]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/firewire/net.c
Merge tag 'drivers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[karo-tx-linux.git] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  * IPv6 over IEEE 1394, per RFC 3146
4  *
5  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
6  *
7  * based on eth1394 by Ben Collins et al
8  */
9
10 #include <linux/bug.h>
11 #include <linux/compiler.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/ethtool.h>
15 #include <linux/firewire.h>
16 #include <linux/firewire-constants.h>
17 #include <linux/highmem.h>
18 #include <linux/in.h>
19 #include <linux/ip.h>
20 #include <linux/jiffies.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/netdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29
30 #include <asm/unaligned.h>
31 #include <net/arp.h>
32 #include <net/firewire.h>
33
34 /* rx limits */
35 #define FWNET_MAX_FRAGMENTS             30 /* arbitrary, > TX queue depth */
36 #define FWNET_ISO_PAGE_COUNT            (PAGE_SIZE < 16*1024 ? 4 : 2)
37
38 /* tx limits */
39 #define FWNET_MAX_QUEUED_DATAGRAMS      20 /* < 64 = number of tlabels */
40 #define FWNET_MIN_QUEUED_DATAGRAMS      10 /* should keep AT DMA busy enough */
41 #define FWNET_TX_QUEUE_LEN              FWNET_MAX_QUEUED_DATAGRAMS /* ? */
42
43 #define IEEE1394_BROADCAST_CHANNEL      31
44 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
45 #define IEEE1394_MAX_PAYLOAD_S100       512
46 #define FWNET_NO_FIFO_ADDR              (~0ULL)
47
48 #define IANA_SPECIFIER_ID               0x00005eU
49 #define RFC2734_SW_VERSION              0x000001U
50 #define RFC3146_SW_VERSION              0x000002U
51
52 #define IEEE1394_GASP_HDR_SIZE  8
53
54 #define RFC2374_UNFRAG_HDR_SIZE 4
55 #define RFC2374_FRAG_HDR_SIZE   8
56 #define RFC2374_FRAG_OVERHEAD   4
57
58 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
59 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
60 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
61 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
62
63 static bool fwnet_hwaddr_is_multicast(u8 *ha)
64 {
65         return !!(*ha & 1);
66 }
67
68 /* IPv4 and IPv6 encapsulation header */
69 struct rfc2734_header {
70         u32 w0;
71         u32 w1;
72 };
73
74 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
75 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
76 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
77 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
78 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
79
80 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
81 #define fwnet_set_hdr_ether_type(et)    (et)
82 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
83 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
84
85 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
86
87 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
88                 unsigned ether_type)
89 {
90         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
91                   | fwnet_set_hdr_ether_type(ether_type);
92 }
93
94 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
95                 unsigned ether_type, unsigned dg_size, unsigned dgl)
96 {
97         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
98                   | fwnet_set_hdr_dg_size(dg_size)
99                   | fwnet_set_hdr_ether_type(ether_type);
100         hdr->w1 = fwnet_set_hdr_dgl(dgl);
101 }
102
103 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
104                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
105 {
106         hdr->w0 = fwnet_set_hdr_lf(lf)
107                   | fwnet_set_hdr_dg_size(dg_size)
108                   | fwnet_set_hdr_fg_off(fg_off);
109         hdr->w1 = fwnet_set_hdr_dgl(dgl);
110 }
111
112 /* This list keeps track of what parts of the datagram have been filled in */
113 struct fwnet_fragment_info {
114         struct list_head fi_link;
115         u16 offset;
116         u16 len;
117 };
118
119 struct fwnet_partial_datagram {
120         struct list_head pd_link;
121         struct list_head fi_list;
122         struct sk_buff *skb;
123         /* FIXME Why not use skb->data? */
124         char *pbuf;
125         u16 datagram_label;
126         u16 ether_type;
127         u16 datagram_size;
128 };
129
130 static DEFINE_MUTEX(fwnet_device_mutex);
131 static LIST_HEAD(fwnet_device_list);
132
133 struct fwnet_device {
134         struct list_head dev_link;
135         spinlock_t lock;
136         enum {
137                 FWNET_BROADCAST_ERROR,
138                 FWNET_BROADCAST_RUNNING,
139                 FWNET_BROADCAST_STOPPED,
140         } broadcast_state;
141         struct fw_iso_context *broadcast_rcv_context;
142         struct fw_iso_buffer broadcast_rcv_buffer;
143         void **broadcast_rcv_buffer_ptrs;
144         unsigned broadcast_rcv_next_ptr;
145         unsigned num_broadcast_rcv_ptrs;
146         unsigned rcv_buffer_size;
147         /*
148          * This value is the maximum unfragmented datagram size that can be
149          * sent by the hardware.  It already has the GASP overhead and the
150          * unfragmented datagram header overhead calculated into it.
151          */
152         unsigned broadcast_xmt_max_payload;
153         u16 broadcast_xmt_datagramlabel;
154
155         /*
156          * The CSR address that remote nodes must send datagrams to for us to
157          * receive them.
158          */
159         struct fw_address_handler handler;
160         u64 local_fifo;
161
162         /* Number of tx datagrams that have been queued but not yet acked */
163         int queued_datagrams;
164
165         int peer_count;
166         struct list_head peer_list;
167         struct fw_card *card;
168         struct net_device *netdev;
169 };
170
171 struct fwnet_peer {
172         struct list_head peer_link;
173         struct fwnet_device *dev;
174         u64 guid;
175
176         /* guarded by dev->lock */
177         struct list_head pd_list; /* received partial datagrams */
178         unsigned pdg_size;        /* pd_list size */
179
180         u16 datagram_label;       /* outgoing datagram label */
181         u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
182         int node_id;
183         int generation;
184         unsigned speed;
185 };
186
187 /* This is our task struct. It's used for the packet complete callback.  */
188 struct fwnet_packet_task {
189         struct fw_transaction transaction;
190         struct rfc2734_header hdr;
191         struct sk_buff *skb;
192         struct fwnet_device *dev;
193
194         int outstanding_pkts;
195         u64 fifo_addr;
196         u16 dest_node;
197         u16 max_payload;
198         u8 generation;
199         u8 speed;
200         u8 enqueued;
201 };
202
203 /*
204  * Get fifo address embedded in hwaddr
205  */
206 static __u64 fwnet_hwaddr_fifo(union fwnet_hwaddr *ha)
207 {
208         return (u64)get_unaligned_be16(&ha->uc.fifo_hi) << 32
209                | get_unaligned_be32(&ha->uc.fifo_lo);
210 }
211
212 /*
213  * saddr == NULL means use device source address.
214  * daddr == NULL means leave destination address (eg unresolved arp).
