2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
43 #include <asm/system.h>
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
50 #include "fw-transaction.h"
51 #include "fw-topology.h"
52 #include "fw-device.h"
55 * So far only bridges from Oxford Semiconductor are known to support
56 * concurrent logins. Depending on firmware, four or two concurrent logins
57 * are possible on OXFW911 and newer Oxsemi bridges.
59 * Concurrent logins are useful together with cluster filesystems.
61 static int sbp2_param_exclusive_login = 1;
62 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
63 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
64 "(default = Y, use N for concurrent initiators)");
67 * Flags for firmware oddities
69 * - 128kB max transfer
70 * Limit transfer size. Necessary for some old bridges.
73 * When scsi_mod probes the device, let the inquiry command look like that
77 * Suppress sending of mode_sense for mode page 8 if the device pretends to
78 * support the SCSI Primary Block commands instead of Reduced Block Commands.
81 * Tell sd_mod to correct the last sector number reported by read_capacity.
82 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
83 * Don't use this with devices which don't have this bug.
85 * - override internal blacklist
86 * Instead of adding to the built-in blacklist, use only the workarounds
87 * specified in the module load parameter.
88 * Useful if a blacklist entry interfered with a non-broken device.
90 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
91 #define SBP2_WORKAROUND_INQUIRY_36 0x2
92 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
93 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
94 #define SBP2_WORKAROUND_OVERRIDE 0x100
96 static int sbp2_param_workarounds;
97 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
98 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
99 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
100 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
101 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
102 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
103 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
104 ", or a combination)");
106 /* I don't know why the SCSI stack doesn't define something like this... */
107 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
109 static const char sbp2_driver_name[] = "sbp2";
112 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
113 * and one struct scsi_device per sbp2_logical_unit.
115 struct sbp2_logical_unit {
116 struct sbp2_target *tgt;
117 struct list_head link;
118 struct scsi_device *sdev;
119 struct fw_address_handler address_handler;
120 struct list_head orb_list;
122 u64 command_block_agent_address;
127 * The generation is updated once we've logged in or reconnected
128 * to the logical unit. Thus, I/O to the device will automatically
129 * fail and get retried if it happens in a window where the device
130 * is not ready, e.g. after a bus reset but before we reconnect.
134 struct delayed_work work;
138 * We create one struct sbp2_target per IEEE 1212 Unit Directory
139 * and one struct Scsi_Host per sbp2_target.
143 struct fw_unit *unit;
145 u64 management_agent_address;
150 unsigned workarounds;
151 struct list_head lu_list;
154 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
155 #define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */
156 #define SBP2_ORB_NULL 0x80000000
158 #define SBP2_DIRECTION_TO_MEDIA 0x0
159 #define SBP2_DIRECTION_FROM_MEDIA 0x1
161 /* Unit directory keys */
162 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
163 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
164 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
166 /* Management orb opcodes */
167 #define SBP2_LOGIN_REQUEST 0x0
168 #define SBP2_QUERY_LOGINS_REQUEST 0x1
169 #define SBP2_RECONNECT_REQUEST 0x3
170 #define SBP2_SET_PASSWORD_REQUEST 0x4
171 #define SBP2_LOGOUT_REQUEST 0x7
172 #define SBP2_ABORT_TASK_REQUEST 0xb
173 #define SBP2_ABORT_TASK_SET 0xc
174 #define SBP2_LOGICAL_UNIT_RESET 0xe
175 #define SBP2_TARGET_RESET_REQUEST 0xf
177 /* Offsets for command block agent registers */
178 #define SBP2_AGENT_STATE 0x00
179 #define SBP2_AGENT_RESET 0x04
180 #define SBP2_ORB_POINTER 0x08
181 #define SBP2_DOORBELL 0x10
182 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
184 /* Status write response codes */
185 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
186 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
187 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
188 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
190 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
191 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
192 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
193 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
194 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
195 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
196 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
197 #define STATUS_GET_DATA(v) ((v).data)
205 struct sbp2_pointer {
211 struct fw_transaction t;
213 dma_addr_t request_bus;
