]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/firewire/fw-sbp2.c
firewire: enforce access order between generation and node ID, fix "giving up on...
[mv-sheeva.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/stringify.h>
41 #include <linux/timer.h>
42 #include <linux/workqueue.h>
43 #include <asm/system.h>
44
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49
50 #include "fw-transaction.h"
51 #include "fw-topology.h"
52 #include "fw-device.h"
53
54 /*
55  * So far only bridges from Oxford Semiconductor are known to support
56  * concurrent logins. Depending on firmware, four or two concurrent logins
57  * are possible on OXFW911 and newer Oxsemi bridges.
58  *
59  * Concurrent logins are useful together with cluster filesystems.
60  */
61 static int sbp2_param_exclusive_login = 1;
62 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
63 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
64                  "(default = Y, use N for concurrent initiators)");
65
66 /*
67  * Flags for firmware oddities
68  *
69  * - 128kB max transfer
70  *   Limit transfer size. Necessary for some old bridges.
71  *
72  * - 36 byte inquiry
73  *   When scsi_mod probes the device, let the inquiry command look like that
74  *   from MS Windows.
75  *
76  * - skip mode page 8
77  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
78  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
79  *
80  * - fix capacity
81  *   Tell sd_mod to correct the last sector number reported by read_capacity.
82  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
83  *   Don't use this with devices which don't have this bug.
84  *
85  * - override internal blacklist
86  *   Instead of adding to the built-in blacklist, use only the workarounds
87  *   specified in the module load parameter.
88  *   Useful if a blacklist entry interfered with a non-broken device.
89  */
90 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
91 #define SBP2_WORKAROUND_INQUIRY_36      0x2
92 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
93 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
94 #define SBP2_WORKAROUND_OVERRIDE        0x100
95
96 static int sbp2_param_workarounds;
97 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
98 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
99         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
100         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
101         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
102         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
103         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
104         ", or a combination)");
105
106 /* I don't know why the SCSI stack doesn't define something like this... */
107 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
108
109 static const char sbp2_driver_name[] = "sbp2";
110
111 /*
112  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
113  * and one struct scsi_device per sbp2_logical_unit.
114  */
115 struct sbp2_logical_unit {
116         struct sbp2_target *tgt;
117         struct list_head link;
118         struct scsi_device *sdev;
119         struct fw_address_handler address_handler;
120         struct list_head orb_list;
121
122         u64 command_block_agent_address;
123         u16 lun;
124         int login_id;
125
126         /*
127          * The generation is updated once we've logged in or reconnected
128          * to the logical unit.  Thus, I/O to the device will automatically
129          * fail and get retried if it happens in a window where the device
130          * is not ready, e.g. after a bus reset but before we reconnect.
131          */
132         int generation;
133         int retries;
134         struct delayed_work work;
135 };
136
137 /*
138  * We create one struct sbp2_target per IEEE 1212 Unit Directory
139  * and one struct Scsi_Host per sbp2_target.
140  */
141 struct sbp2_target {
142         struct kref kref;
143         struct fw_unit *unit;
144
145         u64 management_agent_address;
146         int directory_id;
147         int node_id;
148         int address_high;
149
150         unsigned workarounds;
151         struct list_head lu_list;
152 };
153
154 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
155 #define SBP2_ORB_TIMEOUT                2000    /* Timeout in ms */
156 #define SBP2_ORB_NULL                   0x80000000
157
158 #define SBP2_DIRECTION_TO_MEDIA         0x0
159 #define SBP2_DIRECTION_FROM_MEDIA       0x1
160
161 /* Unit directory keys */
162 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
163 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
164 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
165
166 /* Management orb opcodes */
167 #define SBP2_LOGIN_REQUEST              0x0
168 #define SBP2_QUERY_LOGINS_REQUEST       0x1
169 #define SBP2_RECONNECT_REQUEST          0x3
170 #define SBP2_SET_PASSWORD_REQUEST       0x4
171 #define SBP2_LOGOUT_REQUEST             0x7
172 #define SBP2_ABORT_TASK_REQUEST         0xb
173 #define SBP2_ABORT_TASK_SET             0xc
174 #define SBP2_LOGICAL_UNIT_RESET         0xe
175 #define SBP2_TARGET_RESET_REQUEST       0xf
176
177 /* Offsets for command block agent registers */
178 #define SBP2_AGENT_STATE                0x00
179 #define SBP2_AGENT_RESET                0x04
180 #define SBP2_ORB_POINTER                0x08
181 #define SBP2_DOORBELL                   0x10
182 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
183
184 /* Status write response codes */
185 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
186 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
187 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
188 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
189
190 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
191 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
192 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
193 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
194 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
195 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
196 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
197 #define STATUS_GET_DATA(v)              ((v).data)
198
199 struct sbp2_status {
200         u32 status;
201         u32 orb_low;
202         u8 data[24];
203 };
204
205 struct sbp2_pointer {
206         u32 high;
207         u32 low;
208 };
209
210 struct sbp2_orb {
211         struct fw_transaction t;
212         struct kref kref;
213         dma_addr_t request_bus;
214         int rcode;
215         struct sbp2_pointer pointer;
216         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
217         struct list_head link;
218 };
219
220 #define MANAGEMENT_ORB_LUN(v)                   ((v))
221 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
222 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
223 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
224 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
225 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
226
227 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
228 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
229
230 struct sbp2_management_orb {
231         struct sbp2_orb base;
232         struct {
233                 struct sbp2_pointer password;
234                 struct sbp2_pointer response;
235                 u32 misc;
236                 u32 length;
237                 struct sbp2_pointer status_fifo;
238         } request;
239         __be32 response[4];
240         dma_addr_t response_bus;
241         struct completion done;
242         struct sbp2_status status;
243 };
244
245 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
246 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
247
248 struct sbp2_login_response {
249         u32 misc;
250         struct sbp2_pointer command_block_agent;
251         u32 reconnect_hold;
252 };
253 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
254 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
255 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
256 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
257 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
258 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
259 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
260 #define COMMAND_ORB_NOTIFY              ((1) << 31)
261
262 struct sbp2_command_orb {
263         struct sbp2_orb base;
264         struct {
265                 struct sbp2_pointer next;
266                 struct sbp2_pointer data_descriptor;
267                 u32 misc;
268                 u8 command_block[12];
269         } request;
270         struct scsi_cmnd *cmd;
271         scsi_done_fn_t done;
272         struct sbp2_logical_unit *lu;
273
274         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
275         dma_addr_t page_table_bus;
276 };
277
278 /*
279  * List of devices with known bugs.
