]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/firewire/net.c
firewire: net: add carrier detection
[mv-sheeva.git] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/highmem.h>
15 #include <linux/in.h>
16 #include <linux/ip.h>
17 #include <linux/jiffies.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/mutex.h>
22 #include <linux/netdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include <asm/unaligned.h>
28 #include <net/arp.h>
29
30 /* rx limits */
31 #define FWNET_MAX_FRAGMENTS             30 /* arbitrary, > TX queue depth */
32 #define FWNET_ISO_PAGE_COUNT            (PAGE_SIZE < 16*1024 ? 4 : 2)
33
34 /* tx limits */
35 #define FWNET_MAX_QUEUED_DATAGRAMS      20 /* < 64 = number of tlabels */
36 #define FWNET_MIN_QUEUED_DATAGRAMS      10 /* should keep AT DMA busy enough */
37 #define FWNET_TX_QUEUE_LEN              FWNET_MAX_QUEUED_DATAGRAMS /* ? */
38
39 #define IEEE1394_BROADCAST_CHANNEL      31
40 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
41 #define IEEE1394_MAX_PAYLOAD_S100       512
42 #define FWNET_NO_FIFO_ADDR              (~0ULL)
43
44 #define IANA_SPECIFIER_ID               0x00005eU
45 #define RFC2734_SW_VERSION              0x000001U
46
47 #define IEEE1394_GASP_HDR_SIZE  8
48
49 #define RFC2374_UNFRAG_HDR_SIZE 4
50 #define RFC2374_FRAG_HDR_SIZE   8
51 #define RFC2374_FRAG_OVERHEAD   4
52
53 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
54 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
55 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
56 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
57
58 #define RFC2734_HW_ADDR_LEN     16
59
60 struct rfc2734_arp {
61         __be16 hw_type;         /* 0x0018       */
62         __be16 proto_type;      /* 0x0806       */
63         u8 hw_addr_len;         /* 16           */
64         u8 ip_addr_len;         /* 4            */
65         __be16 opcode;          /* ARP Opcode   */
66         /* Above is exactly the same format as struct arphdr */
67
68         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
69         u8 max_rec;             /* Sender's max packet size             */
70         u8 sspd;                /* Sender's max speed                   */
71         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
72         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
73         __be32 sip;             /* Sender's IP Address                  */
74         __be32 tip;             /* IP Address of requested hw addr      */
75 } __attribute__((packed));
76
77 /* This header format is specific to this driver implementation. */
78 #define FWNET_ALEN      8
79 #define FWNET_HLEN      10
80 struct fwnet_header {
81         u8 h_dest[FWNET_ALEN];  /* destination address */
82         __be16 h_proto;         /* packet type ID field */
83 } __attribute__((packed));
84
85 /* IPv4 and IPv6 encapsulation header */
86 struct rfc2734_header {
87         u32 w0;
88         u32 w1;
89 };
90
91 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
92 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
93 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
94 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
95 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
96
97 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
98 #define fwnet_set_hdr_ether_type(et)    (et)
99 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
100 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
101
102 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
103
104 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
105                 unsigned ether_type)
106 {
107         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
108                   | fwnet_set_hdr_ether_type(ether_type);
109 }
110
111 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
112                 unsigned ether_type, unsigned dg_size, unsigned dgl)
113 {
114         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
115                   | fwnet_set_hdr_dg_size(dg_size)
116                   | fwnet_set_hdr_ether_type(ether_type);
117         hdr->w1 = fwnet_set_hdr_dgl(dgl);
118 }
119
120 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
121                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
122 {
123         hdr->w0 = fwnet_set_hdr_lf(lf)
124                   | fwnet_set_hdr_dg_size(dg_size)
125                   | fwnet_set_hdr_fg_off(fg_off);
126         hdr->w1 = fwnet_set_hdr_dgl(dgl);
127 }
128
129 /* This list keeps track of what parts of the datagram have been filled in */
130 struct fwnet_fragment_info {
131         struct list_head fi_link;
132         u16 offset;
133         u16 len;
134 };
135
136 struct fwnet_partial_datagram {
137         struct list_head pd_link;
138         struct list_head fi_list;
139         struct sk_buff *skb;
140         /* FIXME Why not use skb->data? */
141         char *pbuf;
142         u16 datagram_label;
143         u16 ether_type;
144         u16 datagram_size;
145 };
146
147 static DEFINE_MUTEX(fwnet_device_mutex);
148 static LIST_HEAD(fwnet_device_list);
149
150 struct fwnet_device {
151         struct list_head dev_link;
152         spinlock_t lock;
153         enum {
154                 FWNET_BROADCAST_ERROR,
155                 FWNET_BROADCAST_RUNNING,
156                 FWNET_BROADCAST_STOPPED,
157         } broadcast_state;
158         struct fw_iso_context *broadcast_rcv_context;
159         struct fw_iso_buffer broadcast_rcv_buffer;
160         void **broadcast_rcv_buffer_ptrs;
161         unsigned broadcast_rcv_next_ptr;
162         unsigned num_broadcast_rcv_ptrs;
163         unsigned rcv_buffer_size;
164         /*
165          * This value is the maximum unfragmented datagram size that can be
166          * sent by the hardware.  It already has the GASP overhead and the
167          * unfragmented datagram header overhead calculated into it.
168          */
169         unsigned broadcast_xmt_max_payload;
170         u16 broadcast_xmt_datagramlabel;
171
172         /*
173          * The CSR address that remote nodes must send datagrams to for us to
174          * receive them.
175          */
176         struct fw_address_handler handler;
177         u64 local_fifo;
178
179         /* Number of tx datagrams that have been queued but not yet acked */
180         int queued_datagrams;
181         int peer_count;
182
183         struct list_head peer_list;
184         struct fw_card *card;
185         struct net_device *netdev;
186 };
187
188 struct fwnet_peer {
189         struct list_head peer_link;
190         struct fwnet_device *dev;
191         u64 guid;
192         u64 fifo;
193
194         /* guarded by dev->lock */
195         struct list_head pd_list; /* received partial datagrams */
196         unsigned pdg_size;        /* pd_list size */
197
198         u16 datagram_label;       /* outgoing datagram label */
199         u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
200         int node_id;
201         int generation;
202         unsigned speed;
203 };
204
205 /* This is our task struct. It's used for the packet complete callback.  */
206 struct fwnet_packet_task {
207         struct fw_transaction transaction;
208         struct rfc2734_header hdr;
209         struct sk_buff *skb;
210         struct fwnet_device *dev;
211
212         int outstanding_pkts;
213         u64 fifo_addr;
214         u16 dest_node;
215         u16 max_payload;
216         u8 generation;
217         u8 speed;
218         u8 enqueued;
219 };
220
221 /*
222  * saddr == NULL means use device source address.
