]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/firewire/ohci.c
Merge branch 'patchwork' into to_next
[karo-tx-linux.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
60
61 #define DESCRIPTOR_OUTPUT_MORE          0
62 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
65 #define DESCRIPTOR_STATUS               (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
67 #define DESCRIPTOR_PING                 (1 << 7)
68 #define DESCRIPTOR_YY                   (1 << 6)
69 #define DESCRIPTOR_NO_IRQ               (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
73 #define DESCRIPTOR_WAIT                 (3 << 0)
74
75 #define DESCRIPTOR_CMD                  (0xf << 12)
76
77 struct descriptor {
78         __le16 req_count;
79         __le16 control;
80         __le32 data_address;
81         __le32 branch_address;
82         __le16 res_count;
83         __le16 transfer_status;
84 } __attribute__((aligned(16)));
85
86 #define CONTROL_SET(regs)       (regs)
87 #define CONTROL_CLEAR(regs)     ((regs) + 4)
88 #define COMMAND_PTR(regs)       ((regs) + 12)
89 #define CONTEXT_MATCH(regs)     ((regs) + 16)
90
91 #define AR_BUFFER_SIZE  (32*1024)
92 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
95
96 #define MAX_ASYNC_PAYLOAD       4096
97 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
99
100 struct ar_context {
101         struct fw_ohci *ohci;
102         struct page *pages[AR_BUFFERS];
103         void *buffer;
104         struct descriptor *descriptors;
105         dma_addr_t descriptors_bus;
106         void *pointer;
107         unsigned int last_buffer_index;
108         u32 regs;
109         struct tasklet_struct tasklet;
110 };
111
112 struct context;
113
114 typedef int (*descriptor_callback_t)(struct context *ctx,
115                                      struct descriptor *d,
116                                      struct descriptor *last);
117
118 /*
119  * A buffer that contains a block of DMA-able coherent memory used for
120  * storing a portion of a DMA descriptor program.
121  */
122 struct descriptor_buffer {
123         struct list_head list;
124         dma_addr_t buffer_bus;
125         size_t buffer_size;
126         size_t used;
127         struct descriptor buffer[0];
128 };
129
130 struct context {
131         struct fw_ohci *ohci;
132         u32 regs;
133         int total_allocation;
134         u32 current_bus;
135         bool running;
136         bool flushing;
137
138         /*
139          * List of page-sized buffers for storing DMA descriptors.
140          * Head of list contains buffers in use and tail of list contains
141          * free buffers.
142          */
143         struct list_head buffer_list;
144
145         /*
146          * Pointer to a buffer inside buffer_list that contains the tail
147          * end of the current DMA program.
148          */
149         struct descriptor_buffer *buffer_tail;
150
151         /*
152          * The descriptor containing the branch address of the first
153          * descriptor that has not yet been filled by the device.
154          */
155         struct descriptor *last;
156
157         /*
158          * The last descriptor block in the DMA program. It contains the branch
159          * address that must be updated upon appending a new descriptor.
160          */
161         struct descriptor *prev;
162         int prev_z;
163
164         descriptor_callback_t callback;
165
166         struct tasklet_struct tasklet;
167 };
168
169 #define IT_HEADER_SY(v)          ((v) <<  0)
170 #define IT_HEADER_TCODE(v)       ((v) <<  4)
171 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
172 #define IT_HEADER_TAG(v)         ((v) << 14)
173 #define IT_HEADER_SPEED(v)       ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
175
176 struct iso_context {
177         struct fw_iso_context base;
178         struct context context;
179         void *header;
180         size_t header_length;
181         unsigned long flushing_completions;
182         u32 mc_buffer_bus;
183         u16 mc_completed;
184         u16 last_timestamp;
185         u8 sync;
186         u8 tags;
187 };
188
189 #define CONFIG_ROM_SIZE 1024
190
191 struct fw_ohci {
192         struct fw_card card;
193
194         __iomem char *registers;
195         int node_id;
196         int generation;
197         int request_generation; /* for timestamping incoming requests */
198         unsigned quirks;
199         unsigned int pri_req_max;
200         u32 bus_time;
201         bool bus_time_running;
202         bool is_root;
203         bool csr_state_setclear_abdicate;
204         int n_ir;
205         int n_it;
206         /*
207          * Spinlock for accessing fw_ohci data.  Never call out of
208          * this driver with this lock held.
209          */
210         spinlock_t lock;
211
212         struct mutex phy_reg_mutex;
213
214         void *misc_buffer;
215         dma_addr_t misc_buffer_bus;
216
217         struct ar_context ar_request_ctx;
218         struct ar_context ar_response_ctx;
219         struct context at_request_ctx;
220         struct context at_response_ctx;
221
222         u32 it_context_support;
223         u32 it_context_mask;     /* unoccupied IT contexts */
224         struct iso_context *it_context_list;
225         u64 ir_context_channels; /* unoccupied channels */
226         u32 ir_context_support;
227         u32 ir_context_mask;     /* unoccupied IR contexts */
228         struct iso_context *ir_context_list;
229         u64 mc_channels; /* channels in use by the multichannel IR context */
230         bool mc_allocated;
231
232         __be32    *config_rom;
233         dma_addr_t config_rom_bus;
234         __be32    *next_config_rom;
235         dma_addr_t next_config_rom_bus;
236         __be32     next_header;
237
238         __le32    *self_id;
239         dma_addr_t self_id_bus;
240         struct work_struct bus_reset_work;
241
242         u32 self_id_buffer[512];
243 };
244
245 static struct workqueue_struct *selfid_workqueue;
246
247 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
248 {
249         return container_of(card, struct fw_ohci, card);
250 }
251
252 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
253 #define IR_CONTEXT_BUFFER_FILL          0x80000000
254 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
255 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
256 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
257 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
258
259 #define CONTEXT_RUN     0x8000
260 #define CONTEXT_WAKE    0x1000
261 #define CONTEXT_DEAD    0x0800
262 #define CONTEXT_ACTIVE  0x0400
263
264 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
265 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
266 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
267
268 #define OHCI1394_REGISTER_SIZE          0x800
269 #define OHCI1394_PCI_HCI_Control        0x40
270 #define SELF_ID_BUF_SIZE                0x800
271 #define OHCI_TCODE_PHY_PACKET           0x0e
272 #define OHCI_VERSION_1_1                0x010010
273
274 static char ohci_driver_name[] = KBUILD_MODNAME;
275
276 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
277 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
278 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
279 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
280 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
281 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
282 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
283 #define PCI_DEVICE_ID_VIA_VT630X        0x3044
284 #define PCI_REV_ID_VIA_VT6306           0x46
285
286 #define QUIRK_CYCLE_TIMER               0x1
287 #define QUIRK_RESET_PACKET              0x2
288 #define QUIRK_BE_HEADERS                0x4
289 #define QUIRK_NO_1394A                  0x8
290 #define QUIRK_NO_MSI                    0x10
291 #define QUIRK_TI_SLLZ059                0x20
292 #define QUIRK_IR_WAKE                   0x40
293 #define QUIRK_PHY_LCTRL_TIMEOUT         0x80
294
295 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
296 static const struct {
297         unsigned short vendor, device, revision, flags;
298 } ohci_quirks[] = {
299         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
300                 QUIRK_CYCLE_TIMER},
301
302         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
303                 QUIRK_BE_HEADERS},
304
305         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
306                 QUIRK_PHY_LCTRL_TIMEOUT | QUIRK_NO_MSI},
307
308         {PCI_VENDOR_ID_ATT, PCI_ANY_ID, PCI_ANY_ID,
309                 QUIRK_PHY_LCTRL_TIMEOUT},
310
311         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
312                 QUIRK_RESET_PACKET},
313
314         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
315                 QUIRK_NO_MSI},
316
317         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
318                 QUIRK_CYCLE_TIMER},
319
320         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
321                 QUIRK_NO_MSI},
322
323         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
324                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
325
326         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
327                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
328
329         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
330                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
331
332         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
333                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
334
335         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
336                 QUIRK_RESET_PACKET},
337
338         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
339                 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
340
341         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
342                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
343 };
344
345 /* This overrides anything that was found in ohci_quirks[]. */
346 static int param_quirks;
347 module_param_named(quirks, param_quirks, int, 0644);
348 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
349         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
350         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
351         ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
352         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
353         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
354         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
355         ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
356         ", phy LCtrl timeout = "        __stringify(QUIRK_PHY_LCTRL_TIMEOUT)
357         ")");
358
359 #define OHCI_PARAM_DEBUG_AT_AR          1
360 #define OHCI_PARAM_DEBUG_SELFIDS        2
361 #define OHCI_PARAM_DEBUG_IRQS           4
362 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
363
364 static int param_debug;
365 module_param_named(debug, param_debug, int, 0644);
366 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
367         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
368         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
369         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
370         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
371         ", or a combination, or all = -1)");
372
373 static void log_irqs(struct fw_ohci *ohci, u32 evt)
374 {
375         if (likely(!(param_debug &
376                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
377                 return;
378
379         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
380             !(evt & OHCI1394_busReset))
381                 return;
382
383         ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
384             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
385             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
386             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
387             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
388             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
389             evt & OHCI1394_isochRx              ? " IR"                 : "",
390             evt & OHCI1394_isochTx              ? " IT"                 : "",
391             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
392             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
393             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
394             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