215 struct sbp2_pointer pointer;
216 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
217 struct list_head link;
220 #define MANAGEMENT_ORB_LUN(v) ((v))
221 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
222 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
223 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
224 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
225 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
227 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
228 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
230 struct sbp2_management_orb {
231 struct sbp2_orb base;
233 struct sbp2_pointer password;
234 struct sbp2_pointer response;
237 struct sbp2_pointer status_fifo;
240 dma_addr_t response_bus;
241 struct completion done;
242 struct sbp2_status status;
245 #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff)
246 #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff)
248 struct sbp2_login_response {
250 struct sbp2_pointer command_block_agent;
253 #define COMMAND_ORB_DATA_SIZE(v) ((v))
254 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
255 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
256 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
257 #define COMMAND_ORB_SPEED(v) ((v) << 24)
258 #define COMMAND_ORB_DIRECTION(v) ((v) << 27)
259 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
260 #define COMMAND_ORB_NOTIFY ((1) << 31)
262 struct sbp2_command_orb {
263 struct sbp2_orb base;
265 struct sbp2_pointer next;
266 struct sbp2_pointer data_descriptor;
268 u8 command_block[12];
270 struct scsi_cmnd *cmd;
272 struct sbp2_logical_unit *lu;
274 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
275 dma_addr_t page_table_bus;
279 * List of devices with known bugs.
281 * The firmware_revision field, masked with 0xffff00, is the best
282 * indicator for the type of bridge chip of a device. It yields a few
283 * false positives but this did not break correctly behaving devices
284 * so far. We use ~0 as a wildcard, since the 24 bit values we get
285 * from the config rom can never match that.
287 static const struct {
288 u32 firmware_revision;
290 unsigned workarounds;
291 } sbp2_workarounds_table[] = {
292 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
293 .firmware_revision = 0x002800,
295 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
296 SBP2_WORKAROUND_MODE_SENSE_8,
298 /* Initio bridges, actually only needed for some older ones */ {
299 .firmware_revision = 0x000200,
301 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
303 /* Symbios bridge */ {
304 .firmware_revision = 0xa0b800,
306 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
310 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
311 * these iPods do not feature the read_capacity bug according
312 * to one report. Read_capacity behaviour as well as model_id
313 * could change due to Apple-supplied firmware updates though.
316 /* iPod 4th generation. */ {
317 .firmware_revision = 0x0a2700,
319 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
322 .firmware_revision = 0x0a2700,
324 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
327 .firmware_revision = 0x0a2700,
329 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
334 free_orb(struct kref *kref)
336 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
342 sbp2_status_write(struct fw_card *card, struct fw_request *request,
343 int tcode, int destination, int source,
344 int generation, int speed,
345 unsigned long long offset,
346 void *payload, size_t length, void *callback_data)
348 struct sbp2_logical_unit *lu = callback_data;
349 struct sbp2_orb *orb;
350 struct sbp2_status status;
354 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
355 length == 0 || length > sizeof(status)) {
356 fw_send_response(card, request, RCODE_TYPE_ERROR);
360 header_size = min(length, 2 * sizeof(u32));
361 fw_memcpy_from_be32(&status, payload, header_size);
362 if (length > header_size)
363 memcpy(status.data, payload + 8, length - header_size);
364 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
365 fw_notify("non-orb related status write, not handled\n");
366 fw_send_response(card, request, RCODE_COMPLETE);
370 /* Lookup the orb corresponding to this status write. */
371 spin_lock_irqsave(&card->lock, flags);
372 list_for_each_entry(orb, &lu->orb_list, link) {
373 if (STATUS_GET_ORB_HIGH(status) == 0 &&
374 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
375 orb->rcode = RCODE_COMPLETE;
376 list_del(&orb->link);
380 spin_unlock_irqrestore(&card->lock, flags);
382 if (&orb->link != &lu->orb_list)
383 orb->callback(orb, &status);
385 fw_error("status write for unknown orb\n");
387 kref_put(&orb->kref, free_orb);
389 fw_send_response(card, request, RCODE_COMPLETE);
393 complete_transaction(struct fw_card *card, int rcode,
394 void *payload, size_t length, void *data)
396 struct sbp2_orb *orb = data;
400 * This is a little tricky. We can get the status write for
401 * the orb before we get this callback. The status write
402 * handler above will assume the orb pointer transaction was
403 * successful and set the rcode to RCODE_COMPLETE for the orb.