215  */
216 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
217                         unsigned short type, const void *daddr,
218                         const void *saddr, unsigned len)
219 {
220         struct fwnet_header *h;
221
222         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
223         put_unaligned_be16(type, &h->h_proto);
224
225         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
226                 memset(h->h_dest, 0, net->addr_len);
227
228                 return net->hard_header_len;
229         }
230
231         if (daddr) {
232                 memcpy(h->h_dest, daddr, net->addr_len);
233
234                 return net->hard_header_len;
235         }
236
237         return -net->hard_header_len;
238 }
239
240 static int fwnet_header_rebuild(struct sk_buff *skb)
241 {
242         struct fwnet_header *h = (struct fwnet_header *)skb->data;
243
244         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
245                 return arp_find((unsigned char *)&h->h_dest, skb);
246
247         dev_notice(&skb->dev->dev, "unable to resolve type %04x addresses\n",
248                    be16_to_cpu(h->h_proto));
249         return 0;
250 }
251
252 static int fwnet_header_cache(const struct neighbour *neigh,
253                               struct hh_cache *hh, __be16 type)
254 {
255         struct net_device *net;
256         struct fwnet_header *h;
257
258         if (type == cpu_to_be16(ETH_P_802_3))
259                 return -1;
260         net = neigh->dev;
261         h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
262         h->h_proto = type;
263         memcpy(h->h_dest, neigh->ha, net->addr_len);
264         hh->hh_len = FWNET_HLEN;
265
266         return 0;
267 }
268
269 /* Called by Address Resolution module to notify changes in address. */
270 static void fwnet_header_cache_update(struct hh_cache *hh,
271                 const struct net_device *net, const unsigned char *haddr)
272 {
273         memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
274 }
275
276 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
277 {
278         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
279
280         return FWNET_ALEN;
281 }
282
283 static const struct header_ops fwnet_header_ops = {
284         .create         = fwnet_header_create,
285         .rebuild        = fwnet_header_rebuild,
286         .cache          = fwnet_header_cache,
287         .cache_update   = fwnet_header_cache_update,
288         .parse          = fwnet_header_parse,
289 };
290
291 /* FIXME: is this correct for all cases? */
292 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
293                                unsigned offset, unsigned len)
294 {
295         struct fwnet_fragment_info *fi;
296         unsigned end = offset + len;
297
298         list_for_each_entry(fi, &pd->fi_list, fi_link)
299                 if (offset < fi->offset + fi->len && end > fi->offset)
300                         return true;
301
302         return false;
303 }
304
305 /* Assumes that new fragment does not overlap any existing fragments */
306 static struct fwnet_fragment_info *fwnet_frag_new(
307         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
308 {
309         struct fwnet_fragment_info *fi, *fi2, *new;
310         struct list_head *list;
311
312         list = &pd->fi_list;
313         list_for_each_entry(fi, &pd->fi_list, fi_link) {
314                 if (fi->offset + fi->len == offset) {
315                         /* The new fragment can be tacked on to the end */
316                         /* Did the new fragment plug a hole? */
317                         fi2 = list_entry(fi->fi_link.next,
318                                          struct fwnet_fragment_info, fi_link);
319                         if (fi->offset + fi->len == fi2->offset) {
320                                 /* glue fragments together */
321                                 fi->len += len + fi2->len;
322                                 list_del(&fi2->fi_link);
323                                 kfree(fi2);
324                         } else {
325                                 fi->len += len;
326                         }
327
328                         return fi;
329                 }
330                 if (offset + len == fi->offset) {
331                         /* The new fragment can be tacked on to the beginning */
332                         /* Did the new fragment plug a hole? */
333                         fi2 = list_entry(fi->fi_link.prev,
334                                          struct fwnet_fragment_info, fi_link);
335                         if (fi2->offset + fi2->len == fi->offset) {
336                                 /* glue fragments together */
337                                 fi2->len += fi->len + len;
338                                 list_del(&fi->fi_link);
339                                 kfree(fi);
340
341                                 return fi2;
342                         }
343                         fi->offset = offset;
344                         fi->len += len;
345
346                         return fi;
347                 }
348                 if (offset > fi->offset + fi->len) {
349                         list = &fi->fi_link;
350                         break;
351                 }
352                 if (offset + len < fi->offset) {
353                         list = fi->fi_link.prev;
354                         break;
355                 }
356         }
357
358         new = kmalloc(sizeof(*new), GFP_ATOMIC);
359         if (!new) {
360                 dev_err(&pd->skb->dev->dev, "out of memory\n");
361                 return NULL;
362         }
363
364         new->offset = offset;
365         new->len = len;
366         list_add(&new->fi_link, list);
367
368         return new;
369 }
370
371 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
372                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
373                 void *frag_buf, unsigned frag_off, unsigned frag_len)
374 {
375         struct fwnet_partial_datagram *new;
376         struct fwnet_fragment_info *fi;
377
378         new = kmalloc(sizeof(*new), GFP_ATOMIC);
379         if (!new)
380                 goto fail;
381
382         INIT_LIST_HEAD(&new->fi_list);
383         fi = fwnet_frag_new(new, frag_off, frag_len);
384         if (fi == NULL)
385                 goto fail_w_new;
386
387         new->datagram_label = datagram_label;
388         new->datagram_size = dg_size;
389         new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
390         if (new->skb == NULL)
391                 goto fail_w_fi;
392
393         skb_reserve(new->skb, LL_RESERVED_SPACE(net));
394         new->pbuf = skb_put(new->skb, dg_size);
395         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
396         list_add_tail(&new->pd_link, &peer->pd_list);
397
398         return new;
399
400 fail_w_fi:
401         kfree(fi);
402 fail_w_new:
403         kfree(new);
404 fail:
405         dev_err(&net->dev, "out of memory\n");
406
407         return NULL;
408 }
409
410 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
411                                                     u16 datagram_label)
412 {
413         struct fwnet_partial_datagram *pd;
414
415         list_for_each_entry(pd, &peer->pd_list, pd_link)
416                 if (pd->datagram_label == datagram_label)
417                         return pd;
418
419         return NULL;
420 }
421
422
423 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
424 {
425         struct fwnet_fragment_info *fi, *n;
426
427         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
428                 kfree(fi);
429
430         list_del(&old->pd_link);
431         dev_kfree_skb_any(old->skb);
432         kfree(old);
433 }
434
435 static bool fwnet_pd_update(struct fwnet_peer *peer,
436                 struct fwnet_partial_datagram *pd, void *frag_buf,
437                 unsigned frag_off, unsigned frag_len)
438 {
439         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
440                 return false;
441
442         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
443
444         /*
445          * Move list entry to beginning of list so that oldest partial