395             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
396             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
397             evt & OHCI1394_busReset             ? " busReset"           : "",
398             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
399                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
400                     OHCI1394_respTxComplete | OHCI1394_isochRx |
401                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
402                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
403                     OHCI1394_cycleInconsistent |
404                     OHCI1394_regAccessFail | OHCI1394_busReset)
405                                                 ? " ?"                  : "");
406 }
407
408 static const char *speed[] = {
409         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
410 };
411 static const char *power[] = {
412         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
413         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
414 };
415 static const char port[] = { '.', '-', 'p', 'c', };
416
417 static char _p(u32 *s, int shift)
418 {
419         return port[*s >> shift & 3];
420 }
421
422 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
423 {
424         u32 *s;
425
426         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
427                 return;
428
429         ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
430                     self_id_count, generation, ohci->node_id);
431
432         for (s = ohci->self_id_buffer; self_id_count--; ++s)
433                 if ((*s & 1 << 23) == 0)
434                         ohci_notice(ohci,
435                             "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
436                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
437                             speed[*s >> 14 & 3], *s >> 16 & 63,
438                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
439                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
440                 else
441                         ohci_notice(ohci,
442                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
443                             *s, *s >> 24 & 63,
444                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
445                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
446 }
447
448 static const char *evts[] = {
449         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
450         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
451         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
452         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
453         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
454         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
455         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
456         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
457         [0x10] = "-reserved-",          [0x11] = "ack_complete",
458         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
459         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
460         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
461         [0x18] = "-reserved-",          [0x19] = "-reserved-",
462         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
463         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
464         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
465         [0x20] = "pending/cancelled",
466 };
467 static const char *tcodes[] = {
468         [0x0] = "QW req",               [0x1] = "BW req",
469         [0x2] = "W resp",               [0x3] = "-reserved-",
470         [0x4] = "QR req",               [0x5] = "BR req",
471         [0x6] = "QR resp",              [0x7] = "BR resp",
472         [0x8] = "cycle start",          [0x9] = "Lk req",
473         [0xa] = "async stream packet",  [0xb] = "Lk resp",
474         [0xc] = "-reserved-",           [0xd] = "-reserved-",
475         [0xe] = "link internal",        [0xf] = "-reserved-",
476 };
477
478 static void log_ar_at_event(struct fw_ohci *ohci,
479                             char dir, int speed, u32 *header, int evt)
480 {
481         int tcode = header[0] >> 4 & 0xf;
482         char specific[12];
483
484         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
485                 return;
486
487         if (unlikely(evt >= ARRAY_SIZE(evts)))
488                         evt = 0x1f;
489
490         if (evt == OHCI1394_evt_bus_reset) {
491                 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
492                             dir, (header[2] >> 16) & 0xff);
493                 return;
494         }
495
496         switch (tcode) {
497         case 0x0: case 0x6: case 0x8:
498                 snprintf(specific, sizeof(specific), " = %08x",
499                          be32_to_cpu((__force __be32)header[3]));
500                 break;
501         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
502                 snprintf(specific, sizeof(specific), " %x,%x",
503                          header[3] >> 16, header[3] & 0xffff);
504                 break;
505         default:
506                 specific[0] = '\0';
507         }
508
509         switch (tcode) {
510         case 0xa:
511                 ohci_notice(ohci, "A%c %s, %s\n",
512                             dir, evts[evt], tcodes[tcode]);
513                 break;
514         case 0xe:
515                 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
516                             dir, evts[evt], header[1], header[2]);
517                 break;
518         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
519                 ohci_notice(ohci,
520                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
521                             dir, speed, header[0] >> 10 & 0x3f,
522                             header[1] >> 16, header[0] >> 16, evts[evt],
523                             tcodes[tcode], header[1] & 0xffff, header[2], specific);
524                 break;
525         default:
526                 ohci_notice(ohci,
527                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
528                             dir, speed, header[0] >> 10 & 0x3f,
529                             header[1] >> 16, header[0] >> 16, evts[evt],
530                             tcodes[tcode], specific);
531         }
532 }
533
534 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
535 {
536         writel(data, ohci->registers + offset);
537 }
538
539 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
540 {
541         return readl(ohci->registers + offset);
542 }
543
544 static inline void flush_writes(const struct fw_ohci *ohci)
545 {
546         /* Do a dummy read to flush writes. */
547         reg_read(ohci, OHCI1394_Version);
548 }
549
550 /*
551  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
552  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
553  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
554  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
555  */
556 static int read_phy_reg(struct fw_ohci *ohci, int addr)
557 {
558         u32 val;
559         int i;
560
561         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
562         for (i = 0; i < 3 + 100; i++) {
563                 val = reg_read(ohci, OHCI1394_PhyControl);
564                 if (!~val)
565                         return -ENODEV; /* Card was ejected. */
566
567                 if (val & OHCI1394_PhyControl_ReadDone)
568                         return OHCI1394_PhyControl_ReadData(val);
569
570                 /*
571                  * Try a few times without waiting.  Sleeping is necessary
572                  * only when the link/PHY interface is busy.
573                  */
574                 if (i >= 3)
575                         msleep(1);
576         }
577         ohci_err(ohci, "failed to read phy reg %d\n", addr);
578         dump_stack();
579
580         return -EBUSY;
581 }
582
583 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
584 {
585         int i;
586
587         reg_write(ohci, OHCI1394_PhyControl,
588                   OHCI1394_PhyControl_Write(addr, val));
589         for (i = 0; i < 3 + 100; i++) {
590                 val = reg_read(ohci, OHCI1394_PhyControl);
591                 if (!~val)
592                         return -ENODEV; /* Card was ejected. */
593
594                 if (!(val & OHCI1394_PhyControl_WritePending))
595                         return 0;
596
597                 if (i >= 3)
598                         msleep(1);
599         }
600         ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
601         dump_stack();
602
603         return -EBUSY;
604 }
605
606 static int update_phy_reg(struct fw_ohci *ohci, int addr,
607                           int clear_bits, int set_bits)
608 {
609         int ret = read_phy_reg(ohci, addr);
610         if (ret < 0)
611                 return ret;
612
613         /*
614          * The interrupt status bits are cleared by writing a one bit.
615          * Avoid clearing them unless explicitly requested in set_bits.
616          */
617         if (addr == 5)
618                 clear_bits |= PHY_INT_STATUS_BITS;
619
620         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
621 }
622
623 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
624 {
625         int ret;
626
627         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
628         if (ret < 0)
629                 return ret;
630
631         return read_phy_reg(ohci, addr);
632 }
633
634 static int ohci_read_phy_reg(struct fw_card *card, int addr)
635 {
636         struct fw_ohci *ohci = fw_ohci(card);
637         int ret;
638
639         mutex_lock(&ohci->phy_reg_mutex);
640         ret = read_phy_reg(ohci, addr);
641         mutex_unlock(&ohci->phy_reg_mutex);
642
643         return ret;
644 }
645
646 static int ohci_update_phy_reg(struct fw_card *card, int addr,
647                                int clear_bits, int set_bits)
648 {
649         struct fw_ohci *ohci = fw_ohci(card);
650         int ret;
651
652         mutex_lock(&ohci->phy_reg_mutex);
653         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
654         mutex_unlock(&ohci->phy_reg_mutex);
655
656         return ret;
657 }
658
659 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
660 {
661         return page_private(ctx->pages[i]);
662 }
663
664 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
665 {
666         struct descriptor *d;
667
668         d = &ctx->descriptors[index];
669         d->branch_address  &= cpu_to_le32(~0xf);
670         d->res_count       =  cpu_to_le16(PAGE_SIZE);
671         d->transfer_status =  0;
672
673         wmb(); /* finish init of new descriptors before branch_address update */
674         d = &ctx->descriptors[ctx->last_buffer_index];
675         d->branch_address  |= cpu_to_le32(1);
676
677         ctx->last_buffer_index = index;
678
679         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
680 }
681
682 static void ar_context_release(struct ar_context *ctx)
683 {
684         unsigned int i;
685
686         if (ctx->buffer)
687                 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
688
689         for (i = 0; i < AR_BUFFERS; i++)
690                 if (ctx->pages[i]) {
691                         dma_unmap_page(ctx->ohci->card.device,
692                                        ar_buffer_bus(ctx, i),
693                                        PAGE_SIZE, DMA_FROM_DEVICE);
694                         __free_page(ctx->pages[i]);
695                 }
696 }
697
698 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
699 {
700         struct fw_ohci *ohci = ctx->ohci;
701
702         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
703                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
704                 flush_writes(ohci);
705
706                 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
707         }
708         /* FIXME: restart? */
709 }
710
711 static inline unsigned int ar_next_buffer_index(unsigned int index)
712 {
713         return (index + 1) % AR_BUFFERS;
714 }
715
716 static inline unsigned int ar_prev_buffer_index(unsigned int index)
717 {
718         return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
719 }
720
721 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
722 {
723         return ar_next_buffer_index(ctx->last_buffer_index);
724 }
725
726 /*
727  * We search for the buffer that contains the last AR packet DMA data written
728  * by the controller.