223  * daddr == NULL means leave destination address (eg unresolved arp).
224  */
225 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
226                         unsigned short type, const void *daddr,
227                         const void *saddr, unsigned len)
228 {
229         struct fwnet_header *h;
230
231         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
232         put_unaligned_be16(type, &h->h_proto);
233
234         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
235                 memset(h->h_dest, 0, net->addr_len);
236
237                 return net->hard_header_len;
238         }
239
240         if (daddr) {
241                 memcpy(h->h_dest, daddr, net->addr_len);
242
243                 return net->hard_header_len;
244         }
245
246         return -net->hard_header_len;
247 }
248
249 static int fwnet_header_rebuild(struct sk_buff *skb)
250 {
251         struct fwnet_header *h = (struct fwnet_header *)skb->data;
252
253         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
254                 return arp_find((unsigned char *)&h->h_dest, skb);
255
256         fw_notify("%s: unable to resolve type %04x addresses\n",
257                   skb->dev->name, be16_to_cpu(h->h_proto));
258         return 0;
259 }
260
261 static int fwnet_header_cache(const struct neighbour *neigh,
262                               struct hh_cache *hh)
263 {
264         struct net_device *net;
265         struct fwnet_header *h;
266
267         if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
268                 return -1;
269         net = neigh->dev;
270         h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
271         h->h_proto = hh->hh_type;
272         memcpy(h->h_dest, neigh->ha, net->addr_len);
273         hh->hh_len = FWNET_HLEN;
274
275         return 0;
276 }
277
278 /* Called by Address Resolution module to notify changes in address. */
279 static void fwnet_header_cache_update(struct hh_cache *hh,
280                 const struct net_device *net, const unsigned char *haddr)
281 {
282         memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
283 }
284
285 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
286 {
287         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
288
289         return FWNET_ALEN;
290 }
291
292 static const struct header_ops fwnet_header_ops = {
293         .create         = fwnet_header_create,
294         .rebuild        = fwnet_header_rebuild,
295         .cache          = fwnet_header_cache,
296         .cache_update   = fwnet_header_cache_update,
297         .parse          = fwnet_header_parse,
298 };
299
300 /* FIXME: is this correct for all cases? */
301 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
302                                unsigned offset, unsigned len)
303 {
304         struct fwnet_fragment_info *fi;
305         unsigned end = offset + len;
306
307         list_for_each_entry(fi, &pd->fi_list, fi_link)
308                 if (offset < fi->offset + fi->len && end > fi->offset)
309                         return true;
310
311         return false;
312 }
313
314 /* Assumes that new fragment does not overlap any existing fragments */
315 static struct fwnet_fragment_info *fwnet_frag_new(
316         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
317 {
318         struct fwnet_fragment_info *fi, *fi2, *new;
319         struct list_head *list;
320
321         list = &pd->fi_list;
322         list_for_each_entry(fi, &pd->fi_list, fi_link) {
323                 if (fi->offset + fi->len == offset) {
324                         /* The new fragment can be tacked on to the end */
325                         /* Did the new fragment plug a hole? */
326                         fi2 = list_entry(fi->fi_link.next,
327                                          struct fwnet_fragment_info, fi_link);
328                         if (fi->offset + fi->len == fi2->offset) {
329                                 /* glue fragments together */
330                                 fi->len += len + fi2->len;
331                                 list_del(&fi2->fi_link);
332                                 kfree(fi2);
333                         } else {
334                                 fi->len += len;
335                         }
336
337                         return fi;
338                 }
339                 if (offset + len == fi->offset) {
340                         /* The new fragment can be tacked on to the beginning */
341                         /* Did the new fragment plug a hole? */
342                         fi2 = list_entry(fi->fi_link.prev,
343                                          struct fwnet_fragment_info, fi_link);
344                         if (fi2->offset + fi2->len == fi->offset) {
345                                 /* glue fragments together */
346                                 fi2->len += fi->len + len;
347                                 list_del(&fi->fi_link);
348                                 kfree(fi);
349
350                                 return fi2;
351                         }
352                         fi->offset = offset;
353                         fi->len += len;
354
355                         return fi;
356                 }
357                 if (offset > fi->offset + fi->len) {
358                         list = &fi->fi_link;
359                         break;
360                 }
361                 if (offset + len < fi->offset) {
362                         list = fi->fi_link.prev;
363                         break;
364                 }
365         }
366
367         new = kmalloc(sizeof(*new), GFP_ATOMIC);
368         if (!new) {
369                 fw_error("out of memory\n");
370                 return NULL;
371         }
372
373         new->offset = offset;
374         new->len = len;
375         list_add(&new->fi_link, list);
376
377         return new;
378 }
379
380 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
381                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
382                 void *frag_buf, unsigned frag_off, unsigned frag_len)
383 {
384         struct fwnet_partial_datagram *new;
385         struct fwnet_fragment_info *fi;
386
387         new = kmalloc(sizeof(*new), GFP_ATOMIC);
388         if (!new)
389                 goto fail;
390
391         INIT_LIST_HEAD(&new->fi_list);
392         fi = fwnet_frag_new(new, frag_off, frag_len);
393         if (fi == NULL)
394                 goto fail_w_new;
395
396         new->datagram_label = datagram_label;
397         new->datagram_size = dg_size;
398         new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
399         if (new->skb == NULL)
400                 goto fail_w_fi;
401
402         skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
403         new->pbuf = skb_put(new->skb, dg_size);
404         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
405         list_add_tail(&new->pd_link, &peer->pd_list);
406
407         return new;
408
409 fail_w_fi:
410         kfree(fi);
411 fail_w_new:
412         kfree(new);
413 fail:
414         fw_error("out of memory\n");
415
416         return NULL;
417 }
418
419 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
420                                                     u16 datagram_label)
421 {
422         struct fwnet_partial_datagram *pd;
423
424         list_for_each_entry(pd, &peer->pd_list, pd_link)
425                 if (pd->datagram_label == datagram_label)
426                         return pd;
427
428         return NULL;
429 }
430
431
432 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
433 {
434         struct fwnet_fragment_info *fi, *n;
435
436         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
437                 kfree(fi);
438
439         list_del(&old->pd_link);
440         dev_kfree_skb_any(old->skb);
441         kfree(old);
442 }
443
444 static bool fwnet_pd_update(struct fwnet_peer *peer,
445                 struct fwnet_partial_datagram *pd, void *frag_buf,
446                 unsigned frag_off, unsigned frag_len)
447 {
448         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
449                 return false;
450
451         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
452
453         /*
454          * Move list entry to beginnig of list so that oldest partial
455          * datagrams percolate to the end of the list
456          */
457         list_move_tail(&pd->pd_link, &peer->pd_list);
458
459         return true;
460 }
461
462 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
463 {
464         struct fwnet_fragment_info *fi;
465
466         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
467
468         return fi->len == pd->datagram_size;