446          * datagrams percolate to the end of the list
447          */
448         list_move_tail(&pd->pd_link, &peer->pd_list);
449
450         return true;
451 }
452
453 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
454 {
455         struct fwnet_fragment_info *fi;
456
457         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
458
459         return fi->len == pd->datagram_size;
460 }
461
462 /* caller must hold dev->lock */
463 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
464                                                   u64 guid)
465 {
466         struct fwnet_peer *peer;
467
468         list_for_each_entry(peer, &dev->peer_list, peer_link)
469                 if (peer->guid == guid)
470                         return peer;
471
472         return NULL;
473 }
474
475 /* caller must hold dev->lock */
476 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
477                                                 int node_id, int generation)
478 {
479         struct fwnet_peer *peer;
480
481         list_for_each_entry(peer, &dev->peer_list, peer_link)
482                 if (peer->node_id    == node_id &&
483                     peer->generation == generation)
484                         return peer;
485
486         return NULL;
487 }
488
489 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
490 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
491 {
492         max_rec = min(max_rec, speed + 8);
493         max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
494
495         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
496 }
497
498
499 static int fwnet_finish_incoming_packet(struct net_device *net,
500                                         struct sk_buff *skb, u16 source_node_id,
501                                         bool is_broadcast, u16 ether_type)
502 {
503         struct fwnet_device *dev;
504         int status;
505         __be64 guid;
506
507         switch (ether_type) {
508         case ETH_P_ARP:
509         case ETH_P_IP:
510 #if IS_ENABLED(CONFIG_IPV6)
511         case ETH_P_IPV6:
512 #endif
513                 break;
514         default:
515                 goto err;
516         }
517
518         dev = netdev_priv(net);
519         /* Write metadata, and then pass to the receive level */
520         skb->dev = net;
521         skb->ip_summed = CHECKSUM_NONE;
522
523         /*
524          * Parse the encapsulation header. This actually does the job of
525          * converting to an ethernet-like pseudo frame header.
526          */
527         guid = cpu_to_be64(dev->card->guid);
528         if (dev_hard_header(skb, net, ether_type,
529                            is_broadcast ? net->broadcast : net->dev_addr,
530                            NULL, skb->len) >= 0) {
531                 struct fwnet_header *eth;
532                 u16 *rawp;
533                 __be16 protocol;
534
535                 skb_reset_mac_header(skb);
536                 skb_pull(skb, sizeof(*eth));
537                 eth = (struct fwnet_header *)skb_mac_header(skb);
538                 if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
539                         if (memcmp(eth->h_dest, net->broadcast,
540                                    net->addr_len) == 0)
541                                 skb->pkt_type = PACKET_BROADCAST;
542 #if 0
543                         else
544                                 skb->pkt_type = PACKET_MULTICAST;
545 #endif
546                 } else {
547                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
548                                 skb->pkt_type = PACKET_OTHERHOST;
549                 }
550                 if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) {
551                         protocol = eth->h_proto;
552                 } else {
553                         rawp = (u16 *)skb->data;
554                         if (*rawp == 0xffff)
555                                 protocol = htons(ETH_P_802_3);
556                         else
557                                 protocol = htons(ETH_P_802_2);
558                 }
559                 skb->protocol = protocol;
560         }
561         status = netif_rx(skb);
562         if (status == NET_RX_DROP) {
563                 net->stats.rx_errors++;
564                 net->stats.rx_dropped++;
565         } else {
566                 net->stats.rx_packets++;
567                 net->stats.rx_bytes += skb->len;
568         }
569
570         return 0;
571
572  err:
573         net->stats.rx_errors++;
574         net->stats.rx_dropped++;
575
576         dev_kfree_skb_any(skb);
577
578         return -ENOENT;
579 }
580
581 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
582                                  int source_node_id, int generation,
583                                  bool is_broadcast)
584 {
585         struct sk_buff *skb;
586         struct net_device *net = dev->netdev;
587         struct rfc2734_header hdr;
588         unsigned lf;
589         unsigned long flags;
590         struct fwnet_peer *peer;
591         struct fwnet_partial_datagram *pd;
592         int fg_off;
593         int dg_size;
594         u16 datagram_label;
595         int retval;
596         u16 ether_type;
597
598         hdr.w0 = be32_to_cpu(buf[0]);
599         lf = fwnet_get_hdr_lf(&hdr);
600         if (lf == RFC2374_HDR_UNFRAG) {
601                 /*
602                  * An unfragmented datagram has been received by the ieee1394
603                  * bus. Build an skbuff around it so we can pass it to the
604                  * high level network layer.
605                  */
606                 ether_type = fwnet_get_hdr_ether_type(&hdr);
607                 buf++;
608                 len -= RFC2374_UNFRAG_HDR_SIZE;
609
610                 skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
611                 if (unlikely(!skb)) {
612                         dev_err(&net->dev, "out of memory\n");
613                         net->stats.rx_dropped++;
614
615                         return -ENOMEM;
616                 }
617                 skb_reserve(skb, LL_RESERVED_SPACE(net));
618                 memcpy(skb_put(skb, len), buf, len);
619
620                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
621                                                     is_broadcast, ether_type);
622         }
623         /* A datagram fragment has been received, now the fun begins. */
624         hdr.w1 = ntohl(buf[1]);
625         buf += 2;
626         len -= RFC2374_FRAG_HDR_SIZE;
627         if (lf == RFC2374_HDR_FIRSTFRAG) {
628                 ether_type = fwnet_get_hdr_ether_type(&hdr);
629                 fg_off = 0;
630         } else {
631                 ether_type = 0;
632                 fg_off = fwnet_get_hdr_fg_off(&hdr);
633         }
634         datagram_label = fwnet_get_hdr_dgl(&hdr);
635         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
636
637         spin_lock_irqsave(&dev->lock, flags);
638
639         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
640         if (!peer) {
641                 retval = -ENOENT;
642                 goto fail;
643         }
644
645         pd = fwnet_pd_find(peer, datagram_label);
646         if (pd == NULL) {
647                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
648                         /* remove the oldest */
649                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
650                                 struct fwnet_partial_datagram, pd_link));
651                         peer->pdg_size--;
652                 }
653                 pd = fwnet_pd_new(net, peer, datagram_label,
654                                   dg_size, buf, fg_off, len);
655                 if (pd == NULL) {
656                         retval = -ENOMEM;
657                         goto fail;
658                 }
659                 peer->pdg_size++;
660         } else {
661                 if (fwnet_frag_overlap(pd, fg_off, len) ||
662                     pd->datagram_size != dg_size) {
663                         /*
664                          * Differing datagram sizes or overlapping fragments,
665                          * discard old datagram and start a new one.