280  *
281  * The firmware_revision field, masked with 0xffff00, is the best
282  * indicator for the type of bridge chip of a device.  It yields a few
283  * false positives but this did not break correctly behaving devices
284  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
285  * from the config rom can never match that.
286  */
287 static const struct {
288         u32 firmware_revision;
289         u32 model;
290         unsigned workarounds;
291 } sbp2_workarounds_table[] = {
292         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
293                 .firmware_revision      = 0x002800,
294                 .model                  = 0x001010,
295                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
296                                           SBP2_WORKAROUND_MODE_SENSE_8,
297         },
298         /* Initio bridges, actually only needed for some older ones */ {
299                 .firmware_revision      = 0x000200,
300                 .model                  = ~0,
301                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
302         },
303         /* Symbios bridge */ {
304                 .firmware_revision      = 0xa0b800,
305                 .model                  = ~0,
306                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
307         },
308
309         /*
310          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
311          * these iPods do not feature the read_capacity bug according
312          * to one report.  Read_capacity behaviour as well as model_id
313          * could change due to Apple-supplied firmware updates though.
314          */
315
316         /* iPod 4th generation. */ {
317                 .firmware_revision      = 0x0a2700,
318                 .model                  = 0x000021,
319                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
320         },
321         /* iPod mini */ {
322                 .firmware_revision      = 0x0a2700,
323                 .model                  = 0x000023,
324                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
325         },
326         /* iPod Photo */ {
327                 .firmware_revision      = 0x0a2700,
328                 .model                  = 0x00007e,
329                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
330         }
331 };
332
333 static void
334 free_orb(struct kref *kref)
335 {
336         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
337
338         kfree(orb);
339 }
340
341 static void
342 sbp2_status_write(struct fw_card *card, struct fw_request *request,
343                   int tcode, int destination, int source,
344                   int generation, int speed,
345                   unsigned long long offset,
346                   void *payload, size_t length, void *callback_data)
347 {
348         struct sbp2_logical_unit *lu = callback_data;
349         struct sbp2_orb *orb;
350         struct sbp2_status status;
351         size_t header_size;
352         unsigned long flags;
353
354         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
355             length == 0 || length > sizeof(status)) {
356                 fw_send_response(card, request, RCODE_TYPE_ERROR);
357                 return;
358         }
359
360         header_size = min(length, 2 * sizeof(u32));
361         fw_memcpy_from_be32(&status, payload, header_size);
362         if (length > header_size)
363                 memcpy(status.data, payload + 8, length - header_size);
364         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
365                 fw_notify("non-orb related status write, not handled\n");
366                 fw_send_response(card, request, RCODE_COMPLETE);
367                 return;
368         }
369
370         /* Lookup the orb corresponding to this status write. */
371         spin_lock_irqsave(&card->lock, flags);
372         list_for_each_entry(orb, &lu->orb_list, link) {
373                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
374                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
375                         orb->rcode = RCODE_COMPLETE;
376                         list_del(&orb->link);
377                         break;
378                 }
379         }
380         spin_unlock_irqrestore(&card->lock, flags);
381
382         if (&orb->link != &lu->orb_list)
383                 orb->callback(orb, &status);
384         else
385                 fw_error("status write for unknown orb\n");
386
387         kref_put(&orb->kref, free_orb);
388
389         fw_send_response(card, request, RCODE_COMPLETE);
390 }
391
392 static void
393 complete_transaction(struct fw_card *card, int rcode,
394                      void *payload, size_t length, void *data)
395 {
396         struct sbp2_orb *orb = data;
397         unsigned long flags;
398
399         /*
400          * This is a little tricky.  We can get the status write for
401          * the orb before we get this callback.  The status write
402          * handler above will assume the orb pointer transaction was
403          * successful and set the rcode to RCODE_COMPLETE for the orb.