404 * So this callback only sets the rcode if it hasn't already
405 * been set and only does the cleanup if the transaction
406 * failed and we didn't already get a status write.
408 spin_lock_irqsave(&card->lock, flags);
410 if (orb->rcode == -1)
412 if (orb->rcode != RCODE_COMPLETE) {
413 list_del(&orb->link);
414 spin_unlock_irqrestore(&card->lock, flags);
415 orb->callback(orb, NULL);
417 spin_unlock_irqrestore(&card->lock, flags);
420 kref_put(&orb->kref, free_orb);
424 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
425 int node_id, int generation, u64 offset)
427 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
430 orb->pointer.high = 0;
431 orb->pointer.low = orb->request_bus;
432 fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
434 spin_lock_irqsave(&device->card->lock, flags);
435 list_add_tail(&orb->link, &lu->orb_list);
436 spin_unlock_irqrestore(&device->card->lock, flags);
438 /* Take a ref for the orb list and for the transaction callback. */
439 kref_get(&orb->kref);
440 kref_get(&orb->kref);
442 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
443 node_id, generation, device->max_speed, offset,
444 &orb->pointer, sizeof(orb->pointer),
445 complete_transaction, orb);
448 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
450 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
451 struct sbp2_orb *orb, *next;
452 struct list_head list;
454 int retval = -ENOENT;
456 INIT_LIST_HEAD(&list);
457 spin_lock_irqsave(&device->card->lock, flags);
458 list_splice_init(&lu->orb_list, &list);
459 spin_unlock_irqrestore(&device->card->lock, flags);
461 list_for_each_entry_safe(orb, next, &list, link) {
463 if (fw_cancel_transaction(device->card, &orb->t) == 0)
466 orb->rcode = RCODE_CANCELLED;
467 orb->callback(orb, NULL);
474 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
476 struct sbp2_management_orb *orb =
477 container_of(base_orb, struct sbp2_management_orb, base);
480 memcpy(&orb->status, status, sizeof(*status));
481 complete(&orb->done);
485 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
486 int generation, int function, int lun_or_login_id,
489 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
490 struct sbp2_management_orb *orb;
491 int retval = -ENOMEM;
493 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
497 kref_init(&orb->base.kref);
499 dma_map_single(device->card->device, &orb->response,
500 sizeof(orb->response), DMA_FROM_DEVICE);
501 if (dma_mapping_error(orb->response_bus))
502 goto fail_mapping_response;
504 orb->request.response.high = 0;
505 orb->request.response.low = orb->response_bus;
508 MANAGEMENT_ORB_NOTIFY |
509 MANAGEMENT_ORB_FUNCTION(function) |
510 MANAGEMENT_ORB_LUN(lun_or_login_id);
511 orb->request.length =
512 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
514 orb->request.status_fifo.high = lu->address_handler.offset >> 32;
515 orb->request.status_fifo.low = lu->address_handler.offset;
517 if (function == SBP2_LOGIN_REQUEST) {
518 /* Ask for 2^2 == 4 seconds reconnect grace period */
520 MANAGEMENT_ORB_RECONNECT(2) |
521 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
524 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
526 init_completion(&orb->done);
527 orb->base.callback = complete_management_orb;
529 orb->base.request_bus =
530 dma_map_single(device->card->device, &orb->request,
531 sizeof(orb->request), DMA_TO_DEVICE);
532 if (dma_mapping_error(orb->base.request_bus))
533 goto fail_mapping_request;
535 sbp2_send_orb(&orb->base, lu, node_id, generation,
536 lu->tgt->management_agent_address);
538 wait_for_completion_timeout(&orb->done,
539 msecs_to_jiffies(SBP2_ORB_TIMEOUT));
542 if (sbp2_cancel_orbs(lu) == 0) {
543 fw_error("orb reply timed out, rcode=0x%02x\n",
548 if (orb->base.rcode != RCODE_COMPLETE) {
549 fw_error("management write failed, rcode 0x%02x\n",
554 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
555 STATUS_GET_SBP_STATUS(orb->status) != 0) {
556 fw_error("error status: %d:%d\n",
557 STATUS_GET_RESPONSE(orb->status),
558 STATUS_GET_SBP_STATUS(orb->status));
564 dma_unmap_single(device->card->device, orb->base.request_bus,
565 sizeof(orb->request), DMA_TO_DEVICE);