666                          */
667                         fwnet_pd_delete(pd);
668                         pd = fwnet_pd_new(net, peer, datagram_label,
669                                           dg_size, buf, fg_off, len);
670                         if (pd == NULL) {
671                                 peer->pdg_size--;
672                                 retval = -ENOMEM;
673                                 goto fail;
674                         }
675                 } else {
676                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
677                                 /*
678                                  * Couldn't save off fragment anyway
679                                  * so might as well obliterate the
680                                  * datagram now.
681                                  */
682                                 fwnet_pd_delete(pd);
683                                 peer->pdg_size--;
684                                 retval = -ENOMEM;
685                                 goto fail;
686                         }
687                 }
688         } /* new datagram or add to existing one */
689
690         if (lf == RFC2374_HDR_FIRSTFRAG)
691                 pd->ether_type = ether_type;
692
693         if (fwnet_pd_is_complete(pd)) {
694                 ether_type = pd->ether_type;
695                 peer->pdg_size--;
696                 skb = skb_get(pd->skb);
697                 fwnet_pd_delete(pd);
698
699                 spin_unlock_irqrestore(&dev->lock, flags);
700
701                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
702                                                     false, ether_type);
703         }
704         /*
705          * Datagram is not complete, we're done for the
706          * moment.
707          */
708         retval = 0;
709  fail:
710         spin_unlock_irqrestore(&dev->lock, flags);
711
712         return retval;
713 }
714
715 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
716                 int tcode, int destination, int source, int generation,
717                 unsigned long long offset, void *payload, size_t length,
718                 void *callback_data)
719 {
720         struct fwnet_device *dev = callback_data;
721         int rcode;
722
723         if (destination == IEEE1394_ALL_NODES) {
724                 kfree(r);
725
726                 return;
727         }
728
729         if (offset != dev->handler.offset)
730                 rcode = RCODE_ADDRESS_ERROR;
731         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
732                 rcode = RCODE_TYPE_ERROR;
733         else if (fwnet_incoming_packet(dev, payload, length,
734                                        source, generation, false) != 0) {
735                 dev_err(&dev->netdev->dev, "incoming packet failure\n");
736                 rcode = RCODE_CONFLICT_ERROR;
737         } else
738                 rcode = RCODE_COMPLETE;
739
740         fw_send_response(card, r, rcode);
741 }
742
743 static void fwnet_receive_broadcast(struct fw_iso_context *context,
744                 u32 cycle, size_t header_length, void *header, void *data)
745 {
746         struct fwnet_device *dev;
747         struct fw_iso_packet packet;
748         __be16 *hdr_ptr;
749         __be32 *buf_ptr;
750         int retval;
751         u32 length;
752         u16 source_node_id;
753         u32 specifier_id;
754         u32 ver;
755         unsigned long offset;
756         unsigned long flags;
757
758         dev = data;
759         hdr_ptr = header;
760         length = be16_to_cpup(hdr_ptr);
761
762         spin_lock_irqsave(&dev->lock, flags);
763
764         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
765         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
766         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
767                 dev->broadcast_rcv_next_ptr = 0;
768
769         spin_unlock_irqrestore(&dev->lock, flags);
770
771         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
772                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
773         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
774         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
775
776         if (specifier_id == IANA_SPECIFIER_ID &&
777             (ver == RFC2734_SW_VERSION
778 #if IS_ENABLED(CONFIG_IPV6)
779              || ver == RFC3146_SW_VERSION
780 #endif
781             )) {
782                 buf_ptr += 2;
783                 length -= IEEE1394_GASP_HDR_SIZE;
784                 fwnet_incoming_packet(dev, buf_ptr, length, source_node_id,
785                                       context->card->generation, true);
786         }
787
788         packet.payload_length = dev->rcv_buffer_size;
789         packet.interrupt = 1;
790         packet.skip = 0;
791         packet.tag = 3;
792         packet.sy = 0;
793         packet.header_length = IEEE1394_GASP_HDR_SIZE;
794
795         spin_lock_irqsave(&dev->lock, flags);
796
797         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
798                                       &dev->broadcast_rcv_buffer, offset);
799
800         spin_unlock_irqrestore(&dev->lock, flags);
801
802         if (retval >= 0)
803                 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
804         else
805                 dev_err(&dev->netdev->dev, "requeue failed\n");
806 }
807
808 static struct kmem_cache *fwnet_packet_task_cache;
809
810 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
811 {
812         dev_kfree_skb_any(ptask->skb);
813         kmem_cache_free(fwnet_packet_task_cache, ptask);
814 }
815
816 /* Caller must hold dev->lock. */
817 static void dec_queued_datagrams(struct fwnet_device *dev)
818 {
819         if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
820                 netif_wake_queue(dev->netdev);
821 }
822
823 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
824
825 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
826 {
827         struct fwnet_device *dev = ptask->dev;
828         struct sk_buff *skb = ptask->skb;
829         unsigned long flags;
830         bool free;
831
832         spin_lock_irqsave(&dev->lock, flags);
833
834         ptask->outstanding_pkts--;
835
836         /* Check whether we or the networking TX soft-IRQ is last user. */
837         free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
838         if (free)
839                 dec_queued_datagrams(dev);
840
841         if (ptask->outstanding_pkts == 0) {
842                 dev->netdev->stats.tx_packets++;
843                 dev->netdev->stats.tx_bytes += skb->len;
844         }
845
846         spin_unlock_irqrestore(&dev->lock, flags);
847
848         if (ptask->outstanding_pkts > 0) {
849                 u16 dg_size;
850                 u16 fg_off;
851                 u16 datagram_label;
852                 u16 lf;
853
854                 /* Update the ptask to point to the next fragment and send it */
855                 lf = fwnet_get_hdr_lf(&ptask->hdr);
856                 switch (lf) {
857                 case RFC2374_HDR_LASTFRAG:
858                 case RFC2374_HDR_UNFRAG:
859                 default:
860                         dev_err(&dev->netdev->dev,
861                                 "outstanding packet %x lf %x, header %x,%x\n",
862                                 ptask->outstanding_pkts, lf, ptask->hdr.w0,
863                                 ptask->hdr.w1);
864                         BUG();
865
866                 case RFC2374_HDR_FIRSTFRAG:
867                         /* Set frag type here for future interior fragments */
868                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
869                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
870                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
871                         break;
872
873                 case RFC2374_HDR_INTFRAG:
874                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
875                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
876                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
877                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
878                         break;
879                 }
880
881                 if (ptask->dest_node == IEEE1394_ALL_NODES) {
882                         skb_pull(skb,
883                                  ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
884                 } else {
885                         skb_pull(skb, ptask->max_payload);
886                 }
887                 if (ptask->outstanding_pkts > 1) {
888                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
