]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/firewire/net.c
firewire: net: count stats.tx_packets and stats.tx_bytes
[linux-beck.git] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/device.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/highmem.h>
14 #include <linux/in.h>
15 #include <linux/ip.h>
16 #include <linux/jiffies.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/mutex.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25
26 #include <asm/unaligned.h>
27 #include <net/arp.h>
28
29 #define FWNET_MAX_FRAGMENTS     25      /* arbitrary limit */
30 #define FWNET_ISO_PAGE_COUNT    (PAGE_SIZE < 16 * 1024 ? 4 : 2)
31
32 #define IEEE1394_BROADCAST_CHANNEL      31
33 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
34 #define IEEE1394_MAX_PAYLOAD_S100       512
35 #define FWNET_NO_FIFO_ADDR              (~0ULL)
36
37 #define IANA_SPECIFIER_ID               0x00005eU
38 #define RFC2734_SW_VERSION              0x000001U
39
40 #define IEEE1394_GASP_HDR_SIZE  8
41
42 #define RFC2374_UNFRAG_HDR_SIZE 4
43 #define RFC2374_FRAG_HDR_SIZE   8
44 #define RFC2374_FRAG_OVERHEAD   4
45
46 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
47 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
48 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
49 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
50
51 #define RFC2734_HW_ADDR_LEN     16
52
53 struct rfc2734_arp {
54         __be16 hw_type;         /* 0x0018       */
55         __be16 proto_type;      /* 0x0806       */
56         u8 hw_addr_len;         /* 16           */
57         u8 ip_addr_len;         /* 4            */
58         __be16 opcode;          /* ARP Opcode   */
59         /* Above is exactly the same format as struct arphdr */
60
61         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
62         u8 max_rec;             /* Sender's max packet size             */
63         u8 sspd;                /* Sender's max speed                   */
64         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
65         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
66         __be32 sip;             /* Sender's IP Address                  */
67         __be32 tip;             /* IP Address of requested hw addr      */
68 } __attribute__((packed));
69
70 /* This header format is specific to this driver implementation. */
71 #define FWNET_ALEN      8
72 #define FWNET_HLEN      10
73 struct fwnet_header {
74         u8 h_dest[FWNET_ALEN];  /* destination address */
75         __be16 h_proto;         /* packet type ID field */
76 } __attribute__((packed));
77
78 /* IPv4 and IPv6 encapsulation header */
79 struct rfc2734_header {
80         u32 w0;
81         u32 w1;
82 };
83
84 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
85 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
86 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
87 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
88 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
89
90 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
91 #define fwnet_set_hdr_ether_type(et)    (et)
92 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
93 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
94
95 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
96
97 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
98                 unsigned ether_type)
99 {
100         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
101                   | fwnet_set_hdr_ether_type(ether_type);
102 }
103
104 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
105                 unsigned ether_type, unsigned dg_size, unsigned dgl)
106 {
107         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
108                   | fwnet_set_hdr_dg_size(dg_size)
109                   | fwnet_set_hdr_ether_type(ether_type);
110         hdr->w1 = fwnet_set_hdr_dgl(dgl);
111 }
112
113 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
114                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
115 {
116         hdr->w0 = fwnet_set_hdr_lf(lf)
117                   | fwnet_set_hdr_dg_size(dg_size)
118                   | fwnet_set_hdr_fg_off(fg_off);
119         hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121
122 /* This list keeps track of what parts of the datagram have been filled in */
123 struct fwnet_fragment_info {
124         struct list_head fi_link;
125         u16 offset;
126         u16 len;
127 };
128
129 struct fwnet_partial_datagram {
130         struct list_head pd_link;
131         struct list_head fi_list;
132         struct sk_buff *skb;
133         /* FIXME Why not use skb->data? */
134         char *pbuf;
135         u16 datagram_label;
136         u16 ether_type;
137         u16 datagram_size;
138 };
139
140 static DEFINE_MUTEX(fwnet_device_mutex);
141 static LIST_HEAD(fwnet_device_list);
142
143 struct fwnet_device {
144         struct list_head dev_link;
145         spinlock_t lock;
146         enum {
147                 FWNET_BROADCAST_ERROR,
148                 FWNET_BROADCAST_RUNNING,
149                 FWNET_BROADCAST_STOPPED,
150         } broadcast_state;
151         struct fw_iso_context *broadcast_rcv_context;
152         struct fw_iso_buffer broadcast_rcv_buffer;
153         void **broadcast_rcv_buffer_ptrs;
154         unsigned broadcast_rcv_next_ptr;
155         unsigned num_broadcast_rcv_ptrs;
156         unsigned rcv_buffer_size;
157         /*
158          * This value is the maximum unfragmented datagram size that can be
159          * sent by the hardware.  It already has the GASP overhead and the
160          * unfragmented datagram header overhead calculated into it.
161          */
162         unsigned broadcast_xmt_max_payload;
163         u16 broadcast_xmt_datagramlabel;
164
165         /*
166          * The CSR address that remote nodes must send datagrams to for us to
167          * receive them.
168          */
169         struct fw_address_handler handler;
170         u64 local_fifo;
171
172         /* List of packets to be sent */
173         struct list_head packet_list;
174         /*
175          * List of packets that were broadcasted.  When we get an ISO interrupt
176          * one of them has been sent
177          */
178         struct list_head broadcasted_list;
179         /* List of packets that have been sent but not yet acked */
180         struct list_head sent_list;
181
182         struct list_head peer_list;
183         struct fw_card *card;
184         struct net_device *netdev;
185 };
186
187 struct fwnet_peer {
188         struct list_head peer_link;
189         struct fwnet_device *dev;
190         u64 guid;
191         u64 fifo;
192
193         /* guarded by dev->lock */
194         struct list_head pd_list; /* received partial datagrams */
195         unsigned pdg_size;        /* pd_list size */
196
197         u16 datagram_label;       /* outgoing datagram label */
198         unsigned max_payload;     /* includes RFC2374_FRAG_HDR_SIZE overhead */
199         int node_id;
200         int generation;
201         unsigned speed;
202 };
203
204 /* This is our task struct. It's used for the packet complete callback.  */
205 struct fwnet_packet_task {
206         /*
207          * ptask can actually be on dev->packet_list, dev->broadcasted_list,
208          * or dev->sent_list depending on its current state.