566 fail_mapping_request:
567 dma_unmap_single(device->card->device, orb->response_bus,
568 sizeof(orb->response), DMA_FROM_DEVICE);
569 fail_mapping_response:
571 fw_memcpy_from_be32(response,
572 orb->response, sizeof(orb->response));
573 kref_put(&orb->base.kref, free_orb);
579 complete_agent_reset_write(struct fw_card *card, int rcode,
580 void *payload, size_t length, void *data)
582 struct fw_transaction *t = data;
587 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
589 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
590 struct fw_transaction *t;
593 t = kzalloc(sizeof(*t), GFP_ATOMIC);
597 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
598 lu->tgt->node_id, lu->generation, device->max_speed,
599 lu->command_block_agent_address + SBP2_AGENT_RESET,
600 &zero, sizeof(zero), complete_agent_reset_write, t);
605 static void sbp2_release_target(struct kref *kref)
607 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
608 struct sbp2_logical_unit *lu, *next;
609 struct Scsi_Host *shost =
610 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
611 struct fw_device *device = fw_device(tgt->unit->device.parent);
613 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
615 scsi_remove_device(lu->sdev);
617 if (!fw_device_is_shutdown(device))
618 sbp2_send_management_orb(lu, tgt->node_id,
619 lu->generation, SBP2_LOGOUT_REQUEST,
622 fw_core_remove_address_handler(&lu->address_handler);
626 scsi_remove_host(shost);
627 fw_notify("released %s\n", tgt->unit->device.bus_id);
629 put_device(&tgt->unit->device);
630 scsi_host_put(shost);
633 static struct workqueue_struct *sbp2_wq;
636 * Always get the target's kref when scheduling work on one its units.
637 * Each workqueue job is responsible to call sbp2_target_put() upon return.
639 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
641 if (queue_delayed_work(sbp2_wq, &lu->work, delay))
642 kref_get(&lu->tgt->kref);
645 static void sbp2_target_put(struct sbp2_target *tgt)
647 kref_put(&tgt->kref, sbp2_release_target);
650 static void sbp2_reconnect(struct work_struct *work);
652 static void sbp2_login(struct work_struct *work)
654 struct sbp2_logical_unit *lu =
655 container_of(work, struct sbp2_logical_unit, work.work);
656 struct Scsi_Host *shost =
657 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
658 struct scsi_device *sdev;
659 struct scsi_lun eight_bytes_lun;
660 struct fw_unit *unit = lu->tgt->unit;
661 struct fw_device *device = fw_device(unit->device.parent);
662 struct sbp2_login_response response;
663 int generation, node_id, local_node_id;
665 generation = device->generation;
666 smp_rmb(); /* node_id must not be older than generation */
667 node_id = device->node_id;
668 local_node_id = device->card->node_id;
670 if (sbp2_send_management_orb(lu, node_id, generation,
671 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
672 if (lu->retries++ < 5)
673 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
675 fw_error("failed to login to %s LUN %04x\n",
676 unit->device.bus_id, lu->lun);
680 lu->generation = generation;
681 lu->tgt->node_id = node_id;
682 lu->tgt->address_high = local_node_id << 16;
684 /* Get command block agent offset and login id. */
685 lu->command_block_agent_address =
686 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
687 response.command_block_agent.low;
688 lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
690 fw_notify("logged in to %s LUN %04x (%d retries)\n",
691 unit->device.bus_id, lu->lun, lu->retries);
694 /* FIXME: The linux1394 sbp2 does this last step. */
695 sbp2_set_busy_timeout(scsi_id);
698 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
699 sbp2_agent_reset(lu);
701 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
702 eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
703 eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
705 sdev = __scsi_add_device(shost, 0, 0,
706 scsilun_to_int(&eight_bytes_lun), lu);
708 sbp2_send_management_orb(lu, node_id, generation,
709 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
711 * Set this back to sbp2_login so we fall back and
712 * retry login on bus reset.