889                                           dg_size, fg_off, datagram_label);
890                 } else {
891                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
892                                           dg_size, fg_off, datagram_label);
893                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
894                 }
895                 fwnet_send_packet(ptask);
896         }
897
898         if (free)
899                 fwnet_free_ptask(ptask);
900 }
901
902 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
903 {
904         struct fwnet_device *dev = ptask->dev;
905         unsigned long flags;
906         bool free;
907
908         spin_lock_irqsave(&dev->lock, flags);
909
910         /* One fragment failed; don't try to send remaining fragments. */
911         ptask->outstanding_pkts = 0;
912
913         /* Check whether we or the networking TX soft-IRQ is last user. */
914         free = ptask->enqueued;
915         if (free)
916                 dec_queued_datagrams(dev);
917
918         dev->netdev->stats.tx_dropped++;
919         dev->netdev->stats.tx_errors++;
920
921         spin_unlock_irqrestore(&dev->lock, flags);
922
923         if (free)
924                 fwnet_free_ptask(ptask);
925 }
926
927 static void fwnet_write_complete(struct fw_card *card, int rcode,
928                                  void *payload, size_t length, void *data)
929 {
930         struct fwnet_packet_task *ptask = data;
931         static unsigned long j;
932         static int last_rcode, errors_skipped;
933
934         if (rcode == RCODE_COMPLETE) {
935                 fwnet_transmit_packet_done(ptask);
936         } else {
937                 fwnet_transmit_packet_failed(ptask);
938
939                 if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
940                         dev_err(&ptask->dev->netdev->dev,
941                                 "fwnet_write_complete failed: %x (skipped %d)\n",
942                                 rcode, errors_skipped);
943
944                         errors_skipped = 0;
945                         last_rcode = rcode;
946                 } else
947                         errors_skipped++;
948         }
949 }
950
951 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
952 {
953         struct fwnet_device *dev;
954         unsigned tx_len;
955         struct rfc2734_header *bufhdr;
956         unsigned long flags;
957         bool free;
958
959         dev = ptask->dev;
960         tx_len = ptask->max_payload;
961         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
962         case RFC2374_HDR_UNFRAG:
963                 bufhdr = (struct rfc2734_header *)
964                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
965                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
966                 break;
967
968         case RFC2374_HDR_FIRSTFRAG:
969         case RFC2374_HDR_INTFRAG:
970         case RFC2374_HDR_LASTFRAG:
971                 bufhdr = (struct rfc2734_header *)
972                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
973                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
974                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
975                 break;
976
977         default:
978                 BUG();
979         }
980         if (ptask->dest_node == IEEE1394_ALL_NODES) {
981                 u8 *p;
982                 int generation;
983                 int node_id;
984                 unsigned int sw_version;
985
986                 /* ptask->generation may not have been set yet */
987                 generation = dev->card->generation;
988                 smp_rmb();
989                 node_id = dev->card->node_id;
990
991                 switch (ptask->skb->protocol) {
992                 default:
993                         sw_version = RFC2734_SW_VERSION;
994                         break;
995 #if IS_ENABLED(CONFIG_IPV6)
996                 case htons(ETH_P_IPV6):
997                         sw_version = RFC3146_SW_VERSION;
998 #endif
999                 }
1000
1001                 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
1002                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1003                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1004                                                 | sw_version, &p[4]);
1005
1006                 /* We should not transmit if broadcast_channel.valid == 0. */
1007                 fw_send_request(dev->card, &ptask->transaction,
1008                                 TCODE_STREAM_DATA,
1009                                 fw_stream_packet_destination_id(3,
1010                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1011                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1012                                 tx_len + 8, fwnet_write_complete, ptask);
1013
1014                 spin_lock_irqsave(&dev->lock, flags);
1015
1016                 /* If the AT tasklet already ran, we may be last user. */
1017                 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1018                 if (!free)
1019                         ptask->enqueued = true;
1020                 else
1021                         dec_queued_datagrams(dev);
1022
1023                 spin_unlock_irqrestore(&dev->lock, flags);
1024
1025                 goto out;
1026         }
1027
1028         fw_send_request(dev->card, &ptask->transaction,
1029                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1030                         ptask->generation, ptask->speed, ptask->fifo_addr,
1031                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1032
1033         spin_lock_irqsave(&dev->lock, flags);
1034
1035         /* If the AT tasklet already ran, we may be last user. */
1036         free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1037         if (!free)
1038                 ptask->enqueued = true;
1039         else
1040                 dec_queued_datagrams(dev);
1041
1042         spin_unlock_irqrestore(&dev->lock, flags);
1043
1044         dev->netdev->trans_start = jiffies;
1045  out:
1046         if (free)
1047                 fwnet_free_ptask(ptask);
1048
1049         return 0;
1050 }
1051
1052 static void fwnet_fifo_stop(struct fwnet_device *dev)
1053 {
1054         if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1055                 return;
1056
1057         fw_core_remove_address_handler(&dev->handler);
1058         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1059 }
1060
1061 static int fwnet_fifo_start(struct fwnet_device *dev)
1062 {
1063         int retval;
1064
1065         if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1066                 return 0;
1067
1068         dev->handler.length = 4096;
1069         dev->handler.address_callback = fwnet_receive_packet;
1070         dev->handler.callback_data = dev;
1071
1072         retval = fw_core_add_address_handler(&dev->handler,
1073                                              &fw_high_memory_region);
1074         if (retval < 0)
1075                 return retval;
1076
1077         dev->local_fifo = dev->handler.offset;
1078
1079         return 0;
1080 }
1081
1082 static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1083 {
1084         unsigned u;
1085
1086         if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1087                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1088                         kunmap(dev->broadcast_rcv_buffer.pages[u]);
1089                 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1090         }
1091         if (dev->broadcast_rcv_context) {
1092                 fw_iso_context_destroy(dev->broadcast_rcv_context);
1093                 dev->broadcast_rcv_context = NULL;
1094         }
1095         kfree(dev->broadcast_rcv_buffer_ptrs);
1096         dev->broadcast_rcv_buffer_ptrs = NULL;
1097         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1098 }
1099
1100 static void fwnet_broadcast_stop(struct fwnet_device *dev)
1101 {
1102         if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1103                 return;
1104         fw_iso_context_stop(dev->broadcast_rcv_context);
1105         __fwnet_broadcast_stop(dev);
1106 }
1107
1108 static int fwnet_broadcast_start(struct fwnet_device *dev)
1109 {
1110         struct fw_iso_context *context;
1111         int retval;
1112         unsigned num_packets;
1113         unsigned max_receive;
1114         struct fw_iso_packet packet;
1115         unsigned long offset;
1116         void **ptrptr;
1117         unsigned u;
1118
1119         if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1120                 return 0;
1121