729  */
730 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
731                                                  unsigned int *buffer_offset)
732 {
733         unsigned int i, next_i, last = ctx->last_buffer_index;
734         __le16 res_count, next_res_count;
735
736         i = ar_first_buffer_index(ctx);
737         res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
738
739         /* A buffer that is not yet completely filled must be the last one. */
740         while (i != last && res_count == 0) {
741
742                 /* Peek at the next descriptor. */
743                 next_i = ar_next_buffer_index(i);
744                 rmb(); /* read descriptors in order */
745                 next_res_count = ACCESS_ONCE(
746                                 ctx->descriptors[next_i].res_count);
747                 /*
748                  * If the next descriptor is still empty, we must stop at this
749                  * descriptor.
750                  */
751                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
752                         /*
753                          * The exception is when the DMA data for one packet is
754                          * split over three buffers; in this case, the middle
755                          * buffer's descriptor might be never updated by the
756                          * controller and look still empty, and we have to peek
757                          * at the third one.
758                          */
759                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
760                                 next_i = ar_next_buffer_index(next_i);
761                                 rmb();
762                                 next_res_count = ACCESS_ONCE(
763                                         ctx->descriptors[next_i].res_count);
764                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
765                                         goto next_buffer_is_active;
766                         }
767
768                         break;
769                 }
770
771 next_buffer_is_active:
772                 i = next_i;
773                 res_count = next_res_count;
774         }
775
776         rmb(); /* read res_count before the DMA data */
777
778         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
779         if (*buffer_offset > PAGE_SIZE) {
780                 *buffer_offset = 0;
781                 ar_context_abort(ctx, "corrupted descriptor");
782         }
783
784         return i;
785 }
786
787 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
788                                     unsigned int end_buffer_index,
789                                     unsigned int end_buffer_offset)
790 {
791         unsigned int i;
792
793         i = ar_first_buffer_index(ctx);
794         while (i != end_buffer_index) {
795                 dma_sync_single_for_cpu(ctx->ohci->card.device,
796                                         ar_buffer_bus(ctx, i),
797                                         PAGE_SIZE, DMA_FROM_DEVICE);
798                 i = ar_next_buffer_index(i);
799         }
800         if (end_buffer_offset > 0)
801                 dma_sync_single_for_cpu(ctx->ohci->card.device,
802                                         ar_buffer_bus(ctx, i),
803                                         end_buffer_offset, DMA_FROM_DEVICE);
804 }
805
806 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
807 #define cond_le32_to_cpu(v) \
808         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
809 #else
810 #define cond_le32_to_cpu(v) le32_to_cpu(v)
811 #endif
812
813 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
814 {
815         struct fw_ohci *ohci = ctx->ohci;
816         struct fw_packet p;
817         u32 status, length, tcode;
818         int evt;
819
820         p.header[0] = cond_le32_to_cpu(buffer[0]);
821         p.header[1] = cond_le32_to_cpu(buffer[1]);
822         p.header[2] = cond_le32_to_cpu(buffer[2]);
823
824         tcode = (p.header[0] >> 4) & 0x0f;
825         switch (tcode) {
826         case TCODE_WRITE_QUADLET_REQUEST:
827         case TCODE_READ_QUADLET_RESPONSE:
828                 p.header[3] = (__force __u32) buffer[3];
829                 p.header_length = 16;
830                 p.payload_length = 0;
831                 break;
832
833         case TCODE_READ_BLOCK_REQUEST :
834                 p.header[3] = cond_le32_to_cpu(buffer[3]);
835                 p.header_length = 16;
836                 p.payload_length = 0;
837                 break;
838
839         case TCODE_WRITE_BLOCK_REQUEST:
840         case TCODE_READ_BLOCK_RESPONSE:
841         case TCODE_LOCK_REQUEST:
842         case TCODE_LOCK_RESPONSE:
843                 p.header[3] = cond_le32_to_cpu(buffer[3]);
844                 p.header_length = 16;
845                 p.payload_length = p.header[3] >> 16;
846                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
847                         ar_context_abort(ctx, "invalid packet length");
848                         return NULL;
849                 }
850                 break;
851
852         case TCODE_WRITE_RESPONSE:
853         case TCODE_READ_QUADLET_REQUEST:
854         case OHCI_TCODE_PHY_PACKET:
855                 p.header_length = 12;
856                 p.payload_length = 0;
857                 break;
858
859         default:
860                 ar_context_abort(ctx, "invalid tcode");
861                 return NULL;
862         }
863
864         p.payload = (void *) buffer + p.header_length;
865
866         /* FIXME: What to do about evt_* errors? */
867         length = (p.header_length + p.payload_length + 3) / 4;
868         status = cond_le32_to_cpu(buffer[length]);
869         evt    = (status >> 16) & 0x1f;
870
871         p.ack        = evt - 16;
872         p.speed      = (status >> 21) & 0x7;
873         p.timestamp  = status & 0xffff;
874         p.generation = ohci->request_generation;
875
876         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
877
878         /*
879          * Several controllers, notably from NEC and VIA, forget to
880          * write ack_complete status at PHY packet reception.
881          */
882         if (evt == OHCI1394_evt_no_status &&
883             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
884                 p.ack = ACK_COMPLETE;
885
886         /*
887          * The OHCI bus reset handler synthesizes a PHY packet with
888          * the new generation number when a bus reset happens (see
889          * section 8.4.2.3).  This helps us determine when a request
890          * was received and make sure we send the response in the same
891          * generation.  We only need this for requests; for responses
892          * we use the unique tlabel for finding the matching
893          * request.
894          *
895          * Alas some chips sometimes emit bus reset packets with a
896          * wrong generation.  We set the correct generation for these
897          * at a slightly incorrect time (in bus_reset_work).
898          */
899         if (evt == OHCI1394_evt_bus_reset) {
900                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
901                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
902         } else if (ctx == &ohci->ar_request_ctx) {
903                 fw_core_handle_request(&ohci->card, &p);
904         } else {
905                 fw_core_handle_response(&ohci->card, &p);
906         }
907
908         return buffer + length + 1;
909 }
910
911 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
912 {
913         void *next;
914
915         while (p < end) {
916                 next = handle_ar_packet(ctx, p);
917                 if (!next)
918                         return p;
919                 p = next;
920         }
921
922         return p;
923 }
924
925 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
926 {
927         unsigned int i;
928
929         i = ar_first_buffer_index(ctx);
930         while (i != end_buffer) {
931                 dma_sync_single_for_device(ctx->ohci->card.device,
932                                            ar_buffer_bus(ctx, i),
933                                            PAGE_SIZE, DMA_FROM_DEVICE);
934                 ar_context_link_page(ctx, i);
935                 i = ar_next_buffer_index(i);
936         }
937 }
938
939 static void ar_context_tasklet(unsigned long data)
940 {
941         struct ar_context *ctx = (struct ar_context *)data;
942         unsigned int end_buffer_index, end_buffer_offset;
943         void *p, *end;
944
945         p = ctx->pointer;
946         if (!p)
947                 return;
948
949         end_buffer_index = ar_search_last_active_buffer(ctx,
950                                                         &end_buffer_offset);
951         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
952         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
953
954         if (end_buffer_index < ar_first_buffer_index(ctx)) {
955                 /*
956                  * The filled part of the overall buffer wraps around; handle
957                  * all packets up to the buffer end here.  If the last packet
958                  * wraps around, its tail will be visible after the buffer end
959                  * because the buffer start pages are mapped there again.
