545
546         if (orb->base.rcode != RCODE_COMPLETE) {
547                 fw_error("management write failed, rcode 0x%02x\n",
548                          orb->base.rcode);
549                 goto out;
550         }
551
552         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
553             STATUS_GET_SBP_STATUS(orb->status) != 0) {
554                 fw_error("error status: %d:%d\n",
555                          STATUS_GET_RESPONSE(orb->status),
556                          STATUS_GET_SBP_STATUS(orb->status));
557                 goto out;
558         }
559
560         retval = 0;
561  out:
562         dma_unmap_single(device->card->device, orb->base.request_bus,
563                          sizeof(orb->request), DMA_TO_DEVICE);
564  fail_mapping_request:
565         dma_unmap_single(device->card->device, orb->response_bus,
566                          sizeof(orb->response), DMA_FROM_DEVICE);
567  fail_mapping_response:
568         if (response)
569                 fw_memcpy_from_be32(response,
570                                     orb->response, sizeof(orb->response));
571         kref_put(&orb->base.kref, free_orb);
572
573         return retval;
574 }
575
576 static void
577 complete_agent_reset_write(struct fw_card *card, int rcode,
578                            void *payload, size_t length, void *data)
579 {
580         struct fw_transaction *t = data;
581
582         kfree(t);
583 }
584
585 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
586 {
587         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
588         struct fw_transaction *t;
589         static u32 zero;
590
591         t = kzalloc(sizeof(*t), GFP_ATOMIC);
592         if (t == NULL)
593                 return -ENOMEM;
594
595         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
596                         lu->tgt->node_id, lu->generation, device->max_speed,
597                         lu->command_block_agent_address + SBP2_AGENT_RESET,
598                         &zero, sizeof(zero), complete_agent_reset_write, t);
599
600         return 0;
601 }
602
603 static void sbp2_release_target(struct kref *kref)
604 {
605         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
606         struct sbp2_logical_unit *lu, *next;
607         struct Scsi_Host *shost =
608                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
609         struct fw_device *device = fw_device(tgt->unit->device.parent);
610
611         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
612                 if (lu->sdev)
613                         scsi_remove_device(lu->sdev);
614
615                 if (!fw_device_is_shutdown(device))
616                         sbp2_send_management_orb(lu, tgt->node_id,
617                                         lu->generation, SBP2_LOGOUT_REQUEST,
618                                         lu->login_id, NULL);
619
620                 fw_core_remove_address_handler(&lu->address_handler);
621                 list_del(&lu->link);
622                 kfree(lu);
623         }
624         scsi_remove_host(shost);
625         fw_notify("released %s\n", tgt->unit->device.bus_id);
626
627         put_device(&tgt->unit->device);
628         scsi_host_put(shost);
629 }
630
631 static struct workqueue_struct *sbp2_wq;
632
633 /*
634  * Always get the target's kref when scheduling work on one its units.
635  * Each workqueue job is responsible to call sbp2_target_put() upon return.
636  */
637 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
638 {
639         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
640                 kref_get(&lu->tgt->kref);
641 }
642
643 static void sbp2_target_put(struct sbp2_target *tgt)
644 {
645         kref_put(&tgt->kref, sbp2_release_target);
646 }
647
648 static void sbp2_reconnect(struct work_struct *work);
649
650 static void sbp2_login(struct work_struct *work)
651 {
652         struct sbp2_logical_unit *lu =
653                 container_of(work, struct sbp2_logical_unit, work.work);
654         struct Scsi_Host *shost =
655                 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
656         struct scsi_device *sdev;
657         struct scsi_lun eight_bytes_lun;
658         struct fw_unit *unit = lu->tgt->unit;
659         struct fw_device *device = fw_device(unit->device.parent);
660         struct sbp2_login_response response;
661         int generation, node_id, local_node_id;
662
663         generation    = device->card->generation;
664         node_id       = device->node->node_id;
665         local_node_id = device->card->local_node->node_id;
666
667         if (sbp2_send_management_orb(lu, node_id, generation,
668                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
669                 if (lu->retries++ < 5)
670                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
671                 else
672                         fw_error("failed to login to %s LUN %04x\n",
673                                  unit->device.bus_id, lu->lun);
674                 goto out;
675         }
676
677         lu->generation        = generation;
678         lu->tgt->node_id      = node_id;
679         lu->tgt->address_high = local_node_id << 16;
680
681         /* Get command block agent offset and login id. */
682         lu->command_block_agent_address =
683                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
684                 response.command_block_agent.low;
685         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
686
687         fw_notify("logged in to %s LUN %04x (%d retries)\n",
688                   unit->device.bus_id, lu->lun, lu->retries);
689
690 #if 0
691         /* FIXME: The linux1394 sbp2 does this last step. */
692         sbp2_set_busy_timeout(scsi_id);
693 #endif
694
695         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
696         sbp2_agent_reset(lu);
697
698         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
699         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
700         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
701
702         sdev = __scsi_add_device(shost, 0, 0,
703                                  scsilun_to_int(&eight_bytes_lun), lu);
704         if (IS_ERR(sdev)) {
705                 sbp2_send_management_orb(lu, node_id, generation,
706                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
707                 /*
708                  * Set this back to sbp2_login so we fall back and
709                  * retry login on bus reset.