469 }
470
471 /* caller must hold dev->lock */
472 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
473                                                   u64 guid)
474 {
475         struct fwnet_peer *peer;
476
477         list_for_each_entry(peer, &dev->peer_list, peer_link)
478                 if (peer->guid == guid)
479                         return peer;
480
481         return NULL;
482 }
483
484 /* caller must hold dev->lock */
485 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
486                                                 int node_id, int generation)
487 {
488         struct fwnet_peer *peer;
489
490         list_for_each_entry(peer, &dev->peer_list, peer_link)
491                 if (peer->node_id    == node_id &&
492                     peer->generation == generation)
493                         return peer;
494
495         return NULL;
496 }
497
498 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
499 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
500 {
501         max_rec = min(max_rec, speed + 8);
502         max_rec = min(max_rec, 0xbU); /* <= 4096 */
503         if (max_rec < 8) {
504                 fw_notify("max_rec %x out of range\n", max_rec);
505                 max_rec = 8;
506         }
507
508         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
509 }
510
511
512 static int fwnet_finish_incoming_packet(struct net_device *net,
513                                         struct sk_buff *skb, u16 source_node_id,
514                                         bool is_broadcast, u16 ether_type)
515 {
516         struct fwnet_device *dev;
517         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
518         int status;
519         __be64 guid;
520
521         dev = netdev_priv(net);
522         /* Write metadata, and then pass to the receive level */
523         skb->dev = net;
524         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
525
526         /*
527          * Parse the encapsulation header. This actually does the job of
528          * converting to an ethernet frame header, as well as arp
529          * conversion if needed. ARP conversion is easier in this
530          * direction, since we are using ethernet as our backend.
531          */
532         /*
533          * If this is an ARP packet, convert it. First, we want to make
534          * use of some of the fields, since they tell us a little bit
535          * about the sending machine.
536          */
537         if (ether_type == ETH_P_ARP) {
538                 struct rfc2734_arp *arp1394;
539                 struct arphdr *arp;
540                 unsigned char *arp_ptr;
541                 u64 fifo_addr;
542                 u64 peer_guid;
543                 unsigned sspd;
544                 u16 max_payload;
545                 struct fwnet_peer *peer;
546                 unsigned long flags;
547
548                 arp1394   = (struct rfc2734_arp *)skb->data;
549                 arp       = (struct arphdr *)skb->data;
550                 arp_ptr   = (unsigned char *)(arp + 1);
551                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
552                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
553                                 | get_unaligned_be32(&arp1394->fifo_lo);
554
555                 sspd = arp1394->sspd;
556                 /* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
557                 if (sspd > SCODE_3200) {
558                         fw_notify("sspd %x out of range\n", sspd);
559                         sspd = SCODE_3200;
560                 }
561                 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
562
563                 spin_lock_irqsave(&dev->lock, flags);
564                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
565                 if (peer) {
566                         peer->fifo = fifo_addr;
567
568                         if (peer->speed > sspd)
569                                 peer->speed = sspd;
570                         if (peer->max_payload > max_payload)
571                                 peer->max_payload = max_payload;
572                 }
573                 spin_unlock_irqrestore(&dev->lock, flags);
574
575                 if (!peer) {
576                         fw_notify("No peer for ARP packet from %016llx\n",
577                                   (unsigned long long)peer_guid);
578                         goto no_peer;
579                 }
580
581                 /*
582                  * Now that we're done with the 1394 specific stuff, we'll
583                  * need to alter some of the data.  Believe it or not, all
584                  * that needs to be done is sender_IP_address needs to be
585                  * moved, the destination hardware address get stuffed
586                  * in and the hardware address length set to 8.
587                  *
588                  * IMPORTANT: The code below overwrites 1394 specific data
589                  * needed above so keep the munging of the data for the
590                  * higher level IP stack last.
591                  */
592
593                 arp->ar_hln = 8;
594                 /* skip over sender unique id */
595                 arp_ptr += arp->ar_hln;
596                 /* move sender IP addr */
597                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
598                 /* skip over sender IP addr */
599                 arp_ptr += arp->ar_pln;
600
601                 if (arp->ar_op == htons(ARPOP_REQUEST))
602                         memset(arp_ptr, 0, sizeof(u64));
603                 else
604                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
605         }
606
607         /* Now add the ethernet header. */
608         guid = cpu_to_be64(dev->card->guid);
609         if (dev_hard_header(skb, net, ether_type,
610                            is_broadcast ? &broadcast_hw : &guid,
611                            NULL, skb->len) >= 0) {
612                 struct fwnet_header *eth;
613                 u16 *rawp;
614                 __be16 protocol;
615
616                 skb_reset_mac_header(skb);
617                 skb_pull(skb, sizeof(*eth));
618                 eth = (struct fwnet_header *)skb_mac_header(skb);
619                 if (*eth->h_dest & 1) {
620                         if (memcmp(eth->h_dest, net->broadcast,
621                                    net->addr_len) == 0)
622                                 skb->pkt_type = PACKET_BROADCAST;
623 #if 0
624                         else
625                                 skb->pkt_type = PACKET_MULTICAST;
626 #endif
627                 } else {
628                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
629                                 skb->pkt_type = PACKET_OTHERHOST;
630                 }
631                 if (ntohs(eth->h_proto) >= 1536) {
632                         protocol = eth->h_proto;
633                 } else {
634                         rawp = (u16 *)skb->data;
635                         if (*rawp == 0xffff)
636                                 protocol = htons(ETH_P_802_3);
637                         else
638                                 protocol = htons(ETH_P_802_2);
639                 }
640                 skb->protocol = protocol;
641         }
642         status = netif_rx(skb);
643         if (status == NET_RX_DROP) {
644                 net->stats.rx_errors++;
645                 net->stats.rx_dropped++;
646         } else {
647                 net->stats.rx_packets++;
648                 net->stats.rx_bytes += skb->len;
649         }
650
651         return 0;
652
653  no_peer:
654         net->stats.rx_errors++;
655         net->stats.rx_dropped++;
656
657         dev_kfree_skb_any(skb);
658
659         return -ENOENT;
660 }
661
662 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
663                                  int source_node_id, int generation,
664                                  bool is_broadcast)
665 {
666         struct sk_buff *skb;
667         struct net_device *net = dev->netdev;
668         struct rfc2734_header hdr;
669         unsigned lf;
670         unsigned long flags;
671         struct fwnet_peer *peer;
672         struct fwnet_partial_datagram *pd;
673         int fg_off;
674         int dg_size;
675         u16 datagram_label;
676         int retval;
677         u16 ether_type;
678
679         hdr.w0 = be32_to_cpu(buf[0]);
680         lf = fwnet_get_hdr_lf(&hdr);
681         if (lf == RFC2374_HDR_UNFRAG) {
682                 /*
683                  * An unfragmented datagram has been received by the ieee1394
684                  * bus. Build an skbuff around it so we can pass it to the
685                  * high level network layer.