960                  */
961                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
962                 p = handle_ar_packets(ctx, p, buffer_end);
963                 if (p < buffer_end)
964                         goto error;
965                 /* adjust p to point back into the actual buffer */
966                 p -= AR_BUFFERS * PAGE_SIZE;
967         }
968
969         p = handle_ar_packets(ctx, p, end);
970         if (p != end) {
971                 if (p > end)
972                         ar_context_abort(ctx, "inconsistent descriptor");
973                 goto error;
974         }
975
976         ctx->pointer = p;
977         ar_recycle_buffers(ctx, end_buffer_index);
978
979         return;
980
981 error:
982         ctx->pointer = NULL;
983 }
984
985 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
986                            unsigned int descriptors_offset, u32 regs)
987 {
988         unsigned int i;
989         dma_addr_t dma_addr;
990         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
991         struct descriptor *d;
992
993         ctx->regs        = regs;
994         ctx->ohci        = ohci;
995         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
996
997         for (i = 0; i < AR_BUFFERS; i++) {
998                 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
999                 if (!ctx->pages[i])
1000                         goto out_of_memory;
1001                 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1002                                         0, PAGE_SIZE, DMA_FROM_DEVICE);
1003                 if (dma_mapping_error(ohci->card.device, dma_addr)) {
1004                         __free_page(ctx->pages[i]);
1005                         ctx->pages[i] = NULL;
1006                         goto out_of_memory;
1007                 }
1008                 set_page_private(ctx->pages[i], dma_addr);
1009         }
1010
1011         for (i = 0; i < AR_BUFFERS; i++)
1012                 pages[i]              = ctx->pages[i];
1013         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1014                 pages[AR_BUFFERS + i] = ctx->pages[i];
1015         ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1016                                  -1, PAGE_KERNEL);
1017         if (!ctx->buffer)
1018                 goto out_of_memory;
1019
1020         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1021         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1022
1023         for (i = 0; i < AR_BUFFERS; i++) {
1024                 d = &ctx->descriptors[i];
1025                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1026                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1027                                                 DESCRIPTOR_STATUS |
1028                                                 DESCRIPTOR_BRANCH_ALWAYS);
1029                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1030                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1031                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1032         }
1033
1034         return 0;
1035
1036 out_of_memory:
1037         ar_context_release(ctx);
1038
1039         return -ENOMEM;
1040 }
1041
1042 static void ar_context_run(struct ar_context *ctx)
1043 {
1044         unsigned int i;
1045
1046         for (i = 0; i < AR_BUFFERS; i++)
1047                 ar_context_link_page(ctx, i);
1048
1049         ctx->pointer = ctx->buffer;
1050
1051         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1052         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1053 }
1054
1055 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1056 {
1057         __le16 branch;
1058
1059         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1060
1061         /* figure out which descriptor the branch address goes in */
1062         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1063                 return d;
1064         else
1065                 return d + z - 1;
1066 }
1067
1068 static void context_tasklet(unsigned long data)
1069 {
1070         struct context *ctx = (struct context *) data;
1071         struct descriptor *d, *last;
1072         u32 address;
1073         int z;
1074         struct descriptor_buffer *desc;
1075
1076         desc = list_entry(ctx->buffer_list.next,
1077                         struct descriptor_buffer, list);
1078         last = ctx->last;
1079         while (last->branch_address != 0) {
1080                 struct descriptor_buffer *old_desc = desc;
1081                 address = le32_to_cpu(last->branch_address);
1082                 z = address & 0xf;
1083                 address &= ~0xf;
1084                 ctx->current_bus = address;
1085
1086                 /* If the branch address points to a buffer outside of the
1087                  * current buffer, advance to the next buffer. */
1088                 if (address < desc->buffer_bus ||
1089                                 address >= desc->buffer_bus + desc->used)
1090                         desc = list_entry(desc->list.next,
1091                                         struct descriptor_buffer, list);
1092                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1093                 last = find_branch_descriptor(d, z);
1094
1095                 if (!ctx->callback(ctx, d, last))
1096                         break;
1097
1098                 if (old_desc != desc) {
1099                         /* If we've advanced to the next buffer, move the
1100                          * previous buffer to the free list. */
1101                         unsigned long flags;
1102                         old_desc->used = 0;
1103                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1104                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1105                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1106                 }
1107                 ctx->last = last;
1108         }
1109 }
1110
1111 /*
1112  * Allocate a new buffer and add it to the list of free buffers for this
1113  * context.  Must be called with ohci->lock held.
1114  */
1115 static int context_add_buffer(struct context *ctx)
1116 {
1117         struct descriptor_buffer *desc;
1118         dma_addr_t uninitialized_var(bus_addr);
1119         int offset;
1120
1121         /*
1122          * 16MB of descriptors should be far more than enough for any DMA
1123          * program.  This will catch run-away userspace or DoS attacks.
1124          */
1125         if (ctx->total_allocation >= 16*1024*1024)
1126                 return -ENOMEM;
1127
1128         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1129                         &bus_addr, GFP_ATOMIC);
1130         if (!desc)
1131                 return -ENOMEM;
1132
1133         offset = (void *)&desc->buffer - (void *)desc;
1134         desc->buffer_size = PAGE_SIZE - offset;
1135         desc->buffer_bus = bus_addr + offset;
1136         desc->used = 0;
1137
1138         list_add_tail(&desc->list, &ctx->buffer_list);
1139         ctx->total_allocation += PAGE_SIZE;
1140
1141         return 0;
1142 }
1143
1144 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1145                         u32 regs, descriptor_callback_t callback)
1146 {
1147         ctx->ohci = ohci;
1148         ctx->regs = regs;
1149         ctx->total_allocation = 0;
1150
1151         INIT_LIST_HEAD(&ctx->buffer_list);
1152         if (context_add_buffer(ctx) < 0)
1153                 return -ENOMEM;
1154
1155         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1156                         struct descriptor_buffer, list);
1157
1158         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1159         ctx->callback = callback;
1160
1161         /*
1162          * We put a dummy descriptor in the buffer that has a NULL
1163          * branch address and looks like it's been sent.  That way we
1164          * have a descriptor to append DMA programs to.
1165          */
1166         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1167         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1168         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1169         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1170         ctx->last = ctx->buffer_tail->buffer;
1171         ctx->prev = ctx->buffer_tail->buffer;
1172         ctx->prev_z = 1;
1173
1174         return 0;
1175 }
1176
1177 static void context_release(struct context *ctx)
1178 {
1179         struct fw_card *card = &ctx->ohci->card;
1180         struct descriptor_buffer *desc, *tmp;
1181
1182         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1183                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1184                         desc->buffer_bus -
1185                         ((void *)&desc->buffer - (void *)desc));
1186 }
1187
1188 /* Must be called with ohci->lock held */
1189 static struct descriptor *context_get_descriptors(struct context *ctx,
1190                                                   int z, dma_addr_t *d_bus)
1191 {
1192         struct descriptor *d = NULL;
1193         struct descriptor_buffer *desc = ctx->buffer_tail;
1194
1195         if (z * sizeof(*d) > desc->buffer_size)
1196                 return NULL;
1197
1198         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1199                 /* No room for the descriptor in this buffer, so advance to the
1200                  * next one. */
1201
1202                 if (desc->list.next == &ctx->buffer_list) {
1203                         /* If there is no free buffer next in the list,
1204                          * allocate one. */
1205                         if (context_add_buffer(ctx) < 0)
1206                                 return NULL;
1207                 }
1208                 desc = list_entry(desc->list.next,
1209                                 struct descriptor_buffer, list);
1210                 ctx->buffer_tail = desc;
1211         }
1212
1213         d = desc->buffer + desc->used / sizeof(*d);
1214         memset(d, 0, z * sizeof(*d));
1215         *d_bus = desc->buffer_bus + desc->used;
1216
1217         return d;
1218 }
1219
1220 static void context_run(struct context *ctx, u32 extra)
1221 {
1222         struct fw_ohci *ohci = ctx->ohci;
1223
1224         reg_write(ohci, COMMAND_PTR(ctx->regs),
1225                   le32_to_cpu(ctx->last->branch_address));
1226         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1227         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1228         ctx->running = true;
1229         flush_writes(ohci);
1230 }
1231
1232 static void context_append(struct context *ctx,
1233                            struct descriptor *d, int z, int extra)
1234 {
1235         dma_addr_t d_bus;
1236         struct descriptor_buffer *desc = ctx->buffer_tail;
1237         struct descriptor *d_branch;
1238
1239         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1240
1241         desc->used += (z + extra) * sizeof(*d);
1242
1243         wmb(); /* finish init of new descriptors before branch_address update */
1244
1245         d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1246         d_branch->branch_address = cpu_to_le32(d_bus | z);
1247
1248         /*
1249          * VT6306 incorrectly checks only the single descriptor at the
1250          * CommandPtr when the wake bit is written, so if it's a
1251          * multi-descriptor block starting with an INPUT_MORE, put a copy of
1252          * the branch address in the first descriptor.
1253          *
1254          * Not doing this for transmit contexts since not sure how it interacts
1255          * with skip addresses.
1256          */
1257         if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1258             d_branch != ctx->prev &&
1259             (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1260              cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1261                 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1262         }
1263
1264         ctx->prev = d;
1265         ctx->prev_z = z;
1266 }
1267
1268 static void context_stop(struct context *ctx)
1269 {
1270         struct fw_ohci *ohci = ctx->ohci;
1271         u32 reg;
1272         int i;
1273
1274         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1275         ctx->running = false;
1276
1277         for (i = 0; i < 1000; i++) {
1278                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1279                 if ((reg & CONTEXT_ACTIVE) == 0)
1280                         return;
1281
1282                 if (i)
1283                         udelay(10);
1284         }
1285         ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1286 }
1287
1288 struct driver_data {
1289         u8 inline_data[8];
1290         struct fw_packet *packet;
1291 };
1292
1293 /*
1294  * This function apppends a packet to the DMA queue for transmission.