710                  */
711                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
712         } else {
713                 lu->sdev = sdev;
714                 scsi_device_put(sdev);
715         }
716  out:
717         sbp2_target_put(lu->tgt);
718 }
719
720 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
721 {
722         struct sbp2_logical_unit *lu;
723
724         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
725         if (!lu)
726                 return -ENOMEM;
727
728         lu->address_handler.length           = 0x100;
729         lu->address_handler.address_callback = sbp2_status_write;
730         lu->address_handler.callback_data    = lu;
731
732         if (fw_core_add_address_handler(&lu->address_handler,
733                                         &fw_high_memory_region) < 0) {
734                 kfree(lu);
735                 return -ENOMEM;
736         }
737
738         lu->tgt  = tgt;
739         lu->sdev = NULL;
740         lu->lun  = lun_entry & 0xffff;
741         lu->retries = 0;
742         INIT_LIST_HEAD(&lu->orb_list);
743         INIT_DELAYED_WORK(&lu->work, sbp2_login);
744
745         list_add_tail(&lu->link, &tgt->lu_list);
746         return 0;
747 }
748
749 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
750 {
751         struct fw_csr_iterator ci;
752         int key, value;
753
754         fw_csr_iterator_init(&ci, directory);
755         while (fw_csr_iterator_next(&ci, &key, &value))
756                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
757                     sbp2_add_logical_unit(tgt, value) < 0)
758                         return -ENOMEM;
759         return 0;
760 }
761
762 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
763                               u32 *model, u32 *firmware_revision)
764 {
765         struct fw_csr_iterator ci;
766         int key, value;
767
768         fw_csr_iterator_init(&ci, directory);
769         while (fw_csr_iterator_next(&ci, &key, &value)) {
770                 switch (key) {
771
772                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
773                         tgt->management_agent_address =
774                                         CSR_REGISTER_BASE + 4 * value;
775                         break;
776
777                 case CSR_DIRECTORY_ID:
778                         tgt->directory_id = value;
779                         break;
780
781                 case CSR_MODEL:
782                         *model = value;
783                         break;
784
785                 case SBP2_CSR_FIRMWARE_REVISION:
786                         *firmware_revision = value;
787                         break;
788
789                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
790                         if (sbp2_add_logical_unit(tgt, value) < 0)
791                                 return -ENOMEM;
792                         break;
793
794                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
795                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
796                                 return -ENOMEM;
797                         break;
798                 }
799         }
800         return 0;
801 }
802
803 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
804                                   u32 firmware_revision)
805 {
806         int i;
807         unsigned w = sbp2_param_workarounds;
808
809         if (w)
810                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
811                           "if you need the workarounds parameter for %s\n",
812                           tgt->unit->device.bus_id);
813
814         if (w & SBP2_WORKAROUND_OVERRIDE)
815                 goto out;
816
817         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
818
819                 if (sbp2_workarounds_table[i].firmware_revision !=
820                     (firmware_revision & 0xffffff00))
821                         continue;
822
823                 if (sbp2_workarounds_table[i].model != model &&
824                     sbp2_workarounds_table[i].model != ~0)
825                         continue;
826
827                 w |= sbp2_workarounds_table[i].workarounds;
828                 break;
829         }
830  out:
831         if (w)
832                 fw_notify("Workarounds for %s: 0x%x "
833                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