404          * So this callback only sets the rcode if it hasn't already
405          * been set and only does the cleanup if the transaction
406          * failed and we didn't already get a status write.
407          */
408         spin_lock_irqsave(&card->lock, flags);
409
410         if (orb->rcode == -1)
411                 orb->rcode = rcode;
412         if (orb->rcode != RCODE_COMPLETE) {
413                 list_del(&orb->link);
414                 spin_unlock_irqrestore(&card->lock, flags);
415                 orb->callback(orb, NULL);
416         } else {
417                 spin_unlock_irqrestore(&card->lock, flags);
418         }
419
420         kref_put(&orb->kref, free_orb);
421 }
422
423 static void
424 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
425               int node_id, int generation, u64 offset)
426 {
427         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
428         unsigned long flags;
429
430         orb->pointer.high = 0;
431         orb->pointer.low = orb->request_bus;
432         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
433
434         spin_lock_irqsave(&device->card->lock, flags);
435         list_add_tail(&orb->link, &lu->orb_list);
436         spin_unlock_irqrestore(&device->card->lock, flags);
437
438         /* Take a ref for the orb list and for the transaction callback. */
439         kref_get(&orb->kref);
440         kref_get(&orb->kref);
441
442         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
443                         node_id, generation, device->max_speed, offset,
444                         &orb->pointer, sizeof(orb->pointer),
445                         complete_transaction, orb);
446 }
447
448 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
449 {
450         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
451         struct sbp2_orb *orb, *next;
452         struct list_head list;
453         unsigned long flags;
454         int retval = -ENOENT;
455
456         INIT_LIST_HEAD(&list);
457         spin_lock_irqsave(&device->card->lock, flags);
458         list_splice_init(&lu->orb_list, &list);
459         spin_unlock_irqrestore(&device->card->lock, flags);
460
461         list_for_each_entry_safe(orb, next, &list, link) {
462                 retval = 0;
463                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
464                         continue;
465
466                 orb->rcode = RCODE_CANCELLED;
467                 orb->callback(orb, NULL);
468         }
469
470         return retval;
471 }
472
473 static void
474 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
475 {
476         struct sbp2_management_orb *orb =
477                 container_of(base_orb, struct sbp2_management_orb, base);
478
479         if (status)
480                 memcpy(&orb->status, status, sizeof(*status));
481         complete(&orb->done);
482 }
483
484 static int
485 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
486                          int generation, int function, int lun_or_login_id,
487                          void *response)
488 {
489         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
490         struct sbp2_management_orb *orb;
491         int retval = -ENOMEM;
492
493         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
494         if (orb == NULL)
495                 return -ENOMEM;
496
497         kref_init(&orb->base.kref);
498         orb->response_bus =
499                 dma_map_single(device->card->device, &orb->response,
500                                sizeof(orb->response), DMA_FROM_DEVICE);
501         if (dma_mapping_error(orb->response_bus))
502                 goto fail_mapping_response;
503
504         orb->request.response.high    = 0;
505         orb->request.response.low     = orb->response_bus;
506
507         orb->request.misc =
508                 MANAGEMENT_ORB_NOTIFY |
509                 MANAGEMENT_ORB_FUNCTION(function) |
510                 MANAGEMENT_ORB_LUN(lun_or_login_id);
511         orb->request.length =
512                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
513
514         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
515         orb->request.status_fifo.low  = lu->address_handler.offset;
516
517         if (function == SBP2_LOGIN_REQUEST) {
518                 /* Ask for 2^2 == 4 seconds reconnect grace period */
519                 orb->request.misc |=
520                         MANAGEMENT_ORB_RECONNECT(2) |
521                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
522         }
523
524         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
525
526         init_completion(&orb->done);
527         orb->base.callback = complete_management_orb;
528
529         orb->base.request_bus =
530                 dma_map_single(device->card->device, &orb->request,
531                                sizeof(orb->request), DMA_TO_DEVICE);
532         if (dma_mapping_error(orb->base.request_bus))
533                 goto fail_mapping_request;
534
535         sbp2_send_orb(&orb->base, lu, node_id, generation,
536                       lu->tgt->management_agent_address);
537
538         wait_for_completion_timeout(&orb->done,
539                                     msecs_to_jiffies(SBP2_ORB_TIMEOUT));
540
541         retval = -EIO;
542         if (sbp2_cancel_orbs(lu) == 0) {
543                 fw_error("orb reply timed out, rcode=0x%02x\n",
544                          orb->base.rcode);
545                 goto out;
546         }
547
548         if (orb->base.rcode != RCODE_COMPLETE) {
549                 fw_error("management write failed, rcode 0x%02x\n",
550                          orb->base.rcode);
551                 goto out;
552         }
553
554         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
555             STATUS_GET_SBP_STATUS(orb->status) != 0) {
556                 fw_error("error status: %d:%d\n",
557                          STATUS_GET_RESPONSE(orb->status),
558                          STATUS_GET_SBP_STATUS(orb->status));