1295  * Must always be called with the ochi->lock held to ensure proper
1296  * generation handling and locking around packet queue manipulation.
1297  */
1298 static int at_context_queue_packet(struct context *ctx,
1299                                    struct fw_packet *packet)
1300 {
1301         struct fw_ohci *ohci = ctx->ohci;
1302         dma_addr_t d_bus, uninitialized_var(payload_bus);
1303         struct driver_data *driver_data;
1304         struct descriptor *d, *last;
1305         __le32 *header;
1306         int z, tcode;
1307
1308         d = context_get_descriptors(ctx, 4, &d_bus);
1309         if (d == NULL) {
1310                 packet->ack = RCODE_SEND_ERROR;
1311                 return -1;
1312         }
1313
1314         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1315         d[0].res_count = cpu_to_le16(packet->timestamp);
1316
1317         /*
1318          * The DMA format for asynchronous link packets is different
1319          * from the IEEE1394 layout, so shift the fields around
1320          * accordingly.
1321          */
1322
1323         tcode = (packet->header[0] >> 4) & 0x0f;
1324         header = (__le32 *) &d[1];
1325         switch (tcode) {
1326         case TCODE_WRITE_QUADLET_REQUEST:
1327         case TCODE_WRITE_BLOCK_REQUEST:
1328         case TCODE_WRITE_RESPONSE:
1329         case TCODE_READ_QUADLET_REQUEST:
1330         case TCODE_READ_BLOCK_REQUEST:
1331         case TCODE_READ_QUADLET_RESPONSE:
1332         case TCODE_READ_BLOCK_RESPONSE:
1333         case TCODE_LOCK_REQUEST:
1334         case TCODE_LOCK_RESPONSE:
1335                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1336                                         (packet->speed << 16));
1337                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1338                                         (packet->header[0] & 0xffff0000));
1339                 header[2] = cpu_to_le32(packet->header[2]);
1340
1341                 if (TCODE_IS_BLOCK_PACKET(tcode))
1342                         header[3] = cpu_to_le32(packet->header[3]);
1343                 else
1344                         header[3] = (__force __le32) packet->header[3];
1345
1346                 d[0].req_count = cpu_to_le16(packet->header_length);
1347                 break;
1348
1349         case TCODE_LINK_INTERNAL:
1350                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1351                                         (packet->speed << 16));
1352                 header[1] = cpu_to_le32(packet->header[1]);
1353                 header[2] = cpu_to_le32(packet->header[2]);
1354                 d[0].req_count = cpu_to_le16(12);
1355
1356                 if (is_ping_packet(&packet->header[1]))
1357                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1358                 break;
1359
1360         case TCODE_STREAM_DATA:
1361                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1362                                         (packet->speed << 16));
1363                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1364                 d[0].req_count = cpu_to_le16(8);
1365                 break;
1366
1367         default:
1368                 /* BUG(); */
1369                 packet->ack = RCODE_SEND_ERROR;
1370                 return -1;
1371         }
1372
1373         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1374         driver_data = (struct driver_data *) &d[3];
1375         driver_data->packet = packet;
1376         packet->driver_data = driver_data;
1377
1378         if (packet->payload_length > 0) {
1379                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1380                         payload_bus = dma_map_single(ohci->card.device,
1381                                                      packet->payload,
1382                                                      packet->payload_length,
1383                                                      DMA_TO_DEVICE);
1384                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1385                                 packet->ack = RCODE_SEND_ERROR;
1386                                 return -1;
1387                         }
1388                         packet->payload_bus     = payload_bus;
1389                         packet->payload_mapped  = true;
1390                 } else {
1391                         memcpy(driver_data->inline_data, packet->payload,
1392                                packet->payload_length);
1393                         payload_bus = d_bus + 3 * sizeof(*d);
1394                 }
1395
1396                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1397                 d[2].data_address = cpu_to_le32(payload_bus);
1398                 last = &d[2];
1399                 z = 3;
1400         } else {
1401                 last = &d[0];
1402                 z = 2;
1403         }
1404
1405         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1406                                      DESCRIPTOR_IRQ_ALWAYS |
1407                                      DESCRIPTOR_BRANCH_ALWAYS);
1408
1409         /* FIXME: Document how the locking works. */
1410         if (ohci->generation != packet->generation) {
1411                 if (packet->payload_mapped)
1412                         dma_unmap_single(ohci->card.device, payload_bus,
1413                                          packet->payload_length, DMA_TO_DEVICE);
1414                 packet->ack = RCODE_GENERATION;
1415                 return -1;
1416         }
1417
1418         context_append(ctx, d, z, 4 - z);
1419
1420         if (ctx->running)
1421                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1422         else
1423                 context_run(ctx, 0);
1424
1425         return 0;
1426 }
1427
1428 static void at_context_flush(struct context *ctx)
1429 {
1430         tasklet_disable(&ctx->tasklet);
1431
1432         ctx->flushing = true;
1433         context_tasklet((unsigned long)ctx);
1434         ctx->flushing = false;
1435
1436         tasklet_enable(&ctx->tasklet);
1437 }
1438
1439 static int handle_at_packet(struct context *context,
1440                             struct descriptor *d,
1441                             struct descriptor *last)
1442 {
1443         struct driver_data *driver_data;
1444         struct fw_packet *packet;
1445         struct fw_ohci *ohci = context->ohci;
1446         int evt;
1447
1448         if (last->transfer_status == 0 && !context->flushing)
1449                 /* This descriptor isn't done yet, stop iteration. */
1450                 return 0;
1451
1452         driver_data = (struct driver_data *) &d[3];
1453         packet = driver_data->packet;
1454         if (packet == NULL)
1455                 /* This packet was cancelled, just continue. */
1456                 return 1;
1457
1458         if (packet->payload_mapped)
1459                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1460                                  packet->payload_length, DMA_TO_DEVICE);
1461
1462         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1463         packet->timestamp = le16_to_cpu(last->res_count);
1464
1465         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1466
1467         switch (evt) {
1468         case OHCI1394_evt_timeout:
1469                 /* Async response transmit timed out. */
1470                 packet->ack = RCODE_CANCELLED;
1471                 break;
1472
1473         case OHCI1394_evt_flushed:
1474                 /*
1475                  * The packet was flushed should give same error as
1476                  * when we try to use a stale generation count.
1477                  */
1478                 packet->ack = RCODE_GENERATION;
1479                 break;
1480
1481         case OHCI1394_evt_missing_ack:
1482                 if (context->flushing)
1483                         packet->ack = RCODE_GENERATION;
1484                 else {
1485                         /*
1486                          * Using a valid (current) generation count, but the
1487                          * node is not on the bus or not sending acks.