714 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
717 scsi_device_put(sdev);
720 sbp2_target_put(lu->tgt);
723 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
725 struct sbp2_logical_unit *lu;
727 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
731 lu->address_handler.length = 0x100;
732 lu->address_handler.address_callback = sbp2_status_write;
733 lu->address_handler.callback_data = lu;
735 if (fw_core_add_address_handler(&lu->address_handler,
736 &fw_high_memory_region) < 0) {
743 lu->lun = lun_entry & 0xffff;
745 INIT_LIST_HEAD(&lu->orb_list);
746 INIT_DELAYED_WORK(&lu->work, sbp2_login);
748 list_add_tail(&lu->link, &tgt->lu_list);
752 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
754 struct fw_csr_iterator ci;
757 fw_csr_iterator_init(&ci, directory);
758 while (fw_csr_iterator_next(&ci, &key, &value))
759 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
760 sbp2_add_logical_unit(tgt, value) < 0)
765 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
766 u32 *model, u32 *firmware_revision)
768 struct fw_csr_iterator ci;
771 fw_csr_iterator_init(&ci, directory);
772 while (fw_csr_iterator_next(&ci, &key, &value)) {
775 case CSR_DEPENDENT_INFO | CSR_OFFSET:
776 tgt->management_agent_address =
777 CSR_REGISTER_BASE + 4 * value;
780 case CSR_DIRECTORY_ID:
781 tgt->directory_id = value;
788 case SBP2_CSR_FIRMWARE_REVISION:
789 *firmware_revision = value;
792 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
793 if (sbp2_add_logical_unit(tgt, value) < 0)
797 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
798 if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
806 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
807 u32 firmware_revision)
810 unsigned w = sbp2_param_workarounds;
813 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
814 "if you need the workarounds parameter for %s\n",
815 tgt->unit->device.bus_id);
817 if (w & SBP2_WORKAROUND_OVERRIDE)
820 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
822 if (sbp2_workarounds_table[i].firmware_revision !=
823 (firmware_revision & 0xffffff00))
826 if (sbp2_workarounds_table[i].model != model &&
827 sbp2_workarounds_table[i].model != ~0)
830 w |= sbp2_workarounds_table[i].workarounds;
835 fw_notify("Workarounds for %s: 0x%x "
836 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
837 tgt->unit->device.bus_id,
838 w, firmware_revision, model);
839 tgt->workarounds = w;
842 static struct scsi_host_template scsi_driver_template;
844 static int sbp2_probe(struct device *dev)
846 struct fw_unit *unit = fw_unit(dev);
847 struct fw_device *device = fw_device(unit->device.parent);
848 struct sbp2_target *tgt;
849 struct sbp2_logical_unit *lu;
850 struct Scsi_Host *shost;
851 u32 model, firmware_revision;
853 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
857 tgt = (struct sbp2_target *)shost->hostdata;
858 unit->device.driver_data = tgt;
860 kref_init(&tgt->kref);
861 INIT_LIST_HEAD(&tgt->lu_list);
863 if (fw_device_enable_phys_dma(device) < 0)
866 if (scsi_add_host(shost, &unit->device) < 0)
869 /* Initialize to values that won't match anything in our table. */
870 firmware_revision = 0xff000000;
873 /* implicit directory ID */
874 tgt->directory_id = ((unit->directory - device->config_rom) * 4
875 + CSR_CONFIG_ROM) & 0xffffff;
877 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
878 &firmware_revision) < 0)
881 sbp2_init_workarounds(tgt, model, firmware_revision);
883 get_device(&unit->device);
885 /* Do the login in a workqueue so we can easily reschedule retries. */
886 list_for_each_entry(lu, &tgt->lu_list, link)
887 sbp2_queue_work(lu, 0);
891 sbp2_target_put(tgt);
895 scsi_host_put(shost);
899 static int sbp2_remove(struct device *dev)
901 struct fw_unit *unit = fw_unit(dev);
902 struct sbp2_target *tgt = unit->device.driver_data;
904 sbp2_target_put(tgt);