686                  */
687                 ether_type = fwnet_get_hdr_ether_type(&hdr);
688                 buf++;
689                 len -= RFC2374_UNFRAG_HDR_SIZE;
690
691                 skb = dev_alloc_skb(len + net->hard_header_len + 15);
692                 if (unlikely(!skb)) {
693                         fw_error("out of memory\n");
694                         net->stats.rx_dropped++;
695
696                         return -ENOMEM;
697                 }
698                 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
699                 memcpy(skb_put(skb, len), buf, len);
700
701                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
702                                                     is_broadcast, ether_type);
703         }
704         /* A datagram fragment has been received, now the fun begins. */
705         hdr.w1 = ntohl(buf[1]);
706         buf += 2;
707         len -= RFC2374_FRAG_HDR_SIZE;
708         if (lf == RFC2374_HDR_FIRSTFRAG) {
709                 ether_type = fwnet_get_hdr_ether_type(&hdr);
710                 fg_off = 0;
711         } else {
712                 ether_type = 0;
713                 fg_off = fwnet_get_hdr_fg_off(&hdr);
714         }
715         datagram_label = fwnet_get_hdr_dgl(&hdr);
716         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
717
718         spin_lock_irqsave(&dev->lock, flags);
719
720         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
721         if (!peer) {
722                 retval = -ENOENT;
723                 goto fail;
724         }
725
726         pd = fwnet_pd_find(peer, datagram_label);
727         if (pd == NULL) {
728                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
729                         /* remove the oldest */
730                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
731                                 struct fwnet_partial_datagram, pd_link));
732                         peer->pdg_size--;
733                 }
734                 pd = fwnet_pd_new(net, peer, datagram_label,
735                                   dg_size, buf, fg_off, len);
736                 if (pd == NULL) {
737                         retval = -ENOMEM;
738                         goto fail;
739                 }
740                 peer->pdg_size++;
741         } else {
742                 if (fwnet_frag_overlap(pd, fg_off, len) ||
743                     pd->datagram_size != dg_size) {
744                         /*
745                          * Differing datagram sizes or overlapping fragments,
746                          * discard old datagram and start a new one.
747                          */
748                         fwnet_pd_delete(pd);
749                         pd = fwnet_pd_new(net, peer, datagram_label,
750                                           dg_size, buf, fg_off, len);
751                         if (pd == NULL) {
752                                 peer->pdg_size--;
753                                 retval = -ENOMEM;
754                                 goto fail;
755                         }
756                 } else {
757                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
758                                 /*
759                                  * Couldn't save off fragment anyway
760                                  * so might as well obliterate the
761                                  * datagram now.
762                                  */
763                                 fwnet_pd_delete(pd);
764                                 peer->pdg_size--;
765                                 retval = -ENOMEM;
766                                 goto fail;
767                         }
768                 }
769         } /* new datagram or add to existing one */
770
771         if (lf == RFC2374_HDR_FIRSTFRAG)
772                 pd->ether_type = ether_type;
773
774         if (fwnet_pd_is_complete(pd)) {
775                 ether_type = pd->ether_type;
776                 peer->pdg_size--;
777                 skb = skb_get(pd->skb);
778                 fwnet_pd_delete(pd);
779
780                 spin_unlock_irqrestore(&dev->lock, flags);
781
782                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
783                                                     false, ether_type);
784         }
785         /*
786          * Datagram is not complete, we're done for the
787          * moment.
788          */
789         retval = 0;
790  fail:
791         spin_unlock_irqrestore(&dev->lock, flags);
792
793         return retval;
794 }
795
796 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
797                 int tcode, int destination, int source, int generation,
798                 unsigned long long offset, void *payload, size_t length,
799                 void *callback_data)
800 {
801         struct fwnet_device *dev = callback_data;
802         int rcode;
803
804         if (destination == IEEE1394_ALL_NODES) {
805                 kfree(r);
806
807                 return;
808         }
809
810         if (offset != dev->handler.offset)
811                 rcode = RCODE_ADDRESS_ERROR;
812         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
813                 rcode = RCODE_TYPE_ERROR;
814         else if (fwnet_incoming_packet(dev, payload, length,
815                                        source, generation, false) != 0) {
816                 fw_error("Incoming packet failure\n");
817                 rcode = RCODE_CONFLICT_ERROR;
818         } else
819                 rcode = RCODE_COMPLETE;
820
821         fw_send_response(card, r, rcode);
822 }
823
824 static void fwnet_receive_broadcast(struct fw_iso_context *context,
825                 u32 cycle, size_t header_length, void *header, void *data)
826 {
827         struct fwnet_device *dev;
828         struct fw_iso_packet packet;
829         struct fw_card *card;
830         __be16 *hdr_ptr;
831         __be32 *buf_ptr;
832         int retval;
833         u32 length;
834         u16 source_node_id;
835         u32 specifier_id;
836         u32 ver;
837         unsigned long offset;
838         unsigned long flags;
839
840         dev = data;
841         card = dev->card;
842         hdr_ptr = header;
843         length = be16_to_cpup(hdr_ptr);
844
845         spin_lock_irqsave(&dev->lock, flags);
846
847         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
848         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
849         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
850                 dev->broadcast_rcv_next_ptr = 0;
851
852         spin_unlock_irqrestore(&dev->lock, flags);
853
854         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
855                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
856         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
857         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
858
859         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
860                 buf_ptr += 2;
861                 length -= IEEE1394_GASP_HDR_SIZE;
862                 fwnet_incoming_packet(dev, buf_ptr, length,
863                                       source_node_id, -1, true);
864         }
865
866         packet.payload_length = dev->rcv_buffer_size;
867         packet.interrupt = 1;
868         packet.skip = 0;
869         packet.tag = 3;
870         packet.sy = 0;
871         packet.header_length = IEEE1394_GASP_HDR_SIZE;
872
873         spin_lock_irqsave(&dev->lock, flags);
874
875         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
876                                       &dev->broadcast_rcv_buffer, offset);
877
878         spin_unlock_irqrestore(&dev->lock, flags);
879
880         if (retval < 0)
881                 fw_error("requeue failed\n");
882 }
883
884 static struct kmem_cache *fwnet_packet_task_cache;