209          */
210         struct list_head pt_link;
211         struct fw_transaction transaction;
212         struct rfc2734_header hdr;
213         struct sk_buff *skb;
214         struct fwnet_device *dev;
215
216         int outstanding_pkts;
217         unsigned max_payload;
218         u64 fifo_addr;
219         u16 dest_node;
220         u8 generation;
221         u8 speed;
222 };
223
224 /*
225  * saddr == NULL means use device source address.
226  * daddr == NULL means leave destination address (eg unresolved arp).
227  */
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229                         unsigned short type, const void *daddr,
230                         const void *saddr, unsigned len)
231 {
232         struct fwnet_header *h;
233
234         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235         put_unaligned_be16(type, &h->h_proto);
236
237         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238                 memset(h->h_dest, 0, net->addr_len);
239
240                 return net->hard_header_len;
241         }
242
243         if (daddr) {
244                 memcpy(h->h_dest, daddr, net->addr_len);
245
246                 return net->hard_header_len;
247         }
248
249         return -net->hard_header_len;
250 }
251
252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254         struct fwnet_header *h = (struct fwnet_header *)skb->data;
255
256         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257                 return arp_find((unsigned char *)&h->h_dest, skb);
258
259         fw_notify("%s: unable to resolve type %04x addresses\n",
260                   skb->dev->name, be16_to_cpu(h->h_proto));
261         return 0;
262 }
263
264 static int fwnet_header_cache(const struct neighbour *neigh,
265                               struct hh_cache *hh)
266 {
267         struct net_device *net;
268         struct fwnet_header *h;
269
270         if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
271                 return -1;
272         net = neigh->dev;
273         h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274         h->h_proto = hh->hh_type;
275         memcpy(h->h_dest, neigh->ha, net->addr_len);
276         hh->hh_len = FWNET_HLEN;
277
278         return 0;
279 }
280
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283                 const struct net_device *net, const unsigned char *haddr)
284 {
285         memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291
292         return FWNET_ALEN;
293 }
294
295 static const struct header_ops fwnet_header_ops = {
296         .create         = fwnet_header_create,
297         .rebuild        = fwnet_header_rebuild,
298         .cache          = fwnet_header_cache,
299         .cache_update   = fwnet_header_cache_update,
300         .parse          = fwnet_header_parse,
301 };
302
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305                                unsigned offset, unsigned len)
306 {
307         struct fwnet_fragment_info *fi;
308         unsigned end = offset + len;
309
310         list_for_each_entry(fi, &pd->fi_list, fi_link)
311                 if (offset < fi->offset + fi->len && end > fi->offset)
312                         return true;
313
314         return false;
315 }
316
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321         struct fwnet_fragment_info *fi, *fi2, *new;
322         struct list_head *list;
323
324         list = &pd->fi_list;
325         list_for_each_entry(fi, &pd->fi_list, fi_link) {
326                 if (fi->offset + fi->len == offset) {
327                         /* The new fragment can be tacked on to the end */
328                         /* Did the new fragment plug a hole? */
329                         fi2 = list_entry(fi->fi_link.next,
330                                          struct fwnet_fragment_info, fi_link);
331                         if (fi->offset + fi->len == fi2->offset) {
332                                 /* glue fragments together */
333                                 fi->len += len + fi2->len;
334                                 list_del(&fi2->fi_link);
335                                 kfree(fi2);
336                         } else {
337                                 fi->len += len;
338                         }
339
340                         return fi;
341                 }
342                 if (offset + len == fi->offset) {
343                         /* The new fragment can be tacked on to the beginning */
344                         /* Did the new fragment plug a hole? */
345                         fi2 = list_entry(fi->fi_link.prev,
346                                          struct fwnet_fragment_info, fi_link);
347                         if (fi2->offset + fi2->len == fi->offset) {
348                                 /* glue fragments together */
349                                 fi2->len += fi->len + len;
350                                 list_del(&fi->fi_link);
351                                 kfree(fi);
352
353                                 return fi2;
354                         }
355                         fi->offset = offset;
356                         fi->len += len;
357
358                         return fi;
359                 }
360                 if (offset > fi->offset + fi->len) {
361                         list = &fi->fi_link;
362                         break;
363                 }
364                 if (offset + len < fi->offset) {
365                         list = fi->fi_link.prev;
366                         break;
367                 }
368         }
369
370         new = kmalloc(sizeof(*new), GFP_ATOMIC);
371         if (!new) {
372                 fw_error("out of memory\n");
373                 return NULL;
374         }
375
376         new->offset = offset;
377         new->len = len;
378         list_add(&new->fi_link, list);
379
380         return new;
381 }
382
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385                 void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387         struct fwnet_partial_datagram *new;
388         struct fwnet_fragment_info *fi;
389
390         new = kmalloc(sizeof(*new), GFP_ATOMIC);
391         if (!new)
392                 goto fail;
393
394         INIT_LIST_HEAD(&new->fi_list);
395         fi = fwnet_frag_new(new, frag_off, frag_len);
396         if (fi == NULL)
397                 goto fail_w_new;
398
399         new->datagram_label = datagram_label;
400         new->datagram_size = dg_size;
401         new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402         if (new->skb == NULL)
403                 goto fail_w_fi;
404
405         skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406         new->pbuf = skb_put(new->skb, dg_size);
407         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408         list_add_tail(&new->pd_link, &peer->pd_list);
409
410         return new;
411
412 fail_w_fi:
413         kfree(fi);
414 fail_w_new:
415         kfree(new);
416 fail:
417         fw_error("out of memory\n");
418
419         return NULL;
420 }
421
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423                                                     u16 datagram_label)
424 {
425         struct fwnet_partial_datagram *pd;
426
427         list_for_each_entry(pd, &peer->pd_list, pd_link)
428                 if (pd->datagram_label == datagram_label)
429                         return pd;
430
431         return NULL;
432 }
433
434
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437         struct fwnet_fragment_info *fi, *n;
438
439         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440                 kfree(fi);
441
442         list_del(&old->pd_link);
443         dev_kfree_skb_any(old->skb);
444         kfree(old);
445 }
446
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448                 struct fwnet_partial_datagram *pd, void *frag_buf,
449                 unsigned frag_off, unsigned frag_len)
450 {
451         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452                 return false;
453
454         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455
456         /*
457          * Move list entry to beginnig of list so that oldest partial
458          * datagrams percolate to the end of the list
459          */
460         list_move_tail(&pd->pd_link, &peer->pd_list);
461
462         return true;
463 }
464
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467         struct fwnet_fragment_info *fi;
468
469         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470
471         return fi->len == pd->datagram_size;
472 }
473
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476                                                   u64 guid)
477 {
478         struct fwnet_peer *peer;
479
480         list_for_each_entry(peer, &dev->peer_list, peer_link)
481                 if (peer->guid == guid)
482                         return peer;
483
484         return NULL;
485 }
486
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489                                                 int node_id, int generation)
490 {
491         struct fwnet_peer *peer;
492
493         list_for_each_entry(peer, &dev->peer_list, peer_link)
494                 if (peer->node_id    == node_id &&
495                     peer->generation == generation)
496                         return peer;
497
498         return NULL;
499 }
500
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504         max_rec = min(max_rec, speed + 8);
505         max_rec = min(max_rec, 0xbU); /* <= 4096 */
506         if (max_rec < 8) {
507                 fw_notify("max_rec %x out of range\n", max_rec);
508                 max_rec = 8;
509         }
510
511         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
512 }
513
514
515 static int fwnet_finish_incoming_packet(struct net_device *net,
516                                         struct sk_buff *skb, u16 source_node_id,
517                                         bool is_broadcast, u16 ether_type)
518 {
519         struct fwnet_device *dev;
520         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
521         int status;
522         __be64 guid;
523
524         dev = netdev_priv(net);
525         /* Write metadata, and then pass to the receive level */
526         skb->dev = net;
527         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
528
529         /*
530          * Parse the encapsulation header. This actually does the job of
531          * converting to an ethernet frame header, as well as arp
532          * conversion if needed. ARP conversion is easier in this
533          * direction, since we are using ethernet as our backend.