834                           tgt->unit->device.bus_id,
835                           w, firmware_revision, model);
836         tgt->workarounds = w;
837 }
838
839 static struct scsi_host_template scsi_driver_template;
840
841 static int sbp2_probe(struct device *dev)
842 {
843         struct fw_unit *unit = fw_unit(dev);
844         struct fw_device *device = fw_device(unit->device.parent);
845         struct sbp2_target *tgt;
846         struct sbp2_logical_unit *lu;
847         struct Scsi_Host *shost;
848         u32 model, firmware_revision;
849
850         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
851         if (shost == NULL)
852                 return -ENOMEM;
853
854         tgt = (struct sbp2_target *)shost->hostdata;
855         unit->device.driver_data = tgt;
856         tgt->unit = unit;
857         kref_init(&tgt->kref);
858         INIT_LIST_HEAD(&tgt->lu_list);
859
860         if (fw_device_enable_phys_dma(device) < 0)
861                 goto fail_shost_put;
862
863         if (scsi_add_host(shost, &unit->device) < 0)
864                 goto fail_shost_put;
865
866         /* Initialize to values that won't match anything in our table. */
867         firmware_revision = 0xff000000;
868         model = 0xff000000;
869
870         /* implicit directory ID */
871         tgt->directory_id = ((unit->directory - device->config_rom) * 4
872                              + CSR_CONFIG_ROM) & 0xffffff;
873
874         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
875                                &firmware_revision) < 0)
876                 goto fail_tgt_put;
877
878         sbp2_init_workarounds(tgt, model, firmware_revision);
879
880         get_device(&unit->device);
881
882         /* Do the login in a workqueue so we can easily reschedule retries. */
883         list_for_each_entry(lu, &tgt->lu_list, link)
884                 sbp2_queue_work(lu, 0);
885         return 0;
886
887  fail_tgt_put:
888         sbp2_target_put(tgt);
889         return -ENOMEM;
890
891  fail_shost_put:
892         scsi_host_put(shost);
893         return -ENOMEM;
894 }
895
896 static int sbp2_remove(struct device *dev)
897 {
898         struct fw_unit *unit = fw_unit(dev);
899         struct sbp2_target *tgt = unit->device.driver_data;
900
901         sbp2_target_put(tgt);
902         return 0;
903 }
904
905 static void sbp2_reconnect(struct work_struct *work)
906 {
907         struct sbp2_logical_unit *lu =
908                 container_of(work, struct sbp2_logical_unit, work.work);
909         struct fw_unit *unit = lu->tgt->unit;
910         struct fw_device *device = fw_device(unit->device.parent);
911         int generation, node_id, local_node_id;
912
913         generation    = device->card->generation;
914         node_id       = device->node->node_id;
915         local_node_id = device->card->local_node->node_id;
916
917         if (sbp2_send_management_orb(lu, node_id, generation,
918                                      SBP2_RECONNECT_REQUEST,
919                                      lu->login_id, NULL) < 0) {
920                 if (lu->retries++ >= 5) {
921                         fw_error("failed to reconnect to %s\n",
922                                  unit->device.bus_id);
923                         /* Fall back and try to log in again. */
924                         lu->retries = 0;
925                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
926                 }
927                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
928                 goto out;
929         }
930
931         lu->generation        = generation;
932         lu->tgt->node_id      = node_id;
933         lu->tgt->address_high = local_node_id << 16;
934
935         fw_notify("reconnected to %s LUN %04x (%d retries)\n",
936                   unit->device.bus_id, lu->lun, lu->retries);
937
938         sbp2_agent_reset(lu);
939         sbp2_cancel_orbs(lu);
940  out:
941         sbp2_target_put(lu->tgt);
942 }
943
944 static void sbp2_update(struct fw_unit *unit)
945 {
946         struct sbp2_target *tgt = unit->device.driver_data;
947         struct sbp2_logical_unit *lu;
948
949         fw_device_enable_phys_dma(fw_device(unit->device.parent));
950
951         /*
952          * Fw-core serializes sbp2_update() against sbp2_remove().
953          * Iteration over tgt->lu_list is therefore safe here.