885
886 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
887 {
888         dev_kfree_skb_any(ptask->skb);
889         kmem_cache_free(fwnet_packet_task_cache, ptask);
890 }
891
892 /* Caller must hold dev->lock. */
893 static void dec_queued_datagrams(struct fwnet_device *dev)
894 {
895         if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
896                 netif_wake_queue(dev->netdev);
897 }
898
899 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
900
901 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
902 {
903         struct fwnet_device *dev = ptask->dev;
904         struct sk_buff *skb = ptask->skb;
905         unsigned long flags;
906         bool free;
907
908         spin_lock_irqsave(&dev->lock, flags);
909
910         ptask->outstanding_pkts--;
911
912         /* Check whether we or the networking TX soft-IRQ is last user. */
913         free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
914         if (free)
915                 dec_queued_datagrams(dev);
916
917         if (ptask->outstanding_pkts == 0) {
918                 dev->netdev->stats.tx_packets++;
919                 dev->netdev->stats.tx_bytes += skb->len;
920         }
921
922         spin_unlock_irqrestore(&dev->lock, flags);
923
924         if (ptask->outstanding_pkts > 0) {
925                 u16 dg_size;
926                 u16 fg_off;
927                 u16 datagram_label;
928                 u16 lf;
929
930                 /* Update the ptask to point to the next fragment and send it */
931                 lf = fwnet_get_hdr_lf(&ptask->hdr);
932                 switch (lf) {
933                 case RFC2374_HDR_LASTFRAG:
934                 case RFC2374_HDR_UNFRAG:
935                 default:
936                         fw_error("Outstanding packet %x lf %x, header %x,%x\n",
937                                  ptask->outstanding_pkts, lf, ptask->hdr.w0,
938                                  ptask->hdr.w1);
939                         BUG();
940
941                 case RFC2374_HDR_FIRSTFRAG:
942                         /* Set frag type here for future interior fragments */
943                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
944                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
945                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
946                         break;
947
948                 case RFC2374_HDR_INTFRAG:
949                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
950                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
951                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
952                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
953                         break;
954                 }
955
956                 skb_pull(skb, ptask->max_payload);
957                 if (ptask->outstanding_pkts > 1) {
958                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
959                                           dg_size, fg_off, datagram_label);
960                 } else {
961                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
962                                           dg_size, fg_off, datagram_label);
963                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
964                 }
965                 fwnet_send_packet(ptask);
966         }
967
968         if (free)
969                 fwnet_free_ptask(ptask);
970 }
971
972 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
973 {
974         struct fwnet_device *dev = ptask->dev;
975         unsigned long flags;
976         bool free;
977
978         spin_lock_irqsave(&dev->lock, flags);
979
980         /* One fragment failed; don't try to send remaining fragments. */
981         ptask->outstanding_pkts = 0;
982
983         /* Check whether we or the networking TX soft-IRQ is last user. */
984         free = ptask->enqueued;
985         if (free)
986                 dec_queued_datagrams(dev);
987
988         dev->netdev->stats.tx_dropped++;
989         dev->netdev->stats.tx_errors++;
990
991         spin_unlock_irqrestore(&dev->lock, flags);
992
993         if (free)
994                 fwnet_free_ptask(ptask);
995 }
996
997 static void fwnet_write_complete(struct fw_card *card, int rcode,
998                                  void *payload, size_t length, void *data)
999 {
1000         struct fwnet_packet_task *ptask = data;
1001         static unsigned long j;
1002         static int last_rcode, errors_skipped;
1003
1004         if (rcode == RCODE_COMPLETE) {
1005                 fwnet_transmit_packet_done(ptask);
1006         } else {
1007                 fwnet_transmit_packet_failed(ptask);
1008
1009                 if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1010                         fw_error("fwnet_write_complete: "
1011                                 "failed: %x (skipped %d)\n", rcode, errors_skipped);
1012
1013                         errors_skipped = 0;
1014                         last_rcode = rcode;
1015                 } else
1016                         errors_skipped++;
1017         }
1018 }
1019
1020 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1021 {
1022         struct fwnet_device *dev;
1023         unsigned tx_len;
1024         struct rfc2734_header *bufhdr;
1025         unsigned long flags;
1026         bool free;
1027
1028         dev = ptask->dev;
1029         tx_len = ptask->max_payload;
1030         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1031         case RFC2374_HDR_UNFRAG:
1032                 bufhdr = (struct rfc2734_header *)
1033                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1034                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1035                 break;
1036
1037         case RFC2374_HDR_FIRSTFRAG:
1038         case RFC2374_HDR_INTFRAG:
1039         case RFC2374_HDR_LASTFRAG:
1040                 bufhdr = (struct rfc2734_header *)
1041                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1042                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1043                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1044                 break;
1045
1046         default:
1047                 BUG();
1048         }
1049         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1050                 u8 *p;
1051                 int generation;
1052                 int node_id;
1053
1054                 /* ptask->generation may not have been set yet */
1055                 generation = dev->card->generation;
1056                 smp_rmb();
1057                 node_id = dev->card->node_id;
1058
1059                 p = skb_push(ptask->skb, 8);
1060                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1061                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1062                                                 | RFC2734_SW_VERSION, &p[4]);
1063
1064                 /* We should not transmit if broadcast_channel.valid == 0. */
1065                 fw_send_request(dev->card, &ptask->transaction,
1066                                 TCODE_STREAM_DATA,
1067                                 fw_stream_packet_destination_id(3,
1068                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1069                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1070                                 tx_len + 8, fwnet_write_complete, ptask);
1071
1072                 spin_lock_irqsave(&dev->lock, flags);
1073
1074                 /* If the AT tasklet already ran, we may be last user. */
1075                 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1076                 if (!free)
1077                         ptask->enqueued = true;
1078                 else
1079                         dec_queued_datagrams(dev);
1080