559                 goto out;
560         }
561
562         retval = 0;
563  out:
564         dma_unmap_single(device->card->device, orb->base.request_bus,
565                          sizeof(orb->request), DMA_TO_DEVICE);
566  fail_mapping_request:
567         dma_unmap_single(device->card->device, orb->response_bus,
568                          sizeof(orb->response), DMA_FROM_DEVICE);
569  fail_mapping_response:
570         if (response)
571                 fw_memcpy_from_be32(response,
572                                     orb->response, sizeof(orb->response));
573         kref_put(&orb->base.kref, free_orb);
574
575         return retval;
576 }
577
578 static void
579 complete_agent_reset_write(struct fw_card *card, int rcode,
580                            void *payload, size_t length, void *data)
581 {
582         struct fw_transaction *t = data;
583
584         kfree(t);
585 }
586
587 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
588 {
589         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
590         struct fw_transaction *t;
591         static u32 zero;
592
593         t = kzalloc(sizeof(*t), GFP_ATOMIC);
594         if (t == NULL)
595                 return -ENOMEM;
596
597         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
598                         lu->tgt->node_id, lu->generation, device->max_speed,
599                         lu->command_block_agent_address + SBP2_AGENT_RESET,
600                         &zero, sizeof(zero), complete_agent_reset_write, t);
601
602         return 0;
603 }
604
605 static void sbp2_release_target(struct kref *kref)
606 {
607         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
608         struct sbp2_logical_unit *lu, *next;
609         struct Scsi_Host *shost =
610                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
611         struct fw_device *device = fw_device(tgt->unit->device.parent);
612
613         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
614                 if (lu->sdev)
615                         scsi_remove_device(lu->sdev);
616
617                 if (!fw_device_is_shutdown(device))
618                         sbp2_send_management_orb(lu, tgt->node_id,
619                                         lu->generation, SBP2_LOGOUT_REQUEST,
620                                         lu->login_id, NULL);
621
622                 fw_core_remove_address_handler(&lu->address_handler);
623                 list_del(&lu->link);
624                 kfree(lu);
625         }
626         scsi_remove_host(shost);
627         fw_notify("released %s\n", tgt->unit->device.bus_id);
628
629         put_device(&tgt->unit->device);
630         scsi_host_put(shost);
631 }
632
633 static struct workqueue_struct *sbp2_wq;
634
635 /*
636  * Always get the target's kref when scheduling work on one its units.
637  * Each workqueue job is responsible to call sbp2_target_put() upon return.
638  */
639 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
640 {
641         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
642                 kref_get(&lu->tgt->kref);
643 }
644
645 static void sbp2_target_put(struct sbp2_target *tgt)
646 {
647         kref_put(&tgt->kref, sbp2_release_target);
648 }
649
650 static void sbp2_reconnect(struct work_struct *work);
651
652 static void sbp2_login(struct work_struct *work)
653 {
654         struct sbp2_logical_unit *lu =
655                 container_of(work, struct sbp2_logical_unit, work.work);
656         struct Scsi_Host *shost =
657                 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
658         struct scsi_device *sdev;
659         struct scsi_lun eight_bytes_lun;
660         struct fw_unit *unit = lu->tgt->unit;
661         struct fw_device *device = fw_device(unit->device.parent);
662         struct sbp2_login_response response;
663         int generation, node_id, local_node_id;
664
665         generation    = device->generation;
666         smp_rmb();    /* node_id must not be older than generation */
667         node_id       = device->node_id;
668         local_node_id = device->card->node_id;
669
670         if (sbp2_send_management_orb(lu, node_id, generation,
671                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
672                 if (lu->retries++ < 5)
673                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
674                 else
675                         fw_error("failed to login to %s LUN %04x\n",
676                                  unit->device.bus_id, lu->lun);
677                 goto out;
678         }
679
680         lu->generation        = generation;
681         lu->tgt->node_id      = node_id;
682         lu->tgt->address_high = local_node_id << 16;
683
684         /* Get command block agent offset and login id. */
685         lu->command_block_agent_address =
686                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
687                 response.command_block_agent.low;
688         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
689
690         fw_notify("logged in to %s LUN %04x (%d retries)\n",
691                   unit->device.bus_id, lu->lun, lu->retries);
692
693 #if 0
694         /* FIXME: The linux1394 sbp2 does this last step. */
695         sbp2_set_busy_timeout(scsi_id);
696 #endif
697
698         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
699         sbp2_agent_reset(lu);
700
701         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
702         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
703         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
704
705         sdev = __scsi_add_device(shost, 0, 0,
706                                  scsilun_to_int(&eight_bytes_lun), lu);
707         if (IS_ERR(sdev)) {
708                 sbp2_send_management_orb(lu, node_id, generation,
709                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
710                 /*
711                  * Set this back to sbp2_login so we fall back and
712                  * retry login on bus reset.