954          */
955         list_for_each_entry(lu, &tgt->lu_list, link) {
956                 lu->retries = 0;
957                 sbp2_queue_work(lu, 0);
958         }
959 }
960
961 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
962 #define SBP2_SW_VERSION_ENTRY   0x00010483
963
964 static const struct fw_device_id sbp2_id_table[] = {
965         {
966                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
967                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
968                 .version      = SBP2_SW_VERSION_ENTRY,
969         },
970         { }
971 };
972
973 static struct fw_driver sbp2_driver = {
974         .driver   = {
975                 .owner  = THIS_MODULE,
976                 .name   = sbp2_driver_name,
977                 .bus    = &fw_bus_type,
978                 .probe  = sbp2_probe,
979                 .remove = sbp2_remove,
980         },
981         .update   = sbp2_update,
982         .id_table = sbp2_id_table,
983 };
984
985 static unsigned int
986 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
987 {
988         int sam_status;
989
990         sense_data[0] = 0x70;
991         sense_data[1] = 0x0;
992         sense_data[2] = sbp2_status[1];
993         sense_data[3] = sbp2_status[4];
994         sense_data[4] = sbp2_status[5];
995         sense_data[5] = sbp2_status[6];
996         sense_data[6] = sbp2_status[7];
997         sense_data[7] = 10;
998         sense_data[8] = sbp2_status[8];
999         sense_data[9] = sbp2_status[9];
1000         sense_data[10] = sbp2_status[10];
1001         sense_data[11] = sbp2_status[11];
1002         sense_data[12] = sbp2_status[2];
1003         sense_data[13] = sbp2_status[3];
1004         sense_data[14] = sbp2_status[12];
1005         sense_data[15] = sbp2_status[13];
1006
1007         sam_status = sbp2_status[0] & 0x3f;
1008
1009         switch (sam_status) {
1010         case SAM_STAT_GOOD:
1011         case SAM_STAT_CHECK_CONDITION:
1012         case SAM_STAT_CONDITION_MET:
1013         case SAM_STAT_BUSY:
1014         case SAM_STAT_RESERVATION_CONFLICT:
1015         case SAM_STAT_COMMAND_TERMINATED:
1016                 return DID_OK << 16 | sam_status;
1017
1018         default:
1019                 return DID_ERROR << 16;
1020         }
1021 }
1022
1023 static void
1024 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1025 {
1026         struct sbp2_command_orb *orb =
1027                 container_of(base_orb, struct sbp2_command_orb, base);
1028         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1029         int result;
1030
1031         if (status != NULL) {
1032                 if (STATUS_GET_DEAD(*status))
1033                         sbp2_agent_reset(orb->lu);
1034
1035                 switch (STATUS_GET_RESPONSE(*status)) {
1036                 case SBP2_STATUS_REQUEST_COMPLETE:
1037                         result = DID_OK << 16;
1038                         break;
1039                 case SBP2_STATUS_TRANSPORT_FAILURE:
1040                         result = DID_BUS_BUSY << 16;
1041                         break;
1042                 case SBP2_STATUS_ILLEGAL_REQUEST:
1043                 case SBP2_STATUS_VENDOR_DEPENDENT:
1044                 default:
1045                         result = DID_ERROR << 16;
1046                         break;
1047                 }
1048
1049                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1050                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1051                                                            orb->cmd->sense_buffer);
1052         } else {
1053                 /*
1054                  * If the orb completes with status == NULL, something
1055                  * went wrong, typically a bus reset happened mid-orb
1056                  * or when sending the write (less likely).
1057                  */
1058                 result = DID_BUS_BUSY << 16;
1059         }
1060
1061         dma_unmap_single(device->card->device, orb->base.request_bus,
1062                          sizeof(orb->request), DMA_TO_DEVICE);
1063
1064         if (scsi_sg_count(orb->cmd) > 0)
1065                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1066                              scsi_sg_count(orb->cmd),
1067                              orb->cmd->sc_data_direction);
1068
1069         if (orb->page_table_bus != 0)
1070                 dma_unmap_single(device->card->device, orb->page_table_bus,
1071                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1072
1073         orb->cmd->result = result;
1074         orb->done(orb->cmd);
1075 }
1076
1077 static int
1078 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1079                      struct sbp2_logical_unit *lu)
1080 {
1081         struct scatterlist *sg;
1082         int sg_len, l, i, j, count;
1083         dma_addr_t sg_addr;
1084
1085         sg = scsi_sglist(orb->cmd);
1086         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1087                            orb->cmd->sc_data_direction);
1088         if (count == 0)
1089                 goto fail;
1090
1091         /*
1092          * Handle the special case where there is only one element in
1093          * the scatter list by converting it to an immediate block
1094          * request. This is also a workaround for broken devices such
1095          * as the second generation iPod which doesn't support page
1096          * tables.