1081                 spin_unlock_irqrestore(&dev->lock, flags);
1082
1083                 goto out;
1084         }
1085
1086         fw_send_request(dev->card, &ptask->transaction,
1087                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1088                         ptask->generation, ptask->speed, ptask->fifo_addr,
1089                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1090
1091         spin_lock_irqsave(&dev->lock, flags);
1092
1093         /* If the AT tasklet already ran, we may be last user. */
1094         free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1095         if (!free)
1096                 ptask->enqueued = true;
1097         else
1098                 dec_queued_datagrams(dev);
1099
1100         spin_unlock_irqrestore(&dev->lock, flags);
1101
1102         dev->netdev->trans_start = jiffies;
1103  out:
1104         if (free)
1105                 fwnet_free_ptask(ptask);
1106
1107         return 0;
1108 }
1109
1110 static int fwnet_broadcast_start(struct fwnet_device *dev)
1111 {
1112         struct fw_iso_context *context;
1113         int retval;
1114         unsigned num_packets;
1115         unsigned max_receive;
1116         struct fw_iso_packet packet;
1117         unsigned long offset;
1118         unsigned u;
1119
1120         if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1121                 /* outside OHCI posted write area? */
1122                 static const struct fw_address_region region = {
1123                         .start = 0xffff00000000ULL,
1124                         .end   = CSR_REGISTER_BASE,
1125                 };
1126
1127                 dev->handler.length = 4096;
1128                 dev->handler.address_callback = fwnet_receive_packet;
1129                 dev->handler.callback_data = dev;
1130
1131                 retval = fw_core_add_address_handler(&dev->handler, &region);
1132                 if (retval < 0)
1133                         goto failed_initial;
1134
1135                 dev->local_fifo = dev->handler.offset;
1136         }
1137
1138         max_receive = 1U << (dev->card->max_receive + 1);
1139         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1140
1141         if (!dev->broadcast_rcv_context) {
1142                 void **ptrptr;
1143
1144                 context = fw_iso_context_create(dev->card,
1145                     FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1146                     dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1147                 if (IS_ERR(context)) {
1148                         retval = PTR_ERR(context);
1149                         goto failed_context_create;
1150                 }
1151
1152                 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1153                     dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1154                 if (retval < 0)
1155                         goto failed_buffer_init;
1156
1157                 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1158                 if (!ptrptr) {
1159                         retval = -ENOMEM;
1160                         goto failed_ptrs_alloc;
1161                 }
1162
1163                 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1164                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1165                         void *ptr;
1166                         unsigned v;
1167
1168                         ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1169                         for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1170                                 *ptrptr++ = (void *)
1171                                                 ((char *)ptr + v * max_receive);
1172                 }
1173                 dev->broadcast_rcv_context = context;
1174         } else {
1175                 context = dev->broadcast_rcv_context;
1176         }
1177
1178         packet.payload_length = max_receive;
1179         packet.interrupt = 1;
1180         packet.skip = 0;
1181         packet.tag = 3;
1182         packet.sy = 0;
1183         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1184         offset = 0;
1185
1186         for (u = 0; u < num_packets; u++) {
1187                 retval = fw_iso_context_queue(context, &packet,
1188                                 &dev->broadcast_rcv_buffer, offset);
1189                 if (retval < 0)
1190                         goto failed_rcv_queue;
1191
1192                 offset += max_receive;
1193         }
1194         dev->num_broadcast_rcv_ptrs = num_packets;
1195         dev->rcv_buffer_size = max_receive;
1196         dev->broadcast_rcv_next_ptr = 0U;
1197         retval = fw_iso_context_start(context, -1, 0,
1198                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1199         if (retval < 0)
1200                 goto failed_rcv_queue;
1201
1202         /* FIXME: adjust it according to the min. speed of all known peers? */
1203         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1204                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1205         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1206
1207         return 0;
1208
1209  failed_rcv_queue:
1210         kfree(dev->broadcast_rcv_buffer_ptrs);
1211         dev->broadcast_rcv_buffer_ptrs = NULL;
1212  failed_ptrs_alloc:
1213         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1214  failed_buffer_init:
1215         fw_iso_context_destroy(context);
1216         dev->broadcast_rcv_context = NULL;
1217  failed_context_create:
1218         fw_core_remove_address_handler(&dev->handler);
1219  failed_initial:
1220         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1221
1222         return retval;
1223 }
1224
1225 /* ifup */
1226 static int fwnet_open(struct net_device *net)
1227 {
1228         struct fwnet_device *dev = netdev_priv(net);
1229         int ret;
1230
1231         if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1232                 ret = fwnet_broadcast_start(dev);
1233                 if (ret)
1234                         return ret;
1235         }
1236         netif_start_queue(net);
1237
1238         return 0;
1239 }
1240
1241 /* ifdown */
1242 static int fwnet_stop(struct net_device *net)
1243 {
1244         netif_stop_queue(net);
1245
1246         /* Deallocate iso context for use by other applications? */
1247
1248         return 0;
1249 }
1250
1251 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1252 {
1253         struct fwnet_header hdr_buf;
1254         struct fwnet_device *dev = netdev_priv(net);
1255         __be16 proto;
1256         u16 dest_node;
1257         unsigned max_payload;
1258         u16 dg_size;
1259         u16 *datagram_label_ptr;
1260         struct fwnet_packet_task *ptask;
1261         struct fwnet_peer *peer;
1262         unsigned long flags;
1263
1264         spin_lock_irqsave(&dev->lock, flags);
1265
1266         /* Can this happen? */
1267         if (netif_queue_stopped(dev->netdev)) {
1268                 spin_unlock_irqrestore(&dev->lock, flags);
1269
1270                 return NETDEV_TX_BUSY;
1271         }
1272
1273         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1274         if (ptask == NULL)
1275                 goto fail;
1276
1277         skb = skb_share_check(skb, GFP_ATOMIC);
1278         if (!skb)
1279                 goto fail;
1280
1281         /*
1282          * Make a copy of the driver-specific header.
1283          * We might need to rebuild the header on tx failure.
1284          */
1285         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1286         skb_pull(skb, sizeof(hdr_buf));
1287
1288         proto = hdr_buf.h_proto;
1289         dg_size = skb->len;
1290
1291         /*
1292          * Set the transmission type for the packet.  ARP packets and IP
1293          * broadcast packets are sent via GASP.