713                  */
714                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
715         } else {
716                 lu->sdev = sdev;
717                 scsi_device_put(sdev);
718         }
719  out:
720         sbp2_target_put(lu->tgt);
721 }
722
723 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
724 {
725         struct sbp2_logical_unit *lu;
726
727         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
728         if (!lu)
729                 return -ENOMEM;
730
731         lu->address_handler.length           = 0x100;
732         lu->address_handler.address_callback = sbp2_status_write;
733         lu->address_handler.callback_data    = lu;
734
735         if (fw_core_add_address_handler(&lu->address_handler,
736                                         &fw_high_memory_region) < 0) {
737                 kfree(lu);
738                 return -ENOMEM;
739         }
740
741         lu->tgt  = tgt;
742         lu->sdev = NULL;
743         lu->lun  = lun_entry & 0xffff;
744         lu->retries = 0;
745         INIT_LIST_HEAD(&lu->orb_list);
746         INIT_DELAYED_WORK(&lu->work, sbp2_login);
747
748         list_add_tail(&lu->link, &tgt->lu_list);
749         return 0;
750 }
751
752 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
753 {
754         struct fw_csr_iterator ci;
755         int key, value;
756
757         fw_csr_iterator_init(&ci, directory);
758         while (fw_csr_iterator_next(&ci, &key, &value))
759                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
760                     sbp2_add_logical_unit(tgt, value) < 0)
761                         return -ENOMEM;
762         return 0;
763 }
764
765 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
766                               u32 *model, u32 *firmware_revision)
767 {
768         struct fw_csr_iterator ci;
769         int key, value;
770
771         fw_csr_iterator_init(&ci, directory);
772         while (fw_csr_iterator_next(&ci, &key, &value)) {
773                 switch (key) {
774
775                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
776                         tgt->management_agent_address =
777                                         CSR_REGISTER_BASE + 4 * value;
778                         break;
779
780                 case CSR_DIRECTORY_ID:
781                         tgt->directory_id = value;
782                         break;
783
784                 case CSR_MODEL:
785                         *model = value;
786                         break;
787
788                 case SBP2_CSR_FIRMWARE_REVISION:
789                         *firmware_revision = value;
790                         break;
791
792                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
793                         if (sbp2_add_logical_unit(tgt, value) < 0)
794                                 return -ENOMEM;
795                         break;
796
797                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
798                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
799                                 return -ENOMEM;
800                         break;
801                 }
802         }
803         return 0;
804 }
805
806 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
807                                   u32 firmware_revision)
808 {
809         int i;
810         unsigned w = sbp2_param_workarounds;
811
812         if (w)
813                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
814                           "if you need the workarounds parameter for %s\n",
815                           tgt->unit->device.bus_id);
816
817         if (w & SBP2_WORKAROUND_OVERRIDE)
818                 goto out;
819
820         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
821
822                 if (sbp2_workarounds_table[i].firmware_revision !=
823                     (firmware_revision & 0xffffff00))
824                         continue;
825
826                 if (sbp2_workarounds_table[i].model != model &&
827                     sbp2_workarounds_table[i].model != ~0)
828                         continue;
829
830                 w |= sbp2_workarounds_table[i].workarounds;
831                 break;
832         }
833  out:
834         if (w)
835                 fw_notify("Workarounds for %s: 0x%x "
836                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
837                           tgt->unit->device.bus_id,
838                           w, firmware_revision, model);
839         tgt->workarounds = w;
840 }
841
842 static struct scsi_host_template scsi_driver_template;
843
844 static int sbp2_probe(struct device *dev)
845 {
846         struct fw_unit *unit = fw_unit(dev);
847         struct fw_device *device = fw_device(unit->device.parent);
848         struct sbp2_target *tgt;
849         struct sbp2_logical_unit *lu;
850         struct Scsi_Host *shost;
851         u32 model, firmware_revision;
852
853         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
854         if (shost == NULL)
855                 return -ENOMEM;
856
857         tgt = (struct sbp2_target *)shost->hostdata;
858         unit->device.driver_data = tgt;
859         tgt->unit = unit;
860         kref_init(&tgt->kref);
861         INIT_LIST_HEAD(&tgt->lu_list);
862
863         if (fw_device_enable_phys_dma(device) < 0)
864                 goto fail_shost_put;
865
866         if (scsi_add_host(shost, &unit->device) < 0)
867                 goto fail_shost_put;
868
869         /* Initialize to values that won't match anything in our table. */
870         firmware_revision = 0xff000000;
871         model = 0xff000000;
872
873         /* implicit directory ID */
874         tgt->directory_id = ((unit->directory - device->config_rom) * 4
875                              + CSR_CONFIG_ROM) & 0xffffff;
876
877         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
878                                &firmware_revision) < 0)
879                 goto fail_tgt_put;
880
881         sbp2_init_workarounds(tgt, model, firmware_revision);
882
883         get_device(&unit->device);
884
885         /* Do the login in a workqueue so we can easily reschedule retries. */
886         list_for_each_entry(lu, &tgt->lu_list, link)
887                 sbp2_queue_work(lu, 0);
888         return 0;
889