1122         max_receive = 1U << (dev->card->max_receive + 1);
1123         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1124
1125         ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1126         if (!ptrptr) {
1127                 retval = -ENOMEM;
1128                 goto failed;
1129         }
1130         dev->broadcast_rcv_buffer_ptrs = ptrptr;
1131
1132         context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1133                                         IEEE1394_BROADCAST_CHANNEL,
1134                                         dev->card->link_speed, 8,
1135                                         fwnet_receive_broadcast, dev);
1136         if (IS_ERR(context)) {
1137                 retval = PTR_ERR(context);
1138                 goto failed;
1139         }
1140
1141         retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1142                                     FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1143         if (retval < 0)
1144                 goto failed;
1145
1146         dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1147
1148         for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1149                 void *ptr;
1150                 unsigned v;
1151
1152                 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1153                 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1154                         *ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1155         }
1156         dev->broadcast_rcv_context = context;
1157
1158         packet.payload_length = max_receive;
1159         packet.interrupt = 1;
1160         packet.skip = 0;
1161         packet.tag = 3;
1162         packet.sy = 0;
1163         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1164         offset = 0;
1165
1166         for (u = 0; u < num_packets; u++) {
1167                 retval = fw_iso_context_queue(context, &packet,
1168                                 &dev->broadcast_rcv_buffer, offset);
1169                 if (retval < 0)
1170                         goto failed;
1171
1172                 offset += max_receive;
1173         }
1174         dev->num_broadcast_rcv_ptrs = num_packets;
1175         dev->rcv_buffer_size = max_receive;
1176         dev->broadcast_rcv_next_ptr = 0U;
1177         retval = fw_iso_context_start(context, -1, 0,
1178                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1179         if (retval < 0)
1180                 goto failed;
1181
1182         /* FIXME: adjust it according to the min. speed of all known peers? */
1183         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1184                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1185         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1186
1187         return 0;
1188
1189  failed:
1190         __fwnet_broadcast_stop(dev);
1191         return retval;
1192 }
1193
1194 static void set_carrier_state(struct fwnet_device *dev)
1195 {
1196         if (dev->peer_count > 1)
1197                 netif_carrier_on(dev->netdev);
1198         else
1199                 netif_carrier_off(dev->netdev);
1200 }
1201
1202 /* ifup */
1203 static int fwnet_open(struct net_device *net)
1204 {
1205         struct fwnet_device *dev = netdev_priv(net);
1206         int ret;
1207
1208         ret = fwnet_broadcast_start(dev);
1209         if (ret)
1210                 return ret;
1211
1212         netif_start_queue(net);
1213
1214         spin_lock_irq(&dev->lock);
1215         set_carrier_state(dev);
1216         spin_unlock_irq(&dev->lock);
1217
1218         return 0;
1219 }
1220
1221 /* ifdown */
1222 static int fwnet_stop(struct net_device *net)
1223 {
1224         struct fwnet_device *dev = netdev_priv(net);
1225
1226         netif_stop_queue(net);
1227         fwnet_broadcast_stop(dev);
1228
1229         return 0;
1230 }
1231
1232 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1233 {
1234         struct fwnet_header hdr_buf;
1235         struct fwnet_device *dev = netdev_priv(net);
1236         __be16 proto;
1237         u16 dest_node;
1238         unsigned max_payload;
1239         u16 dg_size;
1240         u16 *datagram_label_ptr;
1241         struct fwnet_packet_task *ptask;
1242         struct fwnet_peer *peer;
1243         unsigned long flags;
1244
1245         spin_lock_irqsave(&dev->lock, flags);
1246
1247         /* Can this happen? */
1248         if (netif_queue_stopped(dev->netdev)) {
1249                 spin_unlock_irqrestore(&dev->lock, flags);
1250
1251                 return NETDEV_TX_BUSY;
1252         }
1253
1254         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1255         if (ptask == NULL)
1256                 goto fail;
1257
1258         skb = skb_share_check(skb, GFP_ATOMIC);
1259         if (!skb)
1260                 goto fail;
1261
1262         /*
1263          * Make a copy of the driver-specific header.
1264          * We might need to rebuild the header on tx failure.
1265          */
1266         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1267         proto = hdr_buf.h_proto;
1268
1269         switch (proto) {
1270         case htons(ETH_P_ARP):
1271         case htons(ETH_P_IP):
1272 #if IS_ENABLED(CONFIG_IPV6)
1273         case htons(ETH_P_IPV6):
1274 #endif
1275                 break;
1276         default:
1277                 goto fail;
1278         }
1279
1280         skb_pull(skb, sizeof(hdr_buf));
1281         dg_size = skb->len;
1282
1283         /*
1284          * Set the transmission type for the packet.  ARP packets and IP
1285          * broadcast packets are sent via GASP.
1286          */
1287         if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1288                 max_payload        = dev->broadcast_xmt_max_payload;
1289                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1290
1291                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1292                 ptask->generation  = 0;
1293                 ptask->dest_node   = IEEE1394_ALL_NODES;
1294                 ptask->speed       = SCODE_100;
1295         } else {
1296                 union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest;
1297                 __be64 guid = get_unaligned(&ha->uc.uniq_id);
1298                 u8 generation;
1299
1300                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1301                 if (!peer)
1302                         goto fail;
1303
1304                 generation         = peer->generation;
1305                 dest_node          = peer->node_id;
1306                 max_payload        = peer->max_payload;
1307                 datagram_label_ptr = &peer->datagram_label;
1308
1309                 ptask->fifo_addr   = fwnet_hwaddr_fifo(ha);
1310                 ptask->generation  = generation;
1311                 ptask->dest_node   = dest_node;
1312                 ptask->speed       = peer->speed;
1313         }
1314
1315         ptask->hdr.w0 = 0;
1316         ptask->hdr.w1 = 0;
1317         ptask->skb = skb;
1318         ptask->dev = dev;
1319
1320         /* Does it all fit in one packet? */
1321         if (dg_size <= max_payload) {
1322                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1323                 ptask->outstanding_pkts = 1;
1324                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1325         } else {
1326                 u16 datagram_label;
1327
1328                 max_payload -= RFC2374_FRAG_OVERHEAD;
1329                 datagram_label = (*datagram_label_ptr)++;
1330                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1331                                   datagram_label);
1332                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1333                 max_payload += RFC2374_FRAG_HDR_SIZE;
1334         }
1335
1336         if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1337                 netif_stop_queue(dev->netdev);
1338
1339         spin_unlock_irqrestore(&dev->lock, flags);
1340
1341         ptask->max_payload = max_payload;
1342         ptask->enqueued    = 0;
1343
1344         fwnet_send_packet(ptask);
1345
1346         return NETDEV_TX_OK;
1347
1348  fail:
1349         spin_unlock_irqrestore(&dev->lock, flags);
1350
1351         if (ptask)
1352                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1353
1354         if (skb != NULL)
1355                 dev_kfree_skb(skb);
1356
1357         net->stats.tx_dropped++;
1358         net->stats.tx_errors++;
1359
1360         /*
1361          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1362          * causes serious problems" here, allegedly.  Before that patch,
1363          * -ERRNO was returned which is not appropriate under Linux 2.6.