1488                          */
1489                         packet->ack = RCODE_NO_ACK;
1490                 }
1491                 break;
1492
1493         case ACK_COMPLETE + 0x10:
1494         case ACK_PENDING + 0x10:
1495         case ACK_BUSY_X + 0x10:
1496         case ACK_BUSY_A + 0x10:
1497         case ACK_BUSY_B + 0x10:
1498         case ACK_DATA_ERROR + 0x10:
1499         case ACK_TYPE_ERROR + 0x10:
1500                 packet->ack = evt - 0x10;
1501                 break;
1502
1503         case OHCI1394_evt_no_status:
1504                 if (context->flushing) {
1505                         packet->ack = RCODE_GENERATION;
1506                         break;
1507                 }
1508                 /* fall through */
1509
1510         default:
1511                 packet->ack = RCODE_SEND_ERROR;
1512                 break;
1513         }
1514
1515         packet->callback(packet, &ohci->card, packet->ack);
1516
1517         return 1;
1518 }
1519
1520 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1521 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1522 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1523 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1524 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1525
1526 static void handle_local_rom(struct fw_ohci *ohci,
1527                              struct fw_packet *packet, u32 csr)
1528 {
1529         struct fw_packet response;
1530         int tcode, length, i;
1531
1532         tcode = HEADER_GET_TCODE(packet->header[0]);
1533         if (TCODE_IS_BLOCK_PACKET(tcode))
1534                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1535         else
1536                 length = 4;
1537
1538         i = csr - CSR_CONFIG_ROM;
1539         if (i + length > CONFIG_ROM_SIZE) {
1540                 fw_fill_response(&response, packet->header,
1541                                  RCODE_ADDRESS_ERROR, NULL, 0);
1542         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1543                 fw_fill_response(&response, packet->header,
1544                                  RCODE_TYPE_ERROR, NULL, 0);
1545         } else {
1546                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1547                                  (void *) ohci->config_rom + i, length);
1548         }
1549
1550         fw_core_handle_response(&ohci->card, &response);
1551 }
1552
1553 static void handle_local_lock(struct fw_ohci *ohci,
1554                               struct fw_packet *packet, u32 csr)
1555 {
1556         struct fw_packet response;
1557         int tcode, length, ext_tcode, sel, try;
1558         __be32 *payload, lock_old;
1559         u32 lock_arg, lock_data;
1560
1561         tcode = HEADER_GET_TCODE(packet->header[0]);
1562         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1563         payload = packet->payload;
1564         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1565
1566         if (tcode == TCODE_LOCK_REQUEST &&
1567             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1568                 lock_arg = be32_to_cpu(payload[0]);
1569                 lock_data = be32_to_cpu(payload[1]);
1570         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1571                 lock_arg = 0;
1572                 lock_data = 0;
1573         } else {
1574                 fw_fill_response(&response, packet->header,
1575                                  RCODE_TYPE_ERROR, NULL, 0);
1576                 goto out;
1577         }
1578
1579         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1580         reg_write(ohci, OHCI1394_CSRData, lock_data);
1581         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1582         reg_write(ohci, OHCI1394_CSRControl, sel);
1583
1584         for (try = 0; try < 20; try++)
1585                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1586                         lock_old = cpu_to_be32(reg_read(ohci,
1587                                                         OHCI1394_CSRData));
1588                         fw_fill_response(&response, packet->header,
1589                                          RCODE_COMPLETE,
1590                                          &lock_old, sizeof(lock_old));
1591                         goto out;
1592                 }
1593
1594         ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1595         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1596
1597  out:
1598         fw_core_handle_response(&ohci->card, &response);
1599 }
1600
1601 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1602 {
1603         u64 offset, csr;
1604
1605         if (ctx == &ctx->ohci->at_request_ctx) {
1606                 packet->ack = ACK_PENDING;
1607                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1608         }
1609
1610         offset =
1611                 ((unsigned long long)
1612                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1613                 packet->header[2];
1614         csr = offset - CSR_REGISTER_BASE;
1615
1616         /* Handle config rom reads. */
1617         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1618                 handle_local_rom(ctx->ohci, packet, csr);
1619         else switch (csr) {
1620         case CSR_BUS_MANAGER_ID:
1621         case CSR_BANDWIDTH_AVAILABLE:
1622         case CSR_CHANNELS_AVAILABLE_HI:
1623         case CSR_CHANNELS_AVAILABLE_LO:
1624                 handle_local_lock(ctx->ohci, packet, csr);
1625                 break;
1626         default:
1627                 if (ctx == &ctx->ohci->at_request_ctx)
1628                         fw_core_handle_request(&ctx->ohci->card, packet);
1629                 else
1630                         fw_core_handle_response(&ctx->ohci->card, packet);
1631                 break;
1632         }
1633
1634         if (ctx == &ctx->ohci->at_response_ctx) {
1635                 packet->ack = ACK_COMPLETE;
1636                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1637         }
1638 }
1639
1640 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1641 {
1642         unsigned long flags;
1643         int ret;
1644
1645         spin_lock_irqsave(&ctx->ohci->lock, flags);
1646
1647         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1648             ctx->ohci->generation == packet->generation) {
1649                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1650                 handle_local_request(ctx, packet);
1651                 return;
1652         }
1653
1654         ret = at_context_queue_packet(ctx, packet);
1655         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1656
1657         if (ret < 0)
1658                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1659
1660 }
1661
1662 static void detect_dead_context(struct fw_ohci *ohci,
1663                                 const char *name, unsigned int regs)
1664 {
1665         u32 ctl;
1666
1667         ctl = reg_read(ohci, CONTROL_SET(regs));
1668         if (ctl & CONTEXT_DEAD)
1669                 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1670                         name, evts[ctl & 0x1f]);
1671 }
1672
1673 static void handle_dead_contexts(struct fw_ohci *ohci)
1674 {
1675         unsigned int i;
1676         char name[8];
1677
1678         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1679         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1680         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1681         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1682         for (i = 0; i < 32; ++i) {
1683                 if (!(ohci->it_context_support & (1 << i)))
1684                         continue;
1685                 sprintf(name, "IT%u", i);
1686                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1687         }
1688         for (i = 0; i < 32; ++i) {
1689                 if (!(ohci->ir_context_support & (1 << i)))
1690                         continue;
1691                 sprintf(name, "IR%u", i);
1692                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1693         }
1694         /* TODO: maybe try to flush and restart the dead contexts */
1695 }
1696
1697 static u32 cycle_timer_ticks(u32 cycle_timer)
1698 {
1699         u32 ticks;
1700
1701         ticks = cycle_timer & 0xfff;
1702         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1703         ticks += (3072 * 8000) * (cycle_timer >> 25);
1704
1705         return ticks;
1706 }
1707
1708 /*
1709  * Some controllers exhibit one or more of the following bugs when updating the
1710  * iso cycle timer register:
1711  *  - When the lowest six bits are wrapping around to zero, a read that happens
1712  *    at the same time will return garbage in the lowest ten bits.
1713  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1714  *    not incremented for about 60 ns.
1715  *  - Occasionally, the entire register reads zero.
1716  *
1717  * To catch these, we read the register three times and ensure that the
1718  * difference between each two consecutive reads is approximately the same, i.e.
1719  * less than twice the other.  Furthermore, any negative difference indicates an
1720  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1721  * execute, so we have enough precision to compute the ratio of the differences.)
1722  */
1723 static u32 get_cycle_time(struct fw_ohci *ohci)
1724 {
1725         u32 c0, c1, c2;
1726         u32 t0, t1, t2;
1727         s32 diff01, diff12;
1728         int i;
1729
1730         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1731
1732         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1733                 i = 0;
1734                 c1 = c2;
1735                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1736                 do {
1737                         c0 = c1;
1738                         c1 = c2;
1739                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1740                         t0 = cycle_timer_ticks(c0);
1741                         t1 = cycle_timer_ticks(c1);
1742                         t2 = cycle_timer_ticks(c2);
1743                         diff01 = t1 - t0;
1744                         diff12 = t2 - t1;
1745                 } while ((diff01 <= 0 || diff12 <= 0 ||
1746                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1747                          && i++ < 20);
1748         }
1749
1750         return c2;
1751 }
1752
1753 /*
1754  * This function has to be called at least every 64 seconds.  The bus_time
1755  * field stores not only the upper 25 bits of the BUS_TIME register but also
1756  * the most significant bit of the cycle timer in bit 6 so that we can detect
1757  * changes in this bit.
1758  */
1759 static u32 update_bus_time(struct fw_ohci *ohci)
1760 {
1761         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1762
1763         if (unlikely(!ohci->bus_time_running)) {
1764                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1765                 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1766                                  (cycle_time_seconds & 0x40);
1767                 ohci->bus_time_running = true;
1768         }
1769
1770         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1771                 ohci->bus_time += 0x40;
1772
1773         return ohci->bus_time | cycle_time_seconds;
1774 }
1775
1776 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1777 {
1778         int reg;
1779
1780         mutex_lock(&ohci->phy_reg_mutex);
1781         reg = write_phy_reg(ohci, 7, port_index);
1782         if (reg >= 0)
1783                 reg = read_phy_reg(ohci, 8);
1784         mutex_unlock(&ohci->phy_reg_mutex);
1785         if (reg < 0)
1786                 return reg;
1787
1788         switch (reg & 0x0f) {
1789         case 0x06:
1790                 return 2;       /* is child node (connected to parent node) */
1791         case 0x0e:
1792                 return 3;       /* is parent node (connected to child node) */
1793         }
1794         return 1;               /* not connected */
1795 }
1796
1797 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1798         int self_id_count)
1799 {
1800         int i;
1801         u32 entry;
1802
1803         for (i = 0; i < self_id_count; i++) {
1804                 entry = ohci->self_id_buffer[i];
1805                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1806                         return -1;
1807                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1808                         return i;
1809         }
1810         return i;
1811 }
1812
1813 static int initiated_reset(struct fw_ohci *ohci)
1814 {
1815         int reg;
1816         int ret = 0;
1817
1818         mutex_lock(&ohci->phy_reg_mutex);
1819         reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1820         if (reg >= 0) {
1821                 reg = read_phy_reg(ohci, 8);
1822                 reg |= 0x40;
1823                 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1824                 if (reg >= 0) {
1825                         reg = read_phy_reg(ohci, 12); /* read register 12 */
1826                         if (reg >= 0) {
1827                                 if ((reg & 0x08) == 0x08) {
1828                                         /* bit 3 indicates "initiated reset" */
1829                                         ret = 0x2;
1830                                 }
1831                         }
1832                 }
1833         }
1834         mutex_unlock(&ohci->phy_reg_mutex);
1835         return ret;
1836 }
1837
1838 /*
1839  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1840  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1841  * Construct the selfID from phy register contents.