534          */
535         /*
536          * If this is an ARP packet, convert it. First, we want to make
537          * use of some of the fields, since they tell us a little bit
538          * about the sending machine.
539          */
540         if (ether_type == ETH_P_ARP) {
541                 struct rfc2734_arp *arp1394;
542                 struct arphdr *arp;
543                 unsigned char *arp_ptr;
544                 u64 fifo_addr;
545                 u64 peer_guid;
546                 unsigned sspd;
547                 u16 max_payload;
548                 struct fwnet_peer *peer;
549                 unsigned long flags;
550
551                 arp1394   = (struct rfc2734_arp *)skb->data;
552                 arp       = (struct arphdr *)skb->data;
553                 arp_ptr   = (unsigned char *)(arp + 1);
554                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
555                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
556                                 | get_unaligned_be32(&arp1394->fifo_lo);
557
558                 sspd = arp1394->sspd;
559                 /* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
560                 if (sspd > SCODE_3200) {
561                         fw_notify("sspd %x out of range\n", sspd);
562                         sspd = SCODE_3200;
563                 }
564                 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
565
566                 spin_lock_irqsave(&dev->lock, flags);
567                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
568                 if (peer) {
569                         peer->fifo = fifo_addr;
570
571                         if (peer->speed > sspd)
572                                 peer->speed = sspd;
573                         if (peer->max_payload > max_payload)
574                                 peer->max_payload = max_payload;
575                 }
576                 spin_unlock_irqrestore(&dev->lock, flags);
577
578                 if (!peer) {
579                         fw_notify("No peer for ARP packet from %016llx\n",
580                                   (unsigned long long)peer_guid);
581                         goto no_peer;
582                 }
583
584                 /*
585                  * Now that we're done with the 1394 specific stuff, we'll
586                  * need to alter some of the data.  Believe it or not, all
587                  * that needs to be done is sender_IP_address needs to be
588                  * moved, the destination hardware address get stuffed
589                  * in and the hardware address length set to 8.
590                  *
591                  * IMPORTANT: The code below overwrites 1394 specific data
592                  * needed above so keep the munging of the data for the
593                  * higher level IP stack last.
594                  */
595
596                 arp->ar_hln = 8;
597                 /* skip over sender unique id */
598                 arp_ptr += arp->ar_hln;
599                 /* move sender IP addr */
600                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
601                 /* skip over sender IP addr */
602                 arp_ptr += arp->ar_pln;
603
604                 if (arp->ar_op == htons(ARPOP_REQUEST))
605                         memset(arp_ptr, 0, sizeof(u64));
606                 else
607                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
608         }
609
610         /* Now add the ethernet header. */
611         guid = cpu_to_be64(dev->card->guid);
612         if (dev_hard_header(skb, net, ether_type,
613                            is_broadcast ? &broadcast_hw : &guid,
614                            NULL, skb->len) >= 0) {
615                 struct fwnet_header *eth;
616                 u16 *rawp;
617                 __be16 protocol;
618
619                 skb_reset_mac_header(skb);
620                 skb_pull(skb, sizeof(*eth));
621                 eth = (struct fwnet_header *)skb_mac_header(skb);
622                 if (*eth->h_dest & 1) {
623                         if (memcmp(eth->h_dest, net->broadcast,
624                                    net->addr_len) == 0)
625                                 skb->pkt_type = PACKET_BROADCAST;
626 #if 0
627                         else
628                                 skb->pkt_type = PACKET_MULTICAST;
629 #endif
630                 } else {
631                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
632                                 skb->pkt_type = PACKET_OTHERHOST;
633                 }
634                 if (ntohs(eth->h_proto) >= 1536) {
635                         protocol = eth->h_proto;
636                 } else {
637                         rawp = (u16 *)skb->data;
638                         if (*rawp == 0xffff)
639                                 protocol = htons(ETH_P_802_3);
640                         else
641                                 protocol = htons(ETH_P_802_2);
642                 }
643                 skb->protocol = protocol;
644         }
645         status = netif_rx(skb);
646         if (status == NET_RX_DROP) {
647                 net->stats.rx_errors++;
648                 net->stats.rx_dropped++;
649         } else {
650                 net->stats.rx_packets++;
651                 net->stats.rx_bytes += skb->len;
652         }
653         if (netif_queue_stopped(net))
654                 netif_wake_queue(net);
655
656         return 0;
657
658  no_peer:
659         net->stats.rx_errors++;
660         net->stats.rx_dropped++;
661
662         dev_kfree_skb_any(skb);
663         if (netif_queue_stopped(net))
664                 netif_wake_queue(net);
665
666         return -ENOENT;
667 }
668
669 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
670                                  int source_node_id, int generation,
671                                  bool is_broadcast)
672 {
673         struct sk_buff *skb;
674         struct net_device *net = dev->netdev;
675         struct rfc2734_header hdr;
676         unsigned lf;
677         unsigned long flags;
678         struct fwnet_peer *peer;
679         struct fwnet_partial_datagram *pd;
680         int fg_off;
681         int dg_size;
682         u16 datagram_label;
683         int retval;
684         u16 ether_type;
685
686         hdr.w0 = be32_to_cpu(buf[0]);
687         lf = fwnet_get_hdr_lf(&hdr);
688         if (lf == RFC2374_HDR_UNFRAG) {
689                 /*
690                  * An unfragmented datagram has been received by the ieee1394
691                  * bus. Build an skbuff around it so we can pass it to the
692                  * high level network layer.