1097          */
1098         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1099                 orb->request.data_descriptor.high = lu->tgt->address_high;
1100                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1101                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1102                 return 0;
1103         }
1104
1105         /*
1106          * Convert the scatterlist to an sbp2 page table.  If any
1107          * scatterlist entries are too big for sbp2, we split them as we
1108          * go.  Even if we ask the block I/O layer to not give us sg
1109          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1110          * during DMA mapping, and Linux currently doesn't prevent this.
1111          */
1112         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1113                 sg_len = sg_dma_len(sg);
1114                 sg_addr = sg_dma_address(sg);
1115                 while (sg_len) {
1116                         /* FIXME: This won't get us out of the pinch. */
1117                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1118                                 fw_error("page table overflow\n");
1119                                 goto fail_page_table;
1120                         }
1121                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1122                         orb->page_table[j].low = sg_addr;
1123                         orb->page_table[j].high = (l << 16);
1124                         sg_addr += l;
1125                         sg_len -= l;
1126                         j++;
1127                 }
1128         }
1129
1130         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1131                           sizeof(orb->page_table[0]) * j);
1132         orb->page_table_bus =
1133                 dma_map_single(device->card->device, orb->page_table,
1134                                sizeof(orb->page_table), DMA_TO_DEVICE);
1135         if (dma_mapping_error(orb->page_table_bus))
1136                 goto fail_page_table;
1137
1138         /*
1139          * The data_descriptor pointer is the one case where we need
1140          * to fill in the node ID part of the address.  All other
1141          * pointers assume that the data referenced reside on the
1142          * initiator (i.e. us), but data_descriptor can refer to data
1143          * on other nodes so we need to put our ID in descriptor.high.
1144          */
1145         orb->request.data_descriptor.high = lu->tgt->address_high;
1146         orb->request.data_descriptor.low  = orb->page_table_bus;
1147         orb->request.misc |=
1148                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1149                 COMMAND_ORB_DATA_SIZE(j);
1150
1151         return 0;
1152
1153  fail_page_table:
1154         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1155                      orb->cmd->sc_data_direction);
1156  fail:
1157         return -ENOMEM;
1158 }
1159
1160 /* SCSI stack integration */
1161
1162 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1163 {
1164         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1165         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1166         struct sbp2_command_orb *orb;
1167         unsigned max_payload;
1168         int retval = SCSI_MLQUEUE_HOST_BUSY;
1169
1170         /*
1171          * Bidirectional commands are not yet implemented, and unknown
1172          * transfer direction not handled.
1173          */
1174         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1175                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1176                 cmd->result = DID_ERROR << 16;
1177                 done(cmd);
1178                 return 0;
1179         }
1180
1181         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1182         if (orb == NULL) {
1183                 fw_notify("failed to alloc orb\n");
1184                 return SCSI_MLQUEUE_HOST_BUSY;
1185         }
1186
1187         /* Initialize rcode to something not RCODE_COMPLETE. */
1188         orb->base.rcode = -1;
1189         kref_init(&orb->base.kref);
1190
1191         orb->lu   = lu;
1192         orb->done = done;
1193         orb->cmd  = cmd;
1194
1195         orb->request.next.high   = SBP2_ORB_NULL;
1196         orb->request.next.low    = 0x0;
1197         /*
1198          * At speed 100 we can do 512 bytes per packet, at speed 200,
1199          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1200          * specifies the max payload size as 2 ^ (max_payload + 2), so
1201          * if we set this to max_speed + 7, we get the right value.