1364          * Perhaps more needs to be done?  Stop the queue in serious
1365          * conditions and restart it elsewhere?
1366          */
1367         return NETDEV_TX_OK;
1368 }
1369
1370 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1371 {
1372         if (new_mtu < 68)
1373                 return -EINVAL;
1374
1375         net->mtu = new_mtu;
1376         return 0;
1377 }
1378
1379 static const struct ethtool_ops fwnet_ethtool_ops = {
1380         .get_link       = ethtool_op_get_link,
1381 };
1382
1383 static const struct net_device_ops fwnet_netdev_ops = {
1384         .ndo_open       = fwnet_open,
1385         .ndo_stop       = fwnet_stop,
1386         .ndo_start_xmit = fwnet_tx,
1387         .ndo_change_mtu = fwnet_change_mtu,
1388 };
1389
1390 static void fwnet_init_dev(struct net_device *net)
1391 {
1392         net->header_ops         = &fwnet_header_ops;
1393         net->netdev_ops         = &fwnet_netdev_ops;
1394         net->watchdog_timeo     = 2 * HZ;
1395         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1396         net->features           = NETIF_F_HIGHDMA;
1397         net->addr_len           = FWNET_ALEN;
1398         net->hard_header_len    = FWNET_HLEN;
1399         net->type               = ARPHRD_IEEE1394;
1400         net->tx_queue_len       = FWNET_TX_QUEUE_LEN;
1401         net->ethtool_ops        = &fwnet_ethtool_ops;
1402 }
1403
1404 /* caller must hold fwnet_device_mutex */
1405 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1406 {
1407         struct fwnet_device *dev;
1408
1409         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1410                 if (dev->card == card)
1411                         return dev;
1412
1413         return NULL;
1414 }
1415
1416 static int fwnet_add_peer(struct fwnet_device *dev,
1417                           struct fw_unit *unit, struct fw_device *device)
1418 {
1419         struct fwnet_peer *peer;
1420
1421         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1422         if (!peer)
1423                 return -ENOMEM;
1424
1425         dev_set_drvdata(&unit->device, peer);
1426
1427         peer->dev = dev;
1428         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1429         INIT_LIST_HEAD(&peer->pd_list);
1430         peer->pdg_size = 0;
1431         peer->datagram_label = 0;
1432         peer->speed = device->max_speed;
1433         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1434
1435         peer->generation = device->generation;
1436         smp_rmb();
1437         peer->node_id = device->node_id;
1438
1439         spin_lock_irq(&dev->lock);
1440         list_add_tail(&peer->peer_link, &dev->peer_list);
1441         dev->peer_count++;
1442         set_carrier_state(dev);
1443         spin_unlock_irq(&dev->lock);
1444
1445         return 0;
1446 }
1447
1448 static int fwnet_probe(struct device *_dev)
1449 {
1450         struct fw_unit *unit = fw_unit(_dev);
1451         struct fw_device *device = fw_parent_device(unit);
1452         struct fw_card *card = device->card;
1453         struct net_device *net;
1454         bool allocated_netdev = false;
1455         struct fwnet_device *dev;
1456         unsigned max_mtu;
1457         int ret;
1458         union fwnet_hwaddr *ha;
1459
1460         mutex_lock(&fwnet_device_mutex);
1461
1462         dev = fwnet_dev_find(card);
1463         if (dev) {
1464                 net = dev->netdev;
1465                 goto have_dev;
1466         }
1467
1468         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1469         if (net == NULL) {
1470                 ret = -ENOMEM;
1471                 goto out;
1472         }
1473
1474         allocated_netdev = true;
1475         SET_NETDEV_DEV(net, card->device);
1476         dev = netdev_priv(net);
1477
1478         spin_lock_init(&dev->lock);
1479         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1480         dev->broadcast_rcv_context = NULL;
1481         dev->broadcast_xmt_max_payload = 0;
1482         dev->broadcast_xmt_datagramlabel = 0;
1483         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1484         dev->queued_datagrams = 0;
1485         INIT_LIST_HEAD(&dev->peer_list);
1486         dev->card = card;
1487         dev->netdev = net;
1488
1489         ret = fwnet_fifo_start(dev);
1490         if (ret < 0)
1491                 goto out;
1492         dev->local_fifo = dev->handler.offset;
1493
1494         /*
1495          * Use the RFC 2734 default 1500 octets or the maximum payload
1496          * as initial MTU
1497          */
1498         max_mtu = (1 << (card->max_receive + 1))
1499                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1500         net->mtu = min(1500U, max_mtu);
1501
1502         /* Set our hardware address while we're at it */
1503         ha = (union fwnet_hwaddr *)net->dev_addr;
1504         put_unaligned_be64(card->guid, &ha->uc.uniq_id);
1505         ha->uc.max_rec = dev->card->max_receive;
1506         ha->uc.sspd = dev->card->link_speed;
1507         put_unaligned_be16(dev->local_fifo >> 32, &ha->uc.fifo_hi);
1508         put_unaligned_be32(dev->local_fifo & 0xffffffff, &ha->uc.fifo_lo);
1509
1510         memset(net->broadcast, -1, net->addr_len);
1511
1512         ret = register_netdev(net);
1513         if (ret)
1514                 goto out;
1515
1516         list_add_tail(&dev->dev_link, &fwnet_device_list);
1517         dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n",
1518                    dev_name(card->device));
1519  have_dev:
1520         ret = fwnet_add_peer(dev, unit, device);
1521         if (ret && allocated_netdev) {
1522                 unregister_netdev(net);
1523                 list_del(&dev->dev_link);
1524  out:
1525                 fwnet_fifo_stop(dev);
1526                 free_netdev(net);
1527         }
1528
1529         mutex_unlock(&fwnet_device_mutex);
1530
1531         return ret;
1532 }
1533
1534 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1535 {
1536         struct fwnet_partial_datagram *pd, *pd_next;
1537
1538         spin_lock_irq(&dev->lock);
1539         list_del(&peer->peer_link);
1540         dev->peer_count--;
1541         set_carrier_state(dev);
1542         spin_unlock_irq(&dev->lock);
1543
1544         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1545                 fwnet_pd_delete(pd);
1546
1547         kfree(peer);
1548 }
1549
1550 static int fwnet_remove(struct device *_dev)
1551 {