1842  */
1843 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1844 {
1845         int reg, i, pos, status;
1846         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1847         u32 self_id = 0x8040c800;
1848
1849         reg = reg_read(ohci, OHCI1394_NodeID);
1850         if (!(reg & OHCI1394_NodeID_idValid)) {
1851                 ohci_notice(ohci,
1852                             "node ID not valid, new bus reset in progress\n");
1853                 return -EBUSY;
1854         }
1855         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1856
1857         reg = ohci_read_phy_reg(&ohci->card, 4);
1858         if (reg < 0)
1859                 return reg;
1860         self_id |= ((reg & 0x07) << 8); /* power class */
1861
1862         reg = ohci_read_phy_reg(&ohci->card, 1);
1863         if (reg < 0)
1864                 return reg;
1865         self_id |= ((reg & 0x3f) << 16); /* gap count */
1866
1867         for (i = 0; i < 3; i++) {
1868                 status = get_status_for_port(ohci, i);
1869                 if (status < 0)
1870                         return status;
1871                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1872         }
1873
1874         self_id |= initiated_reset(ohci);
1875
1876         pos = get_self_id_pos(ohci, self_id, self_id_count);
1877         if (pos >= 0) {
1878                 memmove(&(ohci->self_id_buffer[pos+1]),
1879                         &(ohci->self_id_buffer[pos]),
1880                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1881                 ohci->self_id_buffer[pos] = self_id;
1882                 self_id_count++;
1883         }
1884         return self_id_count;
1885 }
1886
1887 static void bus_reset_work(struct work_struct *work)
1888 {
1889         struct fw_ohci *ohci =
1890                 container_of(work, struct fw_ohci, bus_reset_work);
1891         int self_id_count, generation, new_generation, i, j;
1892         u32 reg;
1893         void *free_rom = NULL;
1894         dma_addr_t free_rom_bus = 0;
1895         bool is_new_root;
1896
1897         reg = reg_read(ohci, OHCI1394_NodeID);
1898         if (!(reg & OHCI1394_NodeID_idValid)) {
1899                 ohci_notice(ohci,
1900                             "node ID not valid, new bus reset in progress\n");
1901                 return;
1902         }
1903         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1904                 ohci_notice(ohci, "malconfigured bus\n");
1905                 return;
1906         }
1907         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1908                                OHCI1394_NodeID_nodeNumber);
1909
1910         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1911         if (!(ohci->is_root && is_new_root))
1912                 reg_write(ohci, OHCI1394_LinkControlSet,
1913                           OHCI1394_LinkControl_cycleMaster);
1914         ohci->is_root = is_new_root;
1915
1916         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1917         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1918                 ohci_notice(ohci, "self ID receive error\n");
1919                 return;
1920         }
1921         /*
1922          * The count in the SelfIDCount register is the number of
1923          * bytes in the self ID receive buffer.  Since we also receive
1924          * the inverted quadlets and a header quadlet, we shift one
1925          * bit extra to get the actual number of self IDs.
1926          */
1927         self_id_count = (reg >> 3) & 0xff;
1928
1929         if (self_id_count > 252) {
1930                 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1931                 return;
1932         }
1933
1934         generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1935         rmb();
1936
1937         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1938                 u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1939                 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1940
1941                 if (id != ~id2) {
1942                         /*
1943                          * If the invalid data looks like a cycle start packet,
1944                          * it's likely to be the result of the cycle master
1945                          * having a wrong gap count.  In this case, the self IDs
1946                          * so far are valid and should be processed so that the
1947                          * bus manager can then correct the gap count.
1948                          */
1949                         if (id == 0xffff008f) {
1950                                 ohci_notice(ohci, "ignoring spurious self IDs\n");
1951                                 self_id_count = j;
1952                                 break;
1953                         }
1954
1955                         ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1956                                     j, self_id_count, id, id2);
1957                         return;
1958                 }
1959                 ohci->self_id_buffer[j] = id;
1960         }
1961
1962         if (ohci->quirks & QUIRK_TI_SLLZ059) {
1963                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1964                 if (self_id_count < 0) {
1965                         ohci_notice(ohci,
1966                                     "could not construct local self ID\n");
1967                         return;
1968                 }
1969         }
1970
1971         if (self_id_count == 0) {
1972                 ohci_notice(ohci, "no self IDs\n");
1973                 return;
1974         }
1975         rmb();
1976
1977         /*
1978          * Check the consistency of the self IDs we just read.  The
1979          * problem we face is that a new bus reset can start while we
1980          * read out the self IDs from the DMA buffer. If this happens,
1981          * the DMA buffer will be overwritten with new self IDs and we
1982          * will read out inconsistent data.  The OHCI specification
1983          * (section 11.2) recommends a technique similar to
1984          * linux/seqlock.h, where we remember the generation of the
1985          * self IDs in the buffer before reading them out and compare
1986          * it to the current generation after reading them out.  If
1987          * the two generations match we know we have a consistent set
1988          * of self IDs.
1989          */
1990
1991         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1992         if (new_generation != generation) {
1993                 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1994                 return;
1995         }
1996
1997         /* FIXME: Document how the locking works. */
1998         spin_lock_irq(&ohci->lock);
1999
2000         ohci->generation = -1; /* prevent AT packet queueing */
2001         context_stop(&ohci->at_request_ctx);
2002         context_stop(&ohci->at_response_ctx);
2003
2004         spin_unlock_irq(&ohci->lock);
2005
2006         /*
2007          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2008          * packets in the AT queues and software needs to drain them.
2009          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2010          */
2011         at_context_flush(&ohci->at_request_ctx);
2012         at_context_flush(&ohci->at_response_ctx);
2013
2014         spin_lock_irq(&ohci->lock);
2015
2016         ohci->generation = generation;
2017         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2018
2019         if (ohci->quirks & QUIRK_RESET_PACKET)
2020                 ohci->request_generation = generation;
2021
2022         /*
2023          * This next bit is unrelated to the AT context stuff but we
2024          * have to do it under the spinlock also.  If a new config rom
2025          * was set up before this reset, the old one is now no longer
2026          * in use and we can free it. Update the config rom pointers
2027          * to point to the current config rom and clear the
2028          * next_config_rom pointer so a new update can take place.
2029          */
2030
2031         if (ohci->next_config_rom != NULL) {
2032                 if (ohci->next_config_rom != ohci->config_rom) {
2033                         free_rom      = ohci->config_rom;
2034                         free_rom_bus  = ohci->config_rom_bus;
2035                 }
2036                 ohci->config_rom      = ohci->next_config_rom;
2037                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
2038                 ohci->next_config_rom = NULL;
2039
2040                 /*
2041                  * Restore config_rom image and manually update
2042                  * config_rom registers.  Writing the header quadlet
2043                  * will indicate that the config rom is ready, so we
2044                  * do that last.
2045                  */
2046                 reg_write(ohci, OHCI1394_BusOptions,
2047                           be32_to_cpu(ohci->config_rom[2]));
2048                 ohci->config_rom[0] = ohci->next_header;
2049                 reg_write(ohci, OHCI1394_ConfigROMhdr,
2050                           be32_to_cpu(ohci->next_header));
2051         }
2052
2053 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2054         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2055         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2056 #endif
2057
2058         spin_unlock_irq(&ohci->lock);
2059
2060         if (free_rom)
2061                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2062                                   free_rom, free_rom_bus);
2063
2064         log_selfids(ohci, generation, self_id_count);
2065
2066         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2067                                  self_id_count, ohci->self_id_buffer,
2068                                  ohci->csr_state_setclear_abdicate);
2069         ohci->csr_state_setclear_abdicate = false;
2070 }
2071
2072 static irqreturn_t irq_handler(int irq, void *data)
2073 {
2074         struct fw_ohci *ohci = data;
2075         u32 event, iso_event;
2076         int i;
2077
2078         event = reg_read(ohci, OHCI1394_IntEventClear);
2079
2080         if (!event || !~event)
2081                 return IRQ_NONE;
2082
2083         /*
2084          * busReset and postedWriteErr must not be cleared yet
2085          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2086          */
2087         reg_write(ohci, OHCI1394_IntEventClear,
2088                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2089         log_irqs(ohci, event);
2090
2091         if (event & OHCI1394_selfIDComplete)
2092                 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2093
2094         if (event & OHCI1394_RQPkt)
2095                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2096
2097         if (event & OHCI1394_RSPkt)
2098                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2099
2100         if (event & OHCI1394_reqTxComplete)
2101                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2102
2103         if (event & OHCI1394_respTxComplete)
2104                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2105
2106         if (event & OHCI1394_isochRx) {
2107                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2108                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2109
2110                 while (iso_event) {
2111                         i = ffs(iso_event) - 1;
2112                         tasklet_schedule(
2113                                 &ohci->ir_context_list[i].context.tasklet);
2114                         iso_event &= ~(1 << i);
2115                 }
2116         }
2117
2118         if (event & OHCI1394_isochTx) {
2119                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2120                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2121
2122                 while (iso_event) {
2123                         i = ffs(iso_event) - 1;
2124                         tasklet_schedule(
2125                                 &ohci->it_context_list[i].context.tasklet);
2126                         iso_event &= ~(1 << i);
2127                 }
2128         }
2129
2130         if (unlikely(event & OHCI1394_regAccessFail))
2131                 ohci_err(ohci, "register access failure\n");
2132
2133         if (unlikely(event & OHCI1394_postedWriteErr)) {
2134                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2135                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2136                 reg_write(ohci, OHCI1394_IntEventClear,
2137                           OHCI1394_postedWriteErr);
2138                 if (printk_ratelimit())
2139                         ohci_err(ohci, "PCI posted write error\n");
2140         }
2141
2142         if (unlikely(event & OHCI1394_cycleTooLong)) {
2143                 if (printk_ratelimit())
2144                         ohci_notice(ohci, "isochronous cycle too long\n");
2145                 reg_write(ohci, OHCI1394_LinkControlSet,
2146                           OHCI1394_LinkControl_cycleMaster);
2147         }
2148
2149         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2150                 /*
2151                  * We need to clear this event bit in order to make
2152                  * cycleMatch isochronous I/O work.  In theory we should
2153                  * stop active cycleMatch iso contexts now and restart
2154                  * them at least two cycles later.  (FIXME?)