1202          */
1203         max_payload = min(device->max_speed + 7,
1204                           device->card->max_receive - 1);
1205         orb->request.misc =
1206                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1207                 COMMAND_ORB_SPEED(device->max_speed) |
1208                 COMMAND_ORB_NOTIFY;
1209
1210         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1211                 orb->request.misc |=
1212                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1213         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1214                 orb->request.misc |=
1215                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1216
1217         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1218                 goto out;
1219
1220         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1221
1222         memset(orb->request.command_block,
1223                0, sizeof(orb->request.command_block));
1224         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1225
1226         orb->base.callback = complete_command_orb;
1227         orb->base.request_bus =
1228                 dma_map_single(device->card->device, &orb->request,
1229                                sizeof(orb->request), DMA_TO_DEVICE);
1230         if (dma_mapping_error(orb->base.request_bus))
1231                 goto out;
1232
1233         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1234                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1235         retval = 0;
1236  out:
1237         kref_put(&orb->base.kref, free_orb);
1238         return retval;
1239 }
1240
1241 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1242 {
1243         struct sbp2_logical_unit *lu = sdev->hostdata;
1244
1245         sdev->allow_restart = 1;
1246
1247         /*
1248          * Update the dma alignment (minimum alignment requirements for
1249          * start and end of DMA transfers) to be a sector
1250          */
1251         blk_queue_update_dma_alignment(sdev->request_queue, 511);
1252
1253         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1254                 sdev->inquiry_len = 36;
1255
1256         return 0;
1257 }
1258
1259 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1260 {
1261         struct sbp2_logical_unit *lu = sdev->hostdata;
1262
1263         sdev->use_10_for_rw = 1;
1264
1265         if (sdev->type == TYPE_ROM)
1266                 sdev->use_10_for_ms = 1;
1267
1268         if (sdev->type == TYPE_DISK &&
1269             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1270                 sdev->skip_ms_page_8 = 1;
1271
1272         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1273                 sdev->fix_capacity = 1;
1274
1275         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1276                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1277
1278         return 0;
1279 }
1280
1281 /*
1282  * Called by scsi stack when something has really gone wrong.  Usually
1283  * called when a command has timed-out for some reason.
1284  */
1285 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1286 {
1287         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1288
1289         fw_notify("sbp2_scsi_abort\n");
1290         sbp2_agent_reset(lu);
1291         sbp2_cancel_orbs(lu);
1292
1293         return SUCCESS;
1294 }
1295
1296 /*
1297  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1298  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1299  *
1300  * This is the concatenation of target port identifier and logical unit
1301  * identifier as per SAM-2...SAM-4 annex A.
1302  */
1303 static ssize_t
1304 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1305                             char *buf)
1306 {
1307         struct scsi_device *sdev = to_scsi_device(dev);
1308         struct sbp2_logical_unit *lu;
1309         struct fw_device *device;
1310
1311         if (!sdev)
1312                 return 0;
1313
1314         lu = sdev->hostdata;
1315         device = fw_device(lu->tgt->unit->device.parent);
1316
1317         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1318                         device->config_rom[3], device->config_rom[4],
1319                         lu->tgt->directory_id, lu->lun);
1320 }
1321
1322 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1323
1324 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1325         &dev_attr_ieee1394_id,
1326         NULL
1327 };
1328
1329 static struct scsi_host_template scsi_driver_template = {
1330         .module                 = THIS_MODULE,
1331         .name                   = "SBP-2 IEEE-1394",
1332         .proc_name              = sbp2_driver_name,
1333         .queuecommand           = sbp2_scsi_queuecommand,
1334         .slave_alloc            = sbp2_scsi_slave_alloc,
1335         .slave_configure        = sbp2_scsi_slave_configure,
1336         .eh_abort_handler       = sbp2_scsi_abort,
1337         .this_id                = -1,
1338         .sg_tablesize           = SG_ALL,
1339         .use_clustering         = ENABLE_CLUSTERING,
1340         .cmd_per_lun            = 1,
1341         .can_queue              = 1,
1342         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1343 };
1344
1345 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1346 MODULE_DESCRIPTION("SCSI over IEEE1394");
1347 MODULE_LICENSE("GPL");
1348 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1349
1350 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1351 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1352 MODULE_ALIAS("sbp2");
1353 #endif
1354
1355 static int __init sbp2_init(void)
1356 {
1357         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1358         if (!sbp2_wq)
1359                 return -ENOMEM;
1360
1361         return driver_register(&sbp2_driver.driver);
1362 }
1363
1364 static void __exit sbp2_cleanup(void)
1365 {
1366         driver_unregister(&sbp2_driver.driver);
1367         destroy_workqueue(sbp2_wq);
1368 }
1369
1370 module_init(sbp2_init);
1371 module_exit(sbp2_cleanup);