693                  */
694                 ether_type = fwnet_get_hdr_ether_type(&hdr);
695                 buf++;
696                 len -= RFC2374_UNFRAG_HDR_SIZE;
697
698                 skb = dev_alloc_skb(len + net->hard_header_len + 15);
699                 if (unlikely(!skb)) {
700                         fw_error("out of memory\n");
701                         net->stats.rx_dropped++;
702
703                         return -ENOMEM;
704                 }
705                 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
706                 memcpy(skb_put(skb, len), buf, len);
707
708                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
709                                                     is_broadcast, ether_type);
710         }
711         /* A datagram fragment has been received, now the fun begins. */
712         hdr.w1 = ntohl(buf[1]);
713         buf += 2;
714         len -= RFC2374_FRAG_HDR_SIZE;
715         if (lf == RFC2374_HDR_FIRSTFRAG) {
716                 ether_type = fwnet_get_hdr_ether_type(&hdr);
717                 fg_off = 0;
718         } else {
719                 ether_type = 0;
720                 fg_off = fwnet_get_hdr_fg_off(&hdr);
721         }
722         datagram_label = fwnet_get_hdr_dgl(&hdr);
723         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
724
725         spin_lock_irqsave(&dev->lock, flags);
726
727         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
728         if (!peer) {
729                 retval = -ENOENT;
730                 goto fail;
731         }
732
733         pd = fwnet_pd_find(peer, datagram_label);
734         if (pd == NULL) {
735                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
736                         /* remove the oldest */
737                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
738                                 struct fwnet_partial_datagram, pd_link));
739                         peer->pdg_size--;
740                 }
741                 pd = fwnet_pd_new(net, peer, datagram_label,
742                                   dg_size, buf, fg_off, len);
743                 if (pd == NULL) {
744                         retval = -ENOMEM;
745                         goto fail;
746                 }
747                 peer->pdg_size++;
748         } else {
749                 if (fwnet_frag_overlap(pd, fg_off, len) ||
750                     pd->datagram_size != dg_size) {
751                         /*
752                          * Differing datagram sizes or overlapping fragments,
753                          * discard old datagram and start a new one.
754                          */
755                         fwnet_pd_delete(pd);
756                         pd = fwnet_pd_new(net, peer, datagram_label,
757                                           dg_size, buf, fg_off, len);
758                         if (pd == NULL) {
759                                 peer->pdg_size--;
760                                 retval = -ENOMEM;
761                                 goto fail;
762                         }
763                 } else {
764                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
765                                 /*
766                                  * Couldn't save off fragment anyway
767                                  * so might as well obliterate the
768                                  * datagram now.
769                                  */
770                                 fwnet_pd_delete(pd);
771                                 peer->pdg_size--;
772                                 retval = -ENOMEM;
773                                 goto fail;
774                         }
775                 }
776         } /* new datagram or add to existing one */
777
778         if (lf == RFC2374_HDR_FIRSTFRAG)
779                 pd->ether_type = ether_type;
780
781         if (fwnet_pd_is_complete(pd)) {
782                 ether_type = pd->ether_type;
783                 peer->pdg_size--;
784                 skb = skb_get(pd->skb);
785                 fwnet_pd_delete(pd);
786
787                 spin_unlock_irqrestore(&dev->lock, flags);
788
789                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
790                                                     false, ether_type);
791         }
792         /*
793          * Datagram is not complete, we're done for the
794          * moment.
795          */
796         spin_unlock_irqrestore(&dev->lock, flags);
797
798         return 0;
799  fail:
800         spin_unlock_irqrestore(&dev->lock, flags);
801
802         if (netif_queue_stopped(net))
803                 netif_wake_queue(net);
804
805         return retval;
806 }
807
808 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
809                 int tcode, int destination, int source, int generation,
810                 unsigned long long offset, void *payload, size_t length,
811                 void *callback_data)
812 {
813         struct fwnet_device *dev = callback_data;
814         int rcode;
815
816         if (destination == IEEE1394_ALL_NODES) {
817                 kfree(r);
818
819                 return;
820         }
821
822         if (offset != dev->handler.offset)
823                 rcode = RCODE_ADDRESS_ERROR;
824         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
825                 rcode = RCODE_TYPE_ERROR;
826         else if (fwnet_incoming_packet(dev, payload, length,
827                                        source, generation, false) != 0) {
828                 fw_error("Incoming packet failure\n");
829                 rcode = RCODE_CONFLICT_ERROR;
830         } else
831                 rcode = RCODE_COMPLETE;
832
833         fw_send_response(card, r, rcode);
834 }
835
836 static void fwnet_receive_broadcast(struct fw_iso_context *context,
837                 u32 cycle, size_t header_length, void *header, void *data)
838 {
839         struct fwnet_device *dev;
840         struct fw_iso_packet packet;
841         struct fw_card *card;
842         __be16 *hdr_ptr;
843         __be32 *buf_ptr;
844         int retval;
845         u32 length;
846         u16 source_node_id;
847         u32 specifier_id;
848         u32 ver;
849         unsigned long offset;
850         unsigned long flags;
851
852         dev = data;
853         card = dev->card;
854         hdr_ptr = header;
855         length = be16_to_cpup(hdr_ptr);
856
857         spin_lock_irqsave(&dev->lock, flags);
858
859         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
860         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
861         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
862                 dev->broadcast_rcv_next_ptr = 0;
863
864         spin_unlock_irqrestore(&dev->lock, flags);
865
866         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
867                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
868         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
869         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
870
871         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
872                 buf_ptr += 2;
873                 length -= IEEE1394_GASP_HDR_SIZE;
874                 fwnet_incoming_packet(dev, buf_ptr, length,
875                                       source_node_id, -1, true);