908 static void sbp2_reconnect(struct work_struct *work)
910 struct sbp2_logical_unit *lu =
911 container_of(work, struct sbp2_logical_unit, work.work);
912 struct fw_unit *unit = lu->tgt->unit;
913 struct fw_device *device = fw_device(unit->device.parent);
914 int generation, node_id, local_node_id;
916 generation = device->generation;
917 smp_rmb(); /* node_id must not be older than generation */
918 node_id = device->node_id;
919 local_node_id = device->card->node_id;
921 if (sbp2_send_management_orb(lu, node_id, generation,
922 SBP2_RECONNECT_REQUEST,
923 lu->login_id, NULL) < 0) {
924 if (lu->retries++ >= 5) {
925 fw_error("failed to reconnect to %s\n",
926 unit->device.bus_id);
927 /* Fall back and try to log in again. */
929 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
931 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
935 lu->generation = generation;
936 lu->tgt->node_id = node_id;
937 lu->tgt->address_high = local_node_id << 16;
939 fw_notify("reconnected to %s LUN %04x (%d retries)\n",
940 unit->device.bus_id, lu->lun, lu->retries);
942 sbp2_agent_reset(lu);
943 sbp2_cancel_orbs(lu);
945 sbp2_target_put(lu->tgt);
948 static void sbp2_update(struct fw_unit *unit)
950 struct sbp2_target *tgt = unit->device.driver_data;
951 struct sbp2_logical_unit *lu;
953 fw_device_enable_phys_dma(fw_device(unit->device.parent));
956 * Fw-core serializes sbp2_update() against sbp2_remove().
957 * Iteration over tgt->lu_list is therefore safe here.
959 list_for_each_entry(lu, &tgt->lu_list, link) {
961 sbp2_queue_work(lu, 0);
965 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
966 #define SBP2_SW_VERSION_ENTRY 0x00010483
968 static const struct fw_device_id sbp2_id_table[] = {
970 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
971 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
972 .version = SBP2_SW_VERSION_ENTRY,
977 static struct fw_driver sbp2_driver = {
979 .owner = THIS_MODULE,
980 .name = sbp2_driver_name,
983 .remove = sbp2_remove,
985 .update = sbp2_update,
986 .id_table = sbp2_id_table,
990 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
994 sense_data[0] = 0x70;
996 sense_data[2] = sbp2_status[1];
997 sense_data[3] = sbp2_status[4];
998 sense_data[4] = sbp2_status[5];
999 sense_data[5] = sbp2_status[6];
1000 sense_data[6] = sbp2_status[7];
1002 sense_data[8] = sbp2_status[8];
1003 sense_data[9] = sbp2_status[9];
1004 sense_data[10] = sbp2_status[10];
1005 sense_data[11] = sbp2_status[11];
1006 sense_data[12] = sbp2_status[2];
1007 sense_data[13] = sbp2_status[3];
1008 sense_data[14] = sbp2_status[12];
1009 sense_data[15] = sbp2_status[13];
1011 sam_status = sbp2_status[0] & 0x3f;
1013 switch (sam_status) {
1015 case SAM_STAT_CHECK_CONDITION:
1016 case SAM_STAT_CONDITION_MET:
1018 case SAM_STAT_RESERVATION_CONFLICT:
1019 case SAM_STAT_COMMAND_TERMINATED:
1020 return DID_OK << 16 | sam_status;
1023 return DID_ERROR << 16;
1028 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1030 struct sbp2_command_orb *orb =
1031 container_of(base_orb, struct sbp2_command_orb, base);
1032 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1035 if (status != NULL) {
1036 if (STATUS_GET_DEAD(*status))
1037 sbp2_agent_reset(orb->lu);
1039 switch (STATUS_GET_RESPONSE(*status)) {
1040 case SBP2_STATUS_REQUEST_COMPLETE:
1041 result = DID_OK << 16;
1043 case SBP2_STATUS_TRANSPORT_FAILURE:
1044 result = DID_BUS_BUSY << 16;
1046 case SBP2_STATUS_ILLEGAL_REQUEST:
1047 case SBP2_STATUS_VENDOR_DEPENDENT:
1049 result = DID_ERROR << 16;
1053 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1054 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1055 orb->cmd->sense_buffer);
1058 * If the orb completes with status == NULL, something
1059 * went wrong, typically a bus reset happened mid-orb
1060 * or when sending the write (less likely).