890  fail_tgt_put:
891         sbp2_target_put(tgt);
892         return -ENOMEM;
893
894  fail_shost_put:
895         scsi_host_put(shost);
896         return -ENOMEM;
897 }
898
899 static int sbp2_remove(struct device *dev)
900 {
901         struct fw_unit *unit = fw_unit(dev);
902         struct sbp2_target *tgt = unit->device.driver_data;
903
904         sbp2_target_put(tgt);
905         return 0;
906 }
907
908 static void sbp2_reconnect(struct work_struct *work)
909 {
910         struct sbp2_logical_unit *lu =
911                 container_of(work, struct sbp2_logical_unit, work.work);
912         struct fw_unit *unit = lu->tgt->unit;
913         struct fw_device *device = fw_device(unit->device.parent);
914         int generation, node_id, local_node_id;
915
916         generation    = device->generation;
917         smp_rmb();    /* node_id must not be older than generation */
918         node_id       = device->node_id;
919         local_node_id = device->card->node_id;
920
921         if (sbp2_send_management_orb(lu, node_id, generation,
922                                      SBP2_RECONNECT_REQUEST,
923                                      lu->login_id, NULL) < 0) {
924                 if (lu->retries++ >= 5) {
925                         fw_error("failed to reconnect to %s\n",
926                                  unit->device.bus_id);
927                         /* Fall back and try to log in again. */
928                         lu->retries = 0;
929                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
930                 }
931                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
932                 goto out;
933         }
934
935         lu->generation        = generation;
936         lu->tgt->node_id      = node_id;
937         lu->tgt->address_high = local_node_id << 16;
938
939         fw_notify("reconnected to %s LUN %04x (%d retries)\n",
940                   unit->device.bus_id, lu->lun, lu->retries);
941
942         sbp2_agent_reset(lu);
943         sbp2_cancel_orbs(lu);
944  out:
945         sbp2_target_put(lu->tgt);
946 }
947
948 static void sbp2_update(struct fw_unit *unit)
949 {
950         struct sbp2_target *tgt = unit->device.driver_data;
951         struct sbp2_logical_unit *lu;
952
953         fw_device_enable_phys_dma(fw_device(unit->device.parent));
954
955         /*
956          * Fw-core serializes sbp2_update() against sbp2_remove().
957          * Iteration over tgt->lu_list is therefore safe here.
958          */
959         list_for_each_entry(lu, &tgt->lu_list, link) {
960                 lu->retries = 0;
961                 sbp2_queue_work(lu, 0);
962         }
963 }
964
965 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
966 #define SBP2_SW_VERSION_ENTRY   0x00010483
967
968 static const struct fw_device_id sbp2_id_table[] = {
969         {
970                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
971                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
972                 .version      = SBP2_SW_VERSION_ENTRY,
973         },
974         { }
975 };
976
977 static struct fw_driver sbp2_driver = {
978         .driver   = {
979                 .owner  = THIS_MODULE,
980                 .name   = sbp2_driver_name,
981                 .bus    = &fw_bus_type,
982                 .probe  = sbp2_probe,
983                 .remove = sbp2_remove,
984         },
985         .update   = sbp2_update,
986         .id_table = sbp2_id_table,
987 };
988
989 static unsigned int
990 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
991 {
992         int sam_status;
993
994         sense_data[0] = 0x70;
995         sense_data[1] = 0x0;
996         sense_data[2] = sbp2_status[1];
997         sense_data[3] = sbp2_status[4];
998         sense_data[4] = sbp2_status[5];
999         sense_data[5] = sbp2_status[6];
1000         sense_data[6] = sbp2_status[7];
1001         sense_data[7] = 10;
1002         sense_data[8] = sbp2_status[8];
1003         sense_data[9] = sbp2_status[9];
1004         sense_data[10] = sbp2_status[10];
1005         sense_data[11] = sbp2_status[11];
1006         sense_data[12] = sbp2_status[2];
1007         sense_data[13] = sbp2_status[3];
1008         sense_data[14] = sbp2_status[12];
1009         sense_data[15] = sbp2_status[13];
1010
1011         sam_status = sbp2_status[0] & 0x3f;
1012
1013         switch (sam_status) {
1014         case SAM_STAT_GOOD:
1015         case SAM_STAT_CHECK_CONDITION:
1016         case SAM_STAT_CONDITION_MET:
1017         case SAM_STAT_BUSY:
1018         case SAM_STAT_RESERVATION_CONFLICT:
1019         case SAM_STAT_COMMAND_TERMINATED:
1020                 return DID_OK << 16 | sam_status;
1021
1022         default:
1023                 return DID_ERROR << 16;
1024         }
1025 }
1026
1027 static void
1028 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1029 {
1030         struct sbp2_command_orb *orb =
1031                 container_of(base_orb, struct sbp2_command_orb, base);
1032         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1033         int result;
1034
1035         if (status != NULL) {
1036                 if (STATUS_GET_DEAD(*status))
1037                         sbp2_agent_reset(orb->lu);
1038
1039                 switch (STATUS_GET_RESPONSE(*status)) {
1040                 case SBP2_STATUS_REQUEST_COMPLETE:
1041                         result = DID_OK << 16;
1042                         break;
1043                 case SBP2_STATUS_TRANSPORT_FAILURE:
1044                         result = DID_BUS_BUSY << 16;
1045                         break;
1046                 case SBP2_STATUS_ILLEGAL_REQUEST:
1047                 case SBP2_STATUS_VENDOR_DEPENDENT:
1048                 default:
1049                         result = DID_ERROR << 16;
1050                         break;
1051                 }
1052
1053                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1054                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1055                                                            orb->cmd->sense_buffer);
1056         } else {
1057                 /*
1058                  * If the orb completes with status == NULL, something
1059                  * went wrong, typically a bus reset happened mid-orb
1060                  * or when sending the write (less likely).