876         }
877
878         packet.payload_length = dev->rcv_buffer_size;
879         packet.interrupt = 1;
880         packet.skip = 0;
881         packet.tag = 3;
882         packet.sy = 0;
883         packet.header_length = IEEE1394_GASP_HDR_SIZE;
884
885         spin_lock_irqsave(&dev->lock, flags);
886
887         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
888                                       &dev->broadcast_rcv_buffer, offset);
889
890         spin_unlock_irqrestore(&dev->lock, flags);
891
892         if (retval < 0)
893                 fw_error("requeue failed\n");
894 }
895
896 static struct kmem_cache *fwnet_packet_task_cache;
897
898 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
899 {
900         dev_kfree_skb_any(ptask->skb);
901         kmem_cache_free(fwnet_packet_task_cache, ptask);
902 }
903
904 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
905
906 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
907 {
908         struct fwnet_device *dev = ptask->dev;
909         struct sk_buff *skb = ptask->skb;
910         unsigned long flags;
911         bool free;
912
913         spin_lock_irqsave(&dev->lock, flags);
914
915         ptask->outstanding_pkts--;
916
917         /* Check whether we or the networking TX soft-IRQ is last user. */
918         free = (ptask->outstanding_pkts == 0 && !list_empty(&ptask->pt_link));
919
920         if (ptask->outstanding_pkts == 0) {
921                 list_del(&ptask->pt_link);
922                 dev->netdev->stats.tx_packets++;
923                 dev->netdev->stats.tx_bytes += skb->len;
924         }
925
926         spin_unlock_irqrestore(&dev->lock, flags);
927
928         if (ptask->outstanding_pkts > 0) {
929                 u16 dg_size;
930                 u16 fg_off;
931                 u16 datagram_label;
932                 u16 lf;
933
934                 /* Update the ptask to point to the next fragment and send it */
935                 lf = fwnet_get_hdr_lf(&ptask->hdr);
936                 switch (lf) {
937                 case RFC2374_HDR_LASTFRAG:
938                 case RFC2374_HDR_UNFRAG:
939                 default:
940                         fw_error("Outstanding packet %x lf %x, header %x,%x\n",
941                                  ptask->outstanding_pkts, lf, ptask->hdr.w0,
942                                  ptask->hdr.w1);
943                         BUG();
944
945                 case RFC2374_HDR_FIRSTFRAG:
946                         /* Set frag type here for future interior fragments */
947                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
948                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
949                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
950                         break;
951
952                 case RFC2374_HDR_INTFRAG:
953                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
954                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
955                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
956                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
957                         break;
958                 }
959
960                 skb_pull(skb, ptask->max_payload);
961                 if (ptask->outstanding_pkts > 1) {
962                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
963                                           dg_size, fg_off, datagram_label);
964                 } else {
965                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
966                                           dg_size, fg_off, datagram_label);
967                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
968                 }
969                 fwnet_send_packet(ptask);
970         }
971
972         if (free)
973                 fwnet_free_ptask(ptask);
974 }
975
976 static void fwnet_write_complete(struct fw_card *card, int rcode,
977                                  void *payload, size_t length, void *data)
978 {
979         struct fwnet_packet_task *ptask;
980
981         ptask = data;
982
983         if (rcode == RCODE_COMPLETE)
984                 fwnet_transmit_packet_done(ptask);
985         else
986                 fw_error("fwnet_write_complete: failed: %x\n", rcode);
987                 /* ??? error recovery */
988 }
989
990 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
991 {
992         struct fwnet_device *dev;
993         unsigned tx_len;
994         struct rfc2734_header *bufhdr;
995         unsigned long flags;
996         bool free;
997
998         dev = ptask->dev;
999         tx_len = ptask->max_payload;
1000         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1001         case RFC2374_HDR_UNFRAG:
1002                 bufhdr = (struct rfc2734_header *)
1003                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1004                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1005                 break;
1006
1007         case RFC2374_HDR_FIRSTFRAG:
1008         case RFC2374_HDR_INTFRAG:
1009         case RFC2374_HDR_LASTFRAG:
1010                 bufhdr = (struct rfc2734_header *)
1011                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1012                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1013                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1014                 break;
1015
1016         default:
1017                 BUG();
1018         }
1019         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1020                 u8 *p;
1021                 int generation;
1022                 int node_id;
1023
1024                 /* ptask->generation may not have been set yet */
1025                 generation = dev->card->generation;
1026                 smp_rmb();
1027                 node_id = dev->card->node_id;
1028
1029                 p = skb_push(ptask->skb, 8);
1030                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1031                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1032                                                 | RFC2734_SW_VERSION, &p[4]);
1033
1034                 /* We should not transmit if broadcast_channel.valid == 0. */
1035                 fw_send_request(dev->card, &ptask->transaction,
1036                                 TCODE_STREAM_DATA,
1037                                 fw_stream_packet_destination_id(3,
1038                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1039                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1040                                 tx_len + 8, fwnet_write_complete, ptask);
1041
1042                 spin_lock_irqsave(&dev->lock, flags);
1043
1044                 /* If the AT tasklet already ran, we may be last user. */
1045                 free = (ptask->outstanding_pkts == 0 && list_empty(&ptask->pt_link));
1046                 if (!free)
1047                         list_add_tail(&ptask->pt_link, &dev->broadcasted_list);
1048
1049                 spin_unlock_irqrestore(&dev->lock, flags);
1050
1051                 goto out;
1052         }
1053
1054         fw_send_request(dev->card, &ptask->transaction,
1055                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1056                         ptask->generation, ptask->speed, ptask->fifo_addr,