1552         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1553         struct fwnet_device *dev = peer->dev;
1554         struct net_device *net;
1555         int i;
1556
1557         mutex_lock(&fwnet_device_mutex);
1558
1559         net = dev->netdev;
1560
1561         fwnet_remove_peer(peer, dev);
1562
1563         if (list_empty(&dev->peer_list)) {
1564                 unregister_netdev(net);
1565
1566                 fwnet_fifo_stop(dev);
1567
1568                 for (i = 0; dev->queued_datagrams && i < 5; i++)
1569                         ssleep(1);
1570                 WARN_ON(dev->queued_datagrams);
1571                 list_del(&dev->dev_link);
1572
1573                 free_netdev(net);
1574         }
1575
1576         mutex_unlock(&fwnet_device_mutex);
1577
1578         return 0;
1579 }
1580
1581 /*
1582  * FIXME abort partially sent fragmented datagrams,
1583  * discard partially received fragmented datagrams
1584  */
1585 static void fwnet_update(struct fw_unit *unit)
1586 {
1587         struct fw_device *device = fw_parent_device(unit);
1588         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1589         int generation;
1590
1591         generation = device->generation;
1592
1593         spin_lock_irq(&peer->dev->lock);
1594         peer->node_id    = device->node_id;
1595         peer->generation = generation;
1596         spin_unlock_irq(&peer->dev->lock);
1597 }
1598
1599 static const struct ieee1394_device_id fwnet_id_table[] = {
1600         {
1601                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1602                                 IEEE1394_MATCH_VERSION,
1603                 .specifier_id = IANA_SPECIFIER_ID,
1604                 .version      = RFC2734_SW_VERSION,
1605         },
1606 #if IS_ENABLED(CONFIG_IPV6)
1607         {
1608                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1609                                 IEEE1394_MATCH_VERSION,
1610                 .specifier_id = IANA_SPECIFIER_ID,
1611                 .version      = RFC3146_SW_VERSION,
1612         },
1613 #endif
1614         { }
1615 };
1616
1617 static struct fw_driver fwnet_driver = {
1618         .driver = {
1619                 .owner  = THIS_MODULE,
1620                 .name   = KBUILD_MODNAME,
1621                 .bus    = &fw_bus_type,
1622                 .probe  = fwnet_probe,
1623                 .remove = fwnet_remove,
1624         },
1625         .update   = fwnet_update,
1626         .id_table = fwnet_id_table,
1627 };
1628
1629 static const u32 rfc2374_unit_directory_data[] = {
1630         0x00040000,     /* directory_length             */
1631         0x1200005e,     /* unit_specifier_id: IANA      */
1632         0x81000003,     /* textual descriptor offset    */
1633         0x13000001,     /* unit_sw_version: RFC 2734    */
1634         0x81000005,     /* textual descriptor offset    */
1635         0x00030000,     /* descriptor_length            */
1636         0x00000000,     /* text                         */
1637         0x00000000,     /* minimal ASCII, en            */
1638         0x49414e41,     /* I A N A                      */
1639         0x00030000,     /* descriptor_length            */
1640         0x00000000,     /* text                         */
1641         0x00000000,     /* minimal ASCII, en            */
1642         0x49507634,     /* I P v 4                      */
1643 };
1644
1645 static struct fw_descriptor rfc2374_unit_directory = {
1646         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1647         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1648         .data   = rfc2374_unit_directory_data
1649 };
1650
1651 #if IS_ENABLED(CONFIG_IPV6)
1652 static const u32 rfc3146_unit_directory_data[] = {
1653         0x00040000,     /* directory_length             */
1654         0x1200005e,     /* unit_specifier_id: IANA      */
1655         0x81000003,     /* textual descriptor offset    */
1656         0x13000002,     /* unit_sw_version: RFC 3146    */
1657         0x81000005,     /* textual descriptor offset    */
1658         0x00030000,     /* descriptor_length            */
1659         0x00000000,     /* text                         */
1660         0x00000000,     /* minimal ASCII, en            */
1661         0x49414e41,     /* I A N A                      */
1662         0x00030000,     /* descriptor_length            */
1663         0x00000000,     /* text                         */
1664         0x00000000,     /* minimal ASCII, en            */
1665         0x49507636,     /* I P v 6                      */
1666 };
1667
1668 static struct fw_descriptor rfc3146_unit_directory = {
1669         .length = ARRAY_SIZE(rfc3146_unit_directory_data),
1670         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1671         .data   = rfc3146_unit_directory_data
1672 };
1673 #endif
1674
1675 static int __init fwnet_init(void)
1676 {
1677         int err;
1678
1679         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1680         if (err)
1681                 return err;
1682
1683 #if IS_ENABLED(CONFIG_IPV6)
1684         err = fw_core_add_descriptor(&rfc3146_unit_directory);
1685         if (err)
1686                 goto out;
1687 #endif
1688
1689         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1690                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1691         if (!fwnet_packet_task_cache) {
1692                 err = -ENOMEM;
1693                 goto out2;
1694         }
1695
1696         err = driver_register(&fwnet_driver.driver);
1697         if (!err)
1698                 return 0;
1699
1700         kmem_cache_destroy(fwnet_packet_task_cache);
1701 out2:
1702 #if IS_ENABLED(CONFIG_IPV6)
1703         fw_core_remove_descriptor(&rfc3146_unit_directory);
1704 out:
1705 #endif
1706         fw_core_remove_descriptor(&rfc2374_unit_directory);
1707
1708         return err;
1709 }
1710 module_init(fwnet_init);
1711
1712 static void __exit fwnet_cleanup(void)
1713 {
1714         driver_unregister(&fwnet_driver.driver);
1715         kmem_cache_destroy(fwnet_packet_task_cache);
1716 #if IS_ENABLED(CONFIG_IPV6)
1717         fw_core_remove_descriptor(&rfc3146_unit_directory);
1718 #endif
1719         fw_core_remove_descriptor(&rfc2374_unit_directory);
1720 }
1721 module_exit(fwnet_cleanup);
1722
1723 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1724 MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146");
1725 MODULE_LICENSE("GPL");
1726 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);