1061                  */
1062                 result = DID_BUS_BUSY << 16;
1063         }
1064
1065         dma_unmap_single(device->card->device, orb->base.request_bus,
1066                          sizeof(orb->request), DMA_TO_DEVICE);
1067
1068         if (scsi_sg_count(orb->cmd) > 0)
1069                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1070                              scsi_sg_count(orb->cmd),
1071                              orb->cmd->sc_data_direction);
1072
1073         if (orb->page_table_bus != 0)
1074                 dma_unmap_single(device->card->device, orb->page_table_bus,
1075                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1076
1077         orb->cmd->result = result;
1078         orb->done(orb->cmd);
1079 }
1080
1081 static int
1082 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1083                      struct sbp2_logical_unit *lu)
1084 {
1085         struct scatterlist *sg;
1086         int sg_len, l, i, j, count;
1087         dma_addr_t sg_addr;
1088
1089         sg = scsi_sglist(orb->cmd);
1090         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1091                            orb->cmd->sc_data_direction);
1092         if (count == 0)
1093                 goto fail;
1094
1095         /*
1096          * Handle the special case where there is only one element in
1097          * the scatter list by converting it to an immediate block
1098          * request. This is also a workaround for broken devices such
1099          * as the second generation iPod which doesn't support page
1100          * tables.
1101          */
1102         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1103                 orb->request.data_descriptor.high = lu->tgt->address_high;
1104                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1105                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1106                 return 0;
1107         }
1108
1109         /*
1110          * Convert the scatterlist to an sbp2 page table.  If any
1111          * scatterlist entries are too big for sbp2, we split them as we
1112          * go.  Even if we ask the block I/O layer to not give us sg
1113          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1114          * during DMA mapping, and Linux currently doesn't prevent this.
1115          */
1116         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1117                 sg_len = sg_dma_len(sg);
1118                 sg_addr = sg_dma_address(sg);
1119                 while (sg_len) {
1120                         /* FIXME: This won't get us out of the pinch. */
1121                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1122                                 fw_error("page table overflow\n");
1123                                 goto fail_page_table;
1124                         }
1125                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1126                         orb->page_table[j].low = sg_addr;
1127                         orb->page_table[j].high = (l << 16);
1128                         sg_addr += l;
1129                         sg_len -= l;
1130                         j++;
1131                 }
1132         }
1133
1134         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1135                           sizeof(orb->page_table[0]) * j);
1136         orb->page_table_bus =
1137                 dma_map_single(device->card->device, orb->page_table,
1138                                sizeof(orb->page_table), DMA_TO_DEVICE);
1139         if (dma_mapping_error(orb->page_table_bus))
1140                 goto fail_page_table;
1141
1142         /*
1143          * The data_descriptor pointer is the one case where we need
1144          * to fill in the node ID part of the address.  All other
1145          * pointers assume that the data referenced reside on the
1146          * initiator (i.e. us), but data_descriptor can refer to data
1147          * on other nodes so we need to put our ID in descriptor.high.
1148          */
1149         orb->request.data_descriptor.high = lu->tgt->address_high;
1150         orb->request.data_descriptor.low  = orb->page_table_bus;
1151         orb->request.misc |=
1152                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1153                 COMMAND_ORB_DATA_SIZE(j);
1154
1155         return 0;
1156
1157  fail_page_table:
1158         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1159                      orb->cmd->sc_data_direction);
1160  fail:
1161         return -ENOMEM;
1162 }
1163
1164 /* SCSI stack integration */
1165
1166 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1167 {
1168         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1169         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1170         struct sbp2_command_orb *orb;
1171         unsigned max_payload;
1172         int retval = SCSI_MLQUEUE_HOST_BUSY;
1173
1174         /*
1175          * Bidirectional commands are not yet implemented, and unknown
1176          * transfer direction not handled.
1177          */
1178         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1179                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1180                 cmd->result = DID_ERROR << 16;
1181                 done(cmd);
1182                 return 0;
1183         }
1184
1185         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1186         if (orb == NULL) {
1187                 fw_notify("failed to alloc orb\n");
1188                 return SCSI_MLQUEUE_HOST_BUSY;
1189         }
1190
1191         /* Initialize rcode to something not RCODE_COMPLETE. */
1192         orb->base.rcode = -1;
1193         kref_init(&orb->base.kref);
1194
1195         orb->lu   = lu;
1196         orb->done = done;
1197         orb->cmd  = cmd;
1198
1199         orb->request.next.high   = SBP2_ORB_NULL;
1200         orb->request.next.low    = 0x0;
1201         /*
1202          * At speed 100 we can do 512 bytes per packet, at speed 200,
1203          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1204          * specifies the max payload size as 2 ^ (max_payload + 2), so
1205          * if we set this to max_speed + 7, we get the right value.