1057                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1058
1059         spin_lock_irqsave(&dev->lock, flags);
1060
1061         /* If the AT tasklet already ran, we may be last user. */
1062         free = (ptask->outstanding_pkts == 0 && list_empty(&ptask->pt_link));
1063         if (!free)
1064                 list_add_tail(&ptask->pt_link, &dev->sent_list);
1065
1066         spin_unlock_irqrestore(&dev->lock, flags);
1067
1068         dev->netdev->trans_start = jiffies;
1069  out:
1070         if (free)
1071                 fwnet_free_ptask(ptask);
1072
1073         return 0;
1074 }
1075
1076 static int fwnet_broadcast_start(struct fwnet_device *dev)
1077 {
1078         struct fw_iso_context *context;
1079         int retval;
1080         unsigned num_packets;
1081         unsigned max_receive;
1082         struct fw_iso_packet packet;
1083         unsigned long offset;
1084         unsigned u;
1085
1086         if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1087                 /* outside OHCI posted write area? */
1088                 static const struct fw_address_region region = {
1089                         .start = 0xffff00000000ULL,
1090                         .end   = CSR_REGISTER_BASE,
1091                 };
1092
1093                 dev->handler.length = 4096;
1094                 dev->handler.address_callback = fwnet_receive_packet;
1095                 dev->handler.callback_data = dev;
1096
1097                 retval = fw_core_add_address_handler(&dev->handler, &region);
1098                 if (retval < 0)
1099                         goto failed_initial;
1100
1101                 dev->local_fifo = dev->handler.offset;
1102         }
1103
1104         max_receive = 1U << (dev->card->max_receive + 1);
1105         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1106
1107         if (!dev->broadcast_rcv_context) {
1108                 void **ptrptr;
1109
1110                 context = fw_iso_context_create(dev->card,
1111                     FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1112                     dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1113                 if (IS_ERR(context)) {
1114                         retval = PTR_ERR(context);
1115                         goto failed_context_create;
1116                 }
1117
1118                 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1119                     dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1120                 if (retval < 0)
1121                         goto failed_buffer_init;
1122
1123                 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1124                 if (!ptrptr) {
1125                         retval = -ENOMEM;
1126                         goto failed_ptrs_alloc;
1127                 }
1128
1129                 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1130                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1131                         void *ptr;
1132                         unsigned v;
1133
1134                         ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1135                         for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1136                                 *ptrptr++ = (void *)
1137                                                 ((char *)ptr + v * max_receive);
1138                 }
1139                 dev->broadcast_rcv_context = context;
1140         } else {
1141                 context = dev->broadcast_rcv_context;
1142         }
1143
1144         packet.payload_length = max_receive;
1145         packet.interrupt = 1;
1146         packet.skip = 0;
1147         packet.tag = 3;
1148         packet.sy = 0;
1149         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1150         offset = 0;
1151
1152         for (u = 0; u < num_packets; u++) {
1153                 retval = fw_iso_context_queue(context, &packet,
1154                                 &dev->broadcast_rcv_buffer, offset);
1155                 if (retval < 0)
1156                         goto failed_rcv_queue;
1157
1158                 offset += max_receive;
1159         }
1160         dev->num_broadcast_rcv_ptrs = num_packets;
1161         dev->rcv_buffer_size = max_receive;
1162         dev->broadcast_rcv_next_ptr = 0U;
1163         retval = fw_iso_context_start(context, -1, 0,
1164                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1165         if (retval < 0)
1166                 goto failed_rcv_queue;
1167
1168         /* FIXME: adjust it according to the min. speed of all known peers? */
1169         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1170                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1171         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1172
1173         return 0;
1174
1175  failed_rcv_queue:
1176         kfree(dev->broadcast_rcv_buffer_ptrs);
1177         dev->broadcast_rcv_buffer_ptrs = NULL;
1178  failed_ptrs_alloc:
1179         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1180  failed_buffer_init:
1181         fw_iso_context_destroy(context);
1182         dev->broadcast_rcv_context = NULL;
1183  failed_context_create:
1184         fw_core_remove_address_handler(&dev->handler);
1185  failed_initial:
1186         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1187
1188         return retval;
1189 }
1190
1191 /* ifup */
1192 static int fwnet_open(struct net_device *net)
1193 {
1194         struct fwnet_device *dev = netdev_priv(net);
1195         int ret;
1196
1197         if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1198                 ret = fwnet_broadcast_start(dev);
1199                 if (ret)
1200                         return ret;
1201         }
1202         netif_start_queue(net);
1203
1204         return 0;
1205 }
1206
1207 /* ifdown */
1208 static int fwnet_stop(struct net_device *net)
1209 {
1210         netif_stop_queue(net);
1211
1212         /* Deallocate iso context for use by other applications? */
1213
1214         return 0;
1215 }
1216
1217 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1218 {
1219         struct fwnet_header hdr_buf;
1220         struct fwnet_device *dev = netdev_priv(net);
1221         __be16 proto;
1222         u16 dest_node;
1223         unsigned max_payload;
1224         u16 dg_size;
1225         u16 *datagram_label_ptr;
1226         struct fwnet_packet_task *ptask;
1227         struct fwnet_peer *peer;
1228         unsigned long flags;
1229
1230         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1231         if (ptask == NULL)
1232                 goto fail;
1233
1234         skb = skb_share_check(skb, GFP_ATOMIC);
1235         if (!skb)
1236                 goto fail;
1237
1238         /*
1239          * Make a copy of the driver-specific header.
1240          * We might need to rebuild the header on tx failure.
1241          */
1242         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1243         skb_pull(skb, sizeof(hdr_buf));
1244
1245         proto = hdr_buf.h_proto;
1246         dg_size = skb->len;
1247
1248         /* serialize access to peer, including peer->datagram_label */
1249         spin_lock_irqsave(&dev->lock, flags);
1250
1251         /*
1252          * Set the transmission type for the packet.  ARP packets and IP
1253          * broadcast packets are sent via GASP.