1062 result = DID_BUS_BUSY << 16;
1065 dma_unmap_single(device->card->device, orb->base.request_bus,
1066 sizeof(orb->request), DMA_TO_DEVICE);
1068 if (scsi_sg_count(orb->cmd) > 0)
1069 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1070 scsi_sg_count(orb->cmd),
1071 orb->cmd->sc_data_direction);
1073 if (orb->page_table_bus != 0)
1074 dma_unmap_single(device->card->device, orb->page_table_bus,
1075 sizeof(orb->page_table), DMA_TO_DEVICE);
1077 orb->cmd->result = result;
1078 orb->done(orb->cmd);
1082 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1083 struct sbp2_logical_unit *lu)
1085 struct scatterlist *sg;
1086 int sg_len, l, i, j, count;
1089 sg = scsi_sglist(orb->cmd);
1090 count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1091 orb->cmd->sc_data_direction);
1096 * Handle the special case where there is only one element in
1097 * the scatter list by converting it to an immediate block
1098 * request. This is also a workaround for broken devices such
1099 * as the second generation iPod which doesn't support page
1102 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1103 orb->request.data_descriptor.high = lu->tgt->address_high;
1104 orb->request.data_descriptor.low = sg_dma_address(sg);
1105 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1110 * Convert the scatterlist to an sbp2 page table. If any
1111 * scatterlist entries are too big for sbp2, we split them as we
1112 * go. Even if we ask the block I/O layer to not give us sg
1113 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1114 * during DMA mapping, and Linux currently doesn't prevent this.
1116 for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1117 sg_len = sg_dma_len(sg);
1118 sg_addr = sg_dma_address(sg);
1120 /* FIXME: This won't get us out of the pinch. */
1121 if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1122 fw_error("page table overflow\n");
1123 goto fail_page_table;
1125 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1126 orb->page_table[j].low = sg_addr;
1127 orb->page_table[j].high = (l << 16);
1134 fw_memcpy_to_be32(orb->page_table, orb->page_table,
1135 sizeof(orb->page_table[0]) * j);
1136 orb->page_table_bus =
1137 dma_map_single(device->card->device, orb->page_table,
1138 sizeof(orb->page_table), DMA_TO_DEVICE);
1139 if (dma_mapping_error(orb->page_table_bus))
1140 goto fail_page_table;
1143 * The data_descriptor pointer is the one case where we need
1144 * to fill in the node ID part of the address. All other
1145 * pointers assume that the data referenced reside on the
1146 * initiator (i.e. us), but data_descriptor can refer to data
1147 * on other nodes so we need to put our ID in descriptor.high.
1149 orb->request.data_descriptor.high = lu->tgt->address_high;
1150 orb->request.data_descriptor.low = orb->page_table_bus;
1151 orb->request.misc |=
1152 COMMAND_ORB_PAGE_TABLE_PRESENT |
1153 COMMAND_ORB_DATA_SIZE(j);
1158 dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1159 orb->cmd->sc_data_direction);
1164 /* SCSI stack integration */
1166 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1168 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1169 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1170 struct sbp2_command_orb *orb;
1171 unsigned max_payload;
1172 int retval = SCSI_MLQUEUE_HOST_BUSY;
1175 * Bidirectional commands are not yet implemented, and unknown
1176 * transfer direction not handled.
1178 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1179 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1180 cmd->result = DID_ERROR << 16;
1185 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1187 fw_notify("failed to alloc orb\n");
1188 return SCSI_MLQUEUE_HOST_BUSY;
1191 /* Initialize rcode to something not RCODE_COMPLETE. */
1192 orb->base.rcode = -1;
1193 kref_init(&orb->base.kref);
1199 orb->request.next.high = SBP2_ORB_NULL;
1200 orb->request.next.low = 0x0;
1202 * At speed 100 we can do 512 bytes per packet, at speed 200,
1203 * 1024 bytes per packet etc. The SBP-2 max_payload field
1204 * specifies the max payload size as 2 ^ (max_payload + 2), so
1205 * if we set this to max_speed + 7, we get the right value.