1206          */
1207         max_payload = min(device->max_speed + 7,
1208                           device->card->max_receive - 1);
1209         orb->request.misc =
1210                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1211                 COMMAND_ORB_SPEED(device->max_speed) |
1212                 COMMAND_ORB_NOTIFY;
1213
1214         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1215                 orb->request.misc |=
1216                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1217         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1218                 orb->request.misc |=
1219                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1220
1221         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1222                 goto out;
1223
1224         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1225
1226         memset(orb->request.command_block,
1227                0, sizeof(orb->request.command_block));
1228         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1229
1230         orb->base.callback = complete_command_orb;
1231         orb->base.request_bus =
1232                 dma_map_single(device->card->device, &orb->request,
1233                                sizeof(orb->request), DMA_TO_DEVICE);
1234         if (dma_mapping_error(orb->base.request_bus))
1235                 goto out;
1236
1237         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1238                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1239         retval = 0;
1240  out:
1241         kref_put(&orb->base.kref, free_orb);
1242         return retval;
1243 }
1244
1245 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1246 {
1247         struct sbp2_logical_unit *lu = sdev->hostdata;
1248
1249         sdev->allow_restart = 1;
1250
1251         /*
1252          * Update the dma alignment (minimum alignment requirements for
1253          * start and end of DMA transfers) to be a sector
1254          */
1255         blk_queue_update_dma_alignment(sdev->request_queue, 511);
1256
1257         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1258                 sdev->inquiry_len = 36;
1259
1260         return 0;
1261 }
1262
1263 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1264 {
1265         struct sbp2_logical_unit *lu = sdev->hostdata;
1266
1267         sdev->use_10_for_rw = 1;
1268
1269         if (sdev->type == TYPE_ROM)
1270                 sdev->use_10_for_ms = 1;
1271
1272         if (sdev->type == TYPE_DISK &&
1273             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1274                 sdev->skip_ms_page_8 = 1;
1275
1276         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1277                 sdev->fix_capacity = 1;
1278
1279         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1280                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1281
1282         return 0;
1283 }
1284
1285 /*
1286  * Called by scsi stack when something has really gone wrong.  Usually
1287  * called when a command has timed-out for some reason.
1288  */
1289 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1290 {
1291         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1292
1293         fw_notify("sbp2_scsi_abort\n");
1294         sbp2_agent_reset(lu);
1295         sbp2_cancel_orbs(lu);
1296
1297         return SUCCESS;
1298 }
1299
1300 /*
1301  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1302  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1303  *
1304  * This is the concatenation of target port identifier and logical unit
1305  * identifier as per SAM-2...SAM-4 annex A.
1306  */
1307 static ssize_t
1308 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1309                             char *buf)
1310 {
1311         struct scsi_device *sdev = to_scsi_device(dev);
1312         struct sbp2_logical_unit *lu;
1313         struct fw_device *device;
1314
1315         if (!sdev)
1316                 return 0;
1317
1318         lu = sdev->hostdata;
1319         device = fw_device(lu->tgt->unit->device.parent);
1320
1321         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1322                         device->config_rom[3], device->config_rom[4],
1323                         lu->tgt->directory_id, lu->lun);
1324 }
1325
1326 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1327
1328 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1329         &dev_attr_ieee1394_id,
1330         NULL
1331 };
1332
1333 static struct scsi_host_template scsi_driver_template = {
1334         .module                 = THIS_MODULE,
1335         .name                   = "SBP-2 IEEE-1394",
1336         .proc_name              = sbp2_driver_name,
1337         .queuecommand           = sbp2_scsi_queuecommand,
1338         .slave_alloc            = sbp2_scsi_slave_alloc,
1339         .slave_configure        = sbp2_scsi_slave_configure,
1340         .eh_abort_handler       = sbp2_scsi_abort,
1341         .this_id                = -1,
1342         .sg_tablesize           = SG_ALL,
1343         .use_clustering         = ENABLE_CLUSTERING,
1344         .cmd_per_lun            = 1,
1345         .can_queue              = 1,
1346         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1347 };
1348
1349 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1350 MODULE_DESCRIPTION("SCSI over IEEE1394");
1351 MODULE_LICENSE("GPL");
1352 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1353
1354 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1355 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1356 MODULE_ALIAS("sbp2");
1357 #endif
1358
1359 static int __init sbp2_init(void)
1360 {
1361         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1362         if (!sbp2_wq)
1363                 return -ENOMEM;
1364
1365         return driver_register(&sbp2_driver.driver);
1366 }
1367
1368 static void __exit sbp2_cleanup(void)
1369 {
1370         driver_unregister(&sbp2_driver.driver);
1371         destroy_workqueue(sbp2_wq);
1372 }
1373
1374 module_init(sbp2_init);
1375 module_exit(sbp2_cleanup);