1254          */
1255         if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1256             || proto == htons(ETH_P_ARP)
1257             || (proto == htons(ETH_P_IP)
1258                 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1259                 max_payload        = dev->broadcast_xmt_max_payload;
1260                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1261
1262                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1263                 ptask->generation  = 0;
1264                 ptask->dest_node   = IEEE1394_ALL_NODES;
1265                 ptask->speed       = SCODE_100;
1266         } else {
1267                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1268                 u8 generation;
1269
1270                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1271                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1272                         goto fail_unlock;
1273
1274                 generation         = peer->generation;
1275                 dest_node          = peer->node_id;
1276                 max_payload        = peer->max_payload;
1277                 datagram_label_ptr = &peer->datagram_label;
1278
1279                 ptask->fifo_addr   = peer->fifo;
1280                 ptask->generation  = generation;
1281                 ptask->dest_node   = dest_node;
1282                 ptask->speed       = peer->speed;
1283         }
1284
1285         /* If this is an ARP packet, convert it */
1286         if (proto == htons(ETH_P_ARP)) {
1287                 struct arphdr *arp = (struct arphdr *)skb->data;
1288                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1289                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1290                 __be32 ipaddr;
1291
1292                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1293
1294                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1295                 arp1394->max_rec        = dev->card->max_receive;
1296                 arp1394->sspd           = dev->card->link_speed;
1297
1298                 put_unaligned_be16(dev->local_fifo >> 32,
1299                                    &arp1394->fifo_hi);
1300                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1301                                    &arp1394->fifo_lo);
1302                 put_unaligned(ipaddr, &arp1394->sip);
1303         }
1304
1305         ptask->hdr.w0 = 0;
1306         ptask->hdr.w1 = 0;
1307         ptask->skb = skb;
1308         ptask->dev = dev;
1309
1310         /* Does it all fit in one packet? */
1311         if (dg_size <= max_payload) {
1312                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1313                 ptask->outstanding_pkts = 1;
1314                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1315         } else {
1316                 u16 datagram_label;
1317
1318                 max_payload -= RFC2374_FRAG_OVERHEAD;
1319                 datagram_label = (*datagram_label_ptr)++;
1320                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1321                                   datagram_label);
1322                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1323                 max_payload += RFC2374_FRAG_HDR_SIZE;
1324         }
1325
1326         spin_unlock_irqrestore(&dev->lock, flags);
1327
1328         ptask->max_payload = max_payload;
1329         INIT_LIST_HEAD(&ptask->pt_link);
1330
1331         fwnet_send_packet(ptask);
1332
1333         return NETDEV_TX_OK;
1334
1335  fail_unlock:
1336         spin_unlock_irqrestore(&dev->lock, flags);
1337  fail:
1338         if (ptask)
1339                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1340
1341         if (skb != NULL)
1342                 dev_kfree_skb(skb);
1343
1344         net->stats.tx_dropped++;
1345         net->stats.tx_errors++;
1346
1347         /*
1348          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1349          * causes serious problems" here, allegedly.  Before that patch,
1350          * -ERRNO was returned which is not appropriate under Linux 2.6.
1351          * Perhaps more needs to be done?  Stop the queue in serious
1352          * conditions and restart it elsewhere?
1353          */
1354         return NETDEV_TX_OK;
1355 }
1356
1357 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1358 {
1359         if (new_mtu < 68)
1360                 return -EINVAL;
1361
1362         net->mtu = new_mtu;
1363         return 0;
1364 }
1365
1366 static const struct net_device_ops fwnet_netdev_ops = {
1367         .ndo_open       = fwnet_open,
1368         .ndo_stop       = fwnet_stop,
1369         .ndo_start_xmit = fwnet_tx,
1370         .ndo_change_mtu = fwnet_change_mtu,
1371 };
1372
1373 static void fwnet_init_dev(struct net_device *net)
1374 {
1375         net->header_ops         = &fwnet_header_ops;
1376         net->netdev_ops         = &fwnet_netdev_ops;
1377         net->watchdog_timeo     = 2 * HZ;
1378         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1379         net->features           = NETIF_F_HIGHDMA;
1380         net->addr_len           = FWNET_ALEN;
1381         net->hard_header_len    = FWNET_HLEN;
1382         net->type               = ARPHRD_IEEE1394;
1383         net->tx_queue_len       = 10;
1384 }
1385
1386 /* caller must hold fwnet_device_mutex */
1387 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1388 {
1389         struct fwnet_device *dev;
1390
1391         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1392                 if (dev->card == card)
1393                         return dev;
1394
1395         return NULL;
1396 }
1397
1398 static int fwnet_add_peer(struct fwnet_device *dev,
1399                           struct fw_unit *unit, struct fw_device *device)
1400 {
1401         struct fwnet_peer *peer;
1402
1403         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1404         if (!peer)
1405                 return -ENOMEM;
1406
1407         dev_set_drvdata(&unit->device, peer);
1408
1409         peer->dev = dev;
1410         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1411         peer->fifo = FWNET_NO_FIFO_ADDR;
1412         INIT_LIST_HEAD(&peer->pd_list);
1413         peer->pdg_size = 0;
1414         peer->datagram_label = 0;
1415         peer->speed = device->max_speed;
1416         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1417
1418         peer->generation = device->generation;
1419         smp_rmb();
1420         peer->node_id = device->node_id;
1421
1422         spin_lock_irq(&dev->lock);
1423         list_add_tail(&peer->peer_link, &dev->peer_list);
1424         spin_unlock_irq(&dev->lock);
1425
1426         return 0;
1427 }
1428
1429 static int fwnet_probe(struct device *_dev)
1430 {
1431         struct fw_unit *unit = fw_unit(_dev);
1432         struct fw_device *device = fw_parent_device(unit);
1433         struct fw_card *card = device->card;
1434         struct net_device *net;
1435         bool allocated_netdev = false;
1436         struct fwnet_device *dev;
1437         unsigned max_mtu;
1438         int ret;
1439
1440         mutex_lock(&fwnet_device_mutex);
1441
1442         dev = fwnet_dev_find(card);
1443         if (dev) {
1444                 net = dev->netdev;
1445                 goto have_dev;
1446         }
1447
1448         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1449         if (net == NULL) {
1450                 ret = -ENOMEM;
1451                 goto out;
1452         }
1453
1454         allocated_netdev = true;
1455         SET_NETDEV_DEV(net, card->device);
1456         dev = netdev_priv(net);
1457
1458         spin_lock_init(&dev->lock);
1459         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1460         dev->broadcast_rcv_context = NULL;
1461         dev->broadcast_xmt_max_payload = 0;
1462         dev->broadcast_xmt_datagramlabel = 0;