1294          */
1295         if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1296             || proto == htons(ETH_P_ARP)
1297             || (proto == htons(ETH_P_IP)
1298                 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1299                 max_payload        = dev->broadcast_xmt_max_payload;
1300                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1301
1302                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1303                 ptask->generation  = 0;
1304                 ptask->dest_node   = IEEE1394_ALL_NODES;
1305                 ptask->speed       = SCODE_100;
1306         } else {
1307                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1308                 u8 generation;
1309
1310                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1311                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1312                         goto fail;
1313
1314                 generation         = peer->generation;
1315                 dest_node          = peer->node_id;
1316                 max_payload        = peer->max_payload;
1317                 datagram_label_ptr = &peer->datagram_label;
1318
1319                 ptask->fifo_addr   = peer->fifo;
1320                 ptask->generation  = generation;
1321                 ptask->dest_node   = dest_node;
1322                 ptask->speed       = peer->speed;
1323         }
1324
1325         /* If this is an ARP packet, convert it */
1326         if (proto == htons(ETH_P_ARP)) {
1327                 struct arphdr *arp = (struct arphdr *)skb->data;
1328                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1329                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1330                 __be32 ipaddr;
1331
1332                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1333
1334                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1335                 arp1394->max_rec        = dev->card->max_receive;
1336                 arp1394->sspd           = dev->card->link_speed;
1337
1338                 put_unaligned_be16(dev->local_fifo >> 32,
1339                                    &arp1394->fifo_hi);
1340                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1341                                    &arp1394->fifo_lo);
1342                 put_unaligned(ipaddr, &arp1394->sip);
1343         }
1344
1345         ptask->hdr.w0 = 0;
1346         ptask->hdr.w1 = 0;
1347         ptask->skb = skb;
1348         ptask->dev = dev;
1349
1350         /* Does it all fit in one packet? */
1351         if (dg_size <= max_payload) {
1352                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1353                 ptask->outstanding_pkts = 1;
1354                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1355         } else {
1356                 u16 datagram_label;
1357
1358                 max_payload -= RFC2374_FRAG_OVERHEAD;
1359                 datagram_label = (*datagram_label_ptr)++;
1360                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1361                                   datagram_label);
1362                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1363                 max_payload += RFC2374_FRAG_HDR_SIZE;
1364         }
1365
1366         if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1367                 netif_stop_queue(dev->netdev);
1368
1369         spin_unlock_irqrestore(&dev->lock, flags);
1370
1371         ptask->max_payload = max_payload;
1372         ptask->enqueued    = 0;
1373
1374         fwnet_send_packet(ptask);
1375
1376         return NETDEV_TX_OK;
1377
1378  fail:
1379         spin_unlock_irqrestore(&dev->lock, flags);
1380
1381         if (ptask)
1382                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1383
1384         if (skb != NULL)
1385                 dev_kfree_skb(skb);
1386
1387         net->stats.tx_dropped++;
1388         net->stats.tx_errors++;
1389
1390         /*
1391          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1392          * causes serious problems" here, allegedly.  Before that patch,
1393          * -ERRNO was returned which is not appropriate under Linux 2.6.
1394          * Perhaps more needs to be done?  Stop the queue in serious
1395          * conditions and restart it elsewhere?
1396          */
1397         return NETDEV_TX_OK;
1398 }
1399
1400 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1401 {
1402         if (new_mtu < 68)
1403                 return -EINVAL;
1404
1405         net->mtu = new_mtu;
1406         return 0;
1407 }
1408
1409 static const struct ethtool_ops fwnet_ethtool_ops = {
1410         .get_link       = ethtool_op_get_link,
1411 };
1412
1413 static const struct net_device_ops fwnet_netdev_ops = {
1414         .ndo_open       = fwnet_open,
1415         .ndo_stop       = fwnet_stop,
1416         .ndo_start_xmit = fwnet_tx,
1417         .ndo_change_mtu = fwnet_change_mtu,
1418 };
1419
1420 static void fwnet_init_dev(struct net_device *net)
1421 {
1422         net->header_ops         = &fwnet_header_ops;
1423         net->netdev_ops         = &fwnet_netdev_ops;
1424         net->watchdog_timeo     = 2 * HZ;
1425         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1426         net->features           = NETIF_F_HIGHDMA;
1427         net->addr_len           = FWNET_ALEN;
1428         net->hard_header_len    = FWNET_HLEN;
1429         net->type               = ARPHRD_IEEE1394;
1430         net->tx_queue_len       = FWNET_TX_QUEUE_LEN;
1431         net->ethtool_ops        = &fwnet_ethtool_ops;
1432
1433 }
1434
1435 /* caller must hold fwnet_device_mutex */
1436 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1437 {
1438         struct fwnet_device *dev;
1439
1440         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1441                 if (dev->card == card)
1442                         return dev;
1443
1444         return NULL;
1445 }
1446
1447 static int fwnet_add_peer(struct fwnet_device *dev,
1448                           struct fw_unit *unit, struct fw_device *device)
1449 {
1450         struct fwnet_peer *peer;
1451
1452         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1453         if (!peer)
1454                 return -ENOMEM;
1455
1456         dev_set_drvdata(&unit->device, peer);
1457
1458         peer->dev = dev;
1459         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1460         peer->fifo = FWNET_NO_FIFO_ADDR;
1461         INIT_LIST_HEAD(&peer->pd_list);
1462         peer->pdg_size = 0;
1463         peer->datagram_label = 0;
1464         peer->speed = device->max_speed;
1465         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1466
1467         peer->generation = device->generation;
1468         smp_rmb();
1469         peer->node_id = device->node_id;
1470
1471         spin_lock_irq(&dev->lock);
1472         list_add_tail(&peer->peer_link, &dev->peer_list);
1473         dev->peer_count++;
1474         spin_unlock_irq(&dev->lock);
1475
1476         return 0;
1477 }
1478
1479 static int fwnet_probe(struct device *_dev)
1480 {
1481         struct fw_unit *unit = fw_unit(_dev);
1482         struct fw_device *device = fw_parent_device(unit);
1483         struct fw_card *card = device->card;
1484         struct net_device *net;
1485         bool allocated_netdev = false;
1486         struct fwnet_device *dev;
1487         unsigned max_mtu;
1488         int ret;
1489
1490         mutex_lock(&fwnet_device_mutex);
1491
1492         dev = fwnet_dev_find(card);
1493         if (dev) {
1494                 net = dev->netdev;
1495                 goto have_dev;
1496         }
1497
1498         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1499         if (net == NULL) {
1500                 ret = -ENOMEM;