1207 max_payload = min(device->max_speed + 7,
1208 device->card->max_receive - 1);
1210 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1211 COMMAND_ORB_SPEED(device->max_speed) |
1214 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1215 orb->request.misc |=
1216 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1217 else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1218 orb->request.misc |=
1219 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1221 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1224 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1226 memset(orb->request.command_block,
1227 0, sizeof(orb->request.command_block));
1228 memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1230 orb->base.callback = complete_command_orb;
1231 orb->base.request_bus =
1232 dma_map_single(device->card->device, &orb->request,
1233 sizeof(orb->request), DMA_TO_DEVICE);
1234 if (dma_mapping_error(orb->base.request_bus))
1237 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1238 lu->command_block_agent_address + SBP2_ORB_POINTER);
1241 kref_put(&orb->base.kref, free_orb);
1245 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1247 struct sbp2_logical_unit *lu = sdev->hostdata;
1249 sdev->allow_restart = 1;
1252 * Update the dma alignment (minimum alignment requirements for
1253 * start and end of DMA transfers) to be a sector
1255 blk_queue_update_dma_alignment(sdev->request_queue, 511);
1257 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1258 sdev->inquiry_len = 36;
1263 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1265 struct sbp2_logical_unit *lu = sdev->hostdata;
1267 sdev->use_10_for_rw = 1;
1269 if (sdev->type == TYPE_ROM)
1270 sdev->use_10_for_ms = 1;
1272 if (sdev->type == TYPE_DISK &&
1273 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1274 sdev->skip_ms_page_8 = 1;
1276 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1277 sdev->fix_capacity = 1;
1279 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1280 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1286 * Called by scsi stack when something has really gone wrong. Usually
1287 * called when a command has timed-out for some reason.
1289 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1291 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1293 fw_notify("sbp2_scsi_abort\n");
1294 sbp2_agent_reset(lu);
1295 sbp2_cancel_orbs(lu);
1301 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1302 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1304 * This is the concatenation of target port identifier and logical unit
1305 * identifier as per SAM-2...SAM-4 annex A.
1308 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1311 struct scsi_device *sdev = to_scsi_device(dev);
1312 struct sbp2_logical_unit *lu;
1313 struct fw_device *device;
1318 lu = sdev->hostdata;
1319 device = fw_device(lu->tgt->unit->device.parent);
1321 return sprintf(buf, "%08x%08x:%06x:%04x\n",
1322 device->config_rom[3], device->config_rom[4],
1323 lu->tgt->directory_id, lu->lun);
1326 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1328 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1329 &dev_attr_ieee1394_id,
1333 static struct scsi_host_template scsi_driver_template = {
1334 .module = THIS_MODULE,
1335 .name = "SBP-2 IEEE-1394",
1336 .proc_name = sbp2_driver_name,
1337 .queuecommand = sbp2_scsi_queuecommand,
1338 .slave_alloc = sbp2_scsi_slave_alloc,
1339 .slave_configure = sbp2_scsi_slave_configure,
1340 .eh_abort_handler = sbp2_scsi_abort,
1342 .sg_tablesize = SG_ALL,
1343 .use_clustering = ENABLE_CLUSTERING,
1346 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1349 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1350 MODULE_DESCRIPTION("SCSI over IEEE1394");
1351 MODULE_LICENSE("GPL");
1352 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1354 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1355 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1356 MODULE_ALIAS("sbp2");
1359 static int __init sbp2_init(void)
1361 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1365 return driver_register(&sbp2_driver.driver);
1368 static void __exit sbp2_cleanup(void)
1370 driver_unregister(&sbp2_driver.driver);
1371 destroy_workqueue(sbp2_wq);
1374 module_init(sbp2_init);
1375 module_exit(sbp2_cleanup);