1463
1464         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1465
1466         INIT_LIST_HEAD(&dev->packet_list);
1467         INIT_LIST_HEAD(&dev->broadcasted_list);
1468         INIT_LIST_HEAD(&dev->sent_list);
1469         INIT_LIST_HEAD(&dev->peer_list);
1470
1471         dev->card = card;
1472         dev->netdev = net;
1473
1474         /*
1475          * Use the RFC 2734 default 1500 octets or the maximum payload
1476          * as initial MTU
1477          */
1478         max_mtu = (1 << (card->max_receive + 1))
1479                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1480         net->mtu = min(1500U, max_mtu);
1481
1482         /* Set our hardware address while we're at it */
1483         put_unaligned_be64(card->guid, net->dev_addr);
1484         put_unaligned_be64(~0ULL, net->broadcast);
1485         ret = register_netdev(net);
1486         if (ret) {
1487                 fw_error("Cannot register the driver\n");
1488                 goto out;
1489         }
1490
1491         list_add_tail(&dev->dev_link, &fwnet_device_list);
1492         fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1493                   net->name, (unsigned long long)card->guid);
1494  have_dev:
1495         ret = fwnet_add_peer(dev, unit, device);
1496         if (ret && allocated_netdev) {
1497                 unregister_netdev(net);
1498                 list_del(&dev->dev_link);
1499         }
1500  out:
1501         if (ret && allocated_netdev)
1502                 free_netdev(net);
1503
1504         mutex_unlock(&fwnet_device_mutex);
1505
1506         return ret;
1507 }
1508
1509 static void fwnet_remove_peer(struct fwnet_peer *peer)
1510 {
1511         struct fwnet_partial_datagram *pd, *pd_next;
1512
1513         spin_lock_irq(&peer->dev->lock);
1514         list_del(&peer->peer_link);
1515         spin_unlock_irq(&peer->dev->lock);
1516
1517         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1518                 fwnet_pd_delete(pd);
1519
1520         kfree(peer);
1521 }
1522
1523 static int fwnet_remove(struct device *_dev)
1524 {
1525         struct fwnet_peer *peer = dev_get_drvdata(_dev);
1526         struct fwnet_device *dev = peer->dev;
1527         struct net_device *net;
1528         struct fwnet_packet_task *ptask, *pt_next;
1529
1530         mutex_lock(&fwnet_device_mutex);
1531
1532         fwnet_remove_peer(peer);
1533
1534         if (list_empty(&dev->peer_list)) {
1535                 net = dev->netdev;
1536                 unregister_netdev(net);
1537
1538                 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1539                         fw_core_remove_address_handler(&dev->handler);
1540                 if (dev->broadcast_rcv_context) {
1541                         fw_iso_context_stop(dev->broadcast_rcv_context);
1542                         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1543                                               dev->card);
1544                         fw_iso_context_destroy(dev->broadcast_rcv_context);
1545                 }
1546                 list_for_each_entry_safe(ptask, pt_next,
1547                                          &dev->packet_list, pt_link) {
1548                         dev_kfree_skb_any(ptask->skb);
1549                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1550                 }
1551                 list_for_each_entry_safe(ptask, pt_next,
1552                                          &dev->broadcasted_list, pt_link) {
1553                         dev_kfree_skb_any(ptask->skb);
1554                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1555                 }
1556                 list_for_each_entry_safe(ptask, pt_next,
1557                                          &dev->sent_list, pt_link) {
1558                         dev_kfree_skb_any(ptask->skb);
1559                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1560                 }
1561                 list_del(&dev->dev_link);
1562
1563                 free_netdev(net);
1564         }
1565
1566         mutex_unlock(&fwnet_device_mutex);
1567
1568         return 0;
1569 }
1570
1571 /*
1572  * FIXME abort partially sent fragmented datagrams,
1573  * discard partially received fragmented datagrams
1574  */
1575 static void fwnet_update(struct fw_unit *unit)
1576 {
1577         struct fw_device *device = fw_parent_device(unit);
1578         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1579         int generation;
1580
1581         generation = device->generation;
1582
1583         spin_lock_irq(&peer->dev->lock);
1584         peer->node_id    = device->node_id;
1585         peer->generation = generation;
1586         spin_unlock_irq(&peer->dev->lock);
1587 }
1588
1589 static const struct ieee1394_device_id fwnet_id_table[] = {
1590         {
1591                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1592                                 IEEE1394_MATCH_VERSION,
1593                 .specifier_id = IANA_SPECIFIER_ID,
1594                 .version      = RFC2734_SW_VERSION,
1595         },
1596         { }
1597 };
1598
1599 static struct fw_driver fwnet_driver = {
1600         .driver = {
1601                 .owner  = THIS_MODULE,
1602                 .name   = "net",
1603                 .bus    = &fw_bus_type,
1604                 .probe  = fwnet_probe,
1605                 .remove = fwnet_remove,
1606         },
1607         .update   = fwnet_update,
1608         .id_table = fwnet_id_table,
1609 };
1610
1611 static const u32 rfc2374_unit_directory_data[] = {
1612         0x00040000,     /* directory_length             */
1613         0x1200005e,     /* unit_specifier_id: IANA      */
1614         0x81000003,     /* textual descriptor offset    */
1615         0x13000001,     /* unit_sw_version: RFC 2734    */
1616         0x81000005,     /* textual descriptor offset    */
1617         0x00030000,     /* descriptor_length            */
1618         0x00000000,     /* text                         */
1619         0x00000000,     /* minimal ASCII, en            */
1620         0x49414e41,     /* I A N A                      */
1621         0x00030000,     /* descriptor_length            */
1622         0x00000000,     /* text                         */
1623         0x00000000,     /* minimal ASCII, en            */
1624         0x49507634,     /* I P v 4                      */
1625 };
1626
1627 static struct fw_descriptor rfc2374_unit_directory = {
1628         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1629         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1630         .data   = rfc2374_unit_directory_data
1631 };
1632
1633 static int __init fwnet_init(void)
1634 {
1635         int err;
1636
1637         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1638         if (err)
1639                 return err;
1640
1641         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1642                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1643         if (!fwnet_packet_task_cache) {
1644                 err = -ENOMEM;
1645                 goto out;
1646         }
1647
1648         err = driver_register(&fwnet_driver.driver);
1649         if (!err)
1650                 return 0;
1651
1652         kmem_cache_destroy(fwnet_packet_task_cache);
1653 out:
1654         fw_core_remove_descriptor(&rfc2374_unit_directory);
1655
1656         return err;
1657 }
1658 module_init(fwnet_init);
1659
1660 static void __exit fwnet_cleanup(void)
1661 {
1662         driver_unregister(&fwnet_driver.driver);
1663         kmem_cache_destroy(fwnet_packet_task_cache);
1664         fw_core_remove_descriptor(&rfc2374_unit_directory);
1665 }
1666 module_exit(fwnet_cleanup);
1667
1668 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1669 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1670 MODULE_LICENSE("GPL");
1671 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);