1501                 goto out;
1502         }
1503
1504         allocated_netdev = true;
1505         SET_NETDEV_DEV(net, card->device);
1506         dev = netdev_priv(net);
1507
1508         spin_lock_init(&dev->lock);
1509         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1510         dev->broadcast_rcv_context = NULL;
1511         dev->broadcast_xmt_max_payload = 0;
1512         dev->broadcast_xmt_datagramlabel = 0;
1513         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1514         dev->queued_datagrams = 0;
1515         INIT_LIST_HEAD(&dev->peer_list);
1516         dev->card = card;
1517         dev->netdev = net;
1518
1519         /*
1520          * Use the RFC 2734 default 1500 octets or the maximum payload
1521          * as initial MTU
1522          */
1523         max_mtu = (1 << (card->max_receive + 1))
1524                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1525         net->mtu = min(1500U, max_mtu);
1526
1527         /* Set our hardware address while we're at it */
1528         put_unaligned_be64(card->guid, net->dev_addr);
1529         put_unaligned_be64(~0ULL, net->broadcast);
1530         ret = register_netdev(net);
1531         if (ret) {
1532                 fw_error("Cannot register the driver\n");
1533                 goto out;
1534         }
1535
1536         list_add_tail(&dev->dev_link, &fwnet_device_list);
1537         fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1538                   net->name, (unsigned long long)card->guid);
1539  have_dev:
1540         ret = fwnet_add_peer(dev, unit, device);
1541         if (ret && allocated_netdev) {
1542                 unregister_netdev(net);
1543                 list_del(&dev->dev_link);
1544         }
1545
1546         if (dev->peer_count > 1)
1547                 netif_carrier_on(net);
1548  out:
1549         if (ret && allocated_netdev)
1550                 free_netdev(net);
1551
1552         mutex_unlock(&fwnet_device_mutex);
1553
1554         return ret;
1555 }
1556
1557 static void fwnet_remove_peer(struct fwnet_peer *peer)
1558 {
1559         struct fwnet_partial_datagram *pd, *pd_next;
1560
1561         spin_lock_irq(&peer->dev->lock);
1562         list_del(&peer->peer_link);
1563         peer->dev->peer_count--;
1564         spin_unlock_irq(&peer->dev->lock);
1565
1566         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1567                 fwnet_pd_delete(pd);
1568
1569         kfree(peer);
1570 }
1571
1572 static int fwnet_remove(struct device *_dev)
1573 {
1574         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1575         struct fwnet_device *dev = peer->dev;
1576         struct net_device *net;
1577         int i;
1578
1579         mutex_lock(&fwnet_device_mutex);
1580
1581         fwnet_remove_peer(peer);
1582
1583         /* If we serve just one node, that means we lost link
1584                 with outer world */
1585         if (dev->peer_count == 1)
1586                 netif_carrier_off(dev->netdev);
1587
1588         if (list_empty(&dev->peer_list)) {
1589                 net = dev->netdev;
1590                 unregister_netdev(net);
1591
1592                 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1593                         fw_core_remove_address_handler(&dev->handler);
1594                 if (dev->broadcast_rcv_context) {
1595                         fw_iso_context_stop(dev->broadcast_rcv_context);
1596                         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1597                                               dev->card);
1598                         fw_iso_context_destroy(dev->broadcast_rcv_context);
1599                 }
1600                 for (i = 0; dev->queued_datagrams && i < 5; i++)
1601                         ssleep(1);
1602                 WARN_ON(dev->queued_datagrams);
1603                 list_del(&dev->dev_link);
1604
1605                 free_netdev(net);
1606         }
1607
1608         mutex_unlock(&fwnet_device_mutex);
1609
1610         return 0;
1611 }
1612
1613 /*
1614  * FIXME abort partially sent fragmented datagrams,
1615  * discard partially received fragmented datagrams
1616  */
1617 static void fwnet_update(struct fw_unit *unit)
1618 {
1619         struct fw_device *device = fw_parent_device(unit);
1620         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1621         int generation;
1622
1623         generation = device->generation;
1624
1625         spin_lock_irq(&peer->dev->lock);
1626         peer->node_id    = device->node_id;
1627         peer->generation = generation;
1628         spin_unlock_irq(&peer->dev->lock);
1629 }
1630
1631 static const struct ieee1394_device_id fwnet_id_table[] = {
1632         {
1633                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1634                                 IEEE1394_MATCH_VERSION,
1635                 .specifier_id = IANA_SPECIFIER_ID,
1636                 .version      = RFC2734_SW_VERSION,
1637         },
1638         { }
1639 };
1640
1641 static struct fw_driver fwnet_driver = {
1642         .driver = {
1643                 .owner  = THIS_MODULE,
1644                 .name   = "net",
1645                 .bus    = &fw_bus_type,
1646                 .probe  = fwnet_probe,
1647                 .remove = fwnet_remove,
1648         },
1649         .update   = fwnet_update,
1650         .id_table = fwnet_id_table,
1651 };
1652
1653 static const u32 rfc2374_unit_directory_data[] = {
1654         0x00040000,     /* directory_length             */
1655         0x1200005e,     /* unit_specifier_id: IANA      */
1656         0x81000003,     /* textual descriptor offset    */
1657         0x13000001,     /* unit_sw_version: RFC 2734    */
1658         0x81000005,     /* textual descriptor offset    */
1659         0x00030000,     /* descriptor_length            */
1660         0x00000000,     /* text                         */
1661         0x00000000,     /* minimal ASCII, en            */
1662         0x49414e41,     /* I A N A                      */
1663         0x00030000,     /* descriptor_length            */
1664         0x00000000,     /* text                         */
1665         0x00000000,     /* minimal ASCII, en            */
1666         0x49507634,     /* I P v 4                      */
1667 };
1668
1669 static struct fw_descriptor rfc2374_unit_directory = {
1670         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1671         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1672         .data   = rfc2374_unit_directory_data
1673 };
1674
1675 static int __init fwnet_init(void)
1676 {
1677         int err;
1678
1679         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1680         if (err)
1681                 return err;
1682
1683         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1684                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1685         if (!fwnet_packet_task_cache) {
1686                 err = -ENOMEM;
1687                 goto out;
1688         }
1689
1690         err = driver_register(&fwnet_driver.driver);
1691         if (!err)
1692                 return 0;
1693
1694         kmem_cache_destroy(fwnet_packet_task_cache);
1695 out:
1696         fw_core_remove_descriptor(&rfc2374_unit_directory);
1697
1698         return err;
1699 }
1700 module_init(fwnet_init);
1701
1702 static void __exit fwnet_cleanup(void)
1703 {
1704         driver_unregister(&fwnet_driver.driver);
1705         kmem_cache_destroy(fwnet_packet_task_cache);
1706         fw_core_remove_descriptor(&rfc2374_unit_directory);
1707 }
1708 module_exit(fwnet_cleanup);
1709
1710 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1711 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1712 MODULE_LICENSE("GPL");
1713 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);