2155                  */
2156                 if (printk_ratelimit())
2157                         ohci_notice(ohci, "isochronous cycle inconsistent\n");
2158         }
2159
2160         if (unlikely(event & OHCI1394_unrecoverableError))
2161                 handle_dead_contexts(ohci);
2162
2163         if (event & OHCI1394_cycle64Seconds) {
2164                 spin_lock(&ohci->lock);
2165                 update_bus_time(ohci);
2166                 spin_unlock(&ohci->lock);
2167         } else
2168                 flush_writes(ohci);
2169
2170         return IRQ_HANDLED;
2171 }
2172
2173 static int software_reset(struct fw_ohci *ohci)
2174 {
2175         u32 val;
2176         int i;
2177
2178         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2179         for (i = 0; i < 500; i++) {
2180                 val = reg_read(ohci, OHCI1394_HCControlSet);
2181                 if (!~val)
2182                         return -ENODEV; /* Card was ejected. */
2183
2184                 if (!(val & OHCI1394_HCControl_softReset))
2185                         return 0;
2186
2187                 msleep(1);
2188         }
2189
2190         return -EBUSY;
2191 }
2192
2193 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2194 {
2195         size_t size = length * 4;
2196
2197         memcpy(dest, src, size);
2198         if (size < CONFIG_ROM_SIZE)
2199                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2200 }
2201
2202 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2203 {
2204         bool enable_1394a;
2205         int ret, clear, set, offset;
2206
2207         /* Check if the driver should configure link and PHY. */
2208         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2209               OHCI1394_HCControl_programPhyEnable))
2210                 return 0;
2211
2212         /* Paranoia: check whether the PHY supports 1394a, too. */
2213         enable_1394a = false;
2214         ret = read_phy_reg(ohci, 2);
2215         if (ret < 0)
2216                 return ret;
2217         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2218                 ret = read_paged_phy_reg(ohci, 1, 8);
2219                 if (ret < 0)
2220                         return ret;
2221                 if (ret >= 1)
2222                         enable_1394a = true;
2223         }
2224
2225         if (ohci->quirks & QUIRK_NO_1394A)
2226                 enable_1394a = false;
2227
2228         /* Configure PHY and link consistently. */
2229         if (enable_1394a) {
2230                 clear = 0;
2231                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2232         } else {
2233                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2234                 set = 0;
2235         }
2236         ret = update_phy_reg(ohci, 5, clear, set);
2237         if (ret < 0)
2238                 return ret;
2239
2240         if (enable_1394a)
2241                 offset = OHCI1394_HCControlSet;
2242         else
2243                 offset = OHCI1394_HCControlClear;
2244         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2245
2246         /* Clean up: configuration has been taken care of. */
2247         reg_write(ohci, OHCI1394_HCControlClear,
2248                   OHCI1394_HCControl_programPhyEnable);
2249
2250         return 0;
2251 }
2252
2253 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2254 {
2255         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2256         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2257         int reg, i;
2258
2259         reg = read_phy_reg(ohci, 2);
2260         if (reg < 0)
2261                 return reg;
2262         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2263                 return 0;
2264
2265         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2266                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2267                 if (reg < 0)
2268                         return reg;
2269                 if (reg != id[i])
2270                         return 0;
2271         }
2272         return 1;
2273 }
2274
2275 static int ohci_enable(struct fw_card *card,
2276                        const __be32 *config_rom, size_t length)
2277 {
2278         struct fw_ohci *ohci = fw_ohci(card);
2279         u32 lps, version, irqs;
2280         int i, ret;
2281
2282         if (software_reset(ohci)) {
2283                 ohci_err(ohci, "failed to reset ohci card\n");
2284                 return -EBUSY;
2285         }
2286
2287         /*
2288          * Now enable LPS, which we need in order to start accessing
2289          * most of the registers.  In fact, on some cards (ALI M5251),
2290          * accessing registers in the SClk domain without LPS enabled
2291          * will lock up the machine.  Wait 50msec to make sure we have
2292          * full link enabled.  However, with some cards (well, at least
2293          * a JMicron PCIe card), we have to try again sometimes.
2294          *
2295          * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2296          * cannot actually use the phy at that time.  These need tens of
2297          * millisecods pause between LPS write and first phy access too.
2298          *
2299          * But do not wait for 50msec on Agere/LSI cards.  Their phy
2300          * arbitration state machine may time out during such a long wait.
2301          */
2302
2303         reg_write(ohci, OHCI1394_HCControlSet,
2304                   OHCI1394_HCControl_LPS |
2305                   OHCI1394_HCControl_postedWriteEnable);
2306         flush_writes(ohci);
2307
2308         if (!(ohci->quirks & QUIRK_PHY_LCTRL_TIMEOUT))
2309                 msleep(50);
2310
2311         for (lps = 0, i = 0; !lps && i < 150; i++) {
2312                 msleep(1);
2313                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2314                       OHCI1394_HCControl_LPS;
2315         }
2316
2317         if (!lps) {
2318                 ohci_err(ohci, "failed to set Link Power Status\n");
2319                 return -EIO;
2320         }
2321
2322         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2323                 ret = probe_tsb41ba3d(ohci);
2324                 if (ret < 0)
2325                         return ret;
2326                 if (ret)
2327                         ohci_notice(ohci, "local TSB41BA3D phy\n");
2328                 else
2329                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2330         }
2331
2332         reg_write(ohci, OHCI1394_HCControlClear,
2333                   OHCI1394_HCControl_noByteSwapData);
2334
2335         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2336         reg_write(ohci, OHCI1394_LinkControlSet,
2337                   OHCI1394_LinkControl_cycleTimerEnable |
2338                   OHCI1394_LinkControl_cycleMaster);
2339
2340         reg_write(ohci, OHCI1394_ATRetries,
2341                   OHCI1394_MAX_AT_REQ_RETRIES |
2342                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2343                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2344                   (200 << 16));
2345
2346         ohci->bus_time_running = false;
2347
2348         for (i = 0; i < 32; i++)
2349                 if (ohci->ir_context_support & (1 << i))
2350                         reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2351                                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2352
2353         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2354         if (version >= OHCI_VERSION_1_1) {
2355                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2356                           0xfffffffe);
2357                 card->broadcast_channel_auto_allocated = true;
2358         }
2359
2360         /* Get implemented bits of the priority arbitration request counter. */
2361         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2362         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2363         reg_write(ohci, OHCI1394_FairnessControl, 0);
2364         card->priority_budget_implemented = ohci->pri_req_max != 0;
2365
2366         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2367         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2368         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2369
2370         ret = configure_1394a_enhancements(ohci);
2371         if (ret < 0)
2372                 return ret;
2373
2374         /* Activate link_on bit and contender bit in our self ID packets.*/
2375         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2376         if (ret < 0)
2377                 return ret;
2378
2379         /*
2380          * When the link is not yet enabled, the atomic config rom
2381          * update mechanism described below in ohci_set_config_rom()
2382          * is not active.  We have to update ConfigRomHeader and
2383          * BusOptions manually, and the write to ConfigROMmap takes
2384          * effect immediately.  We tie this to the enabling of the
2385          * link, so we have a valid config rom before enabling - the
2386          * OHCI requires that ConfigROMhdr and BusOptions have valid
2387          * values before enabling.
2388          *
2389          * However, when the ConfigROMmap is written, some controllers
2390          * always read back quadlets 0 and 2 from the config rom to
2391          * the ConfigRomHeader and BusOptions registers on bus reset.
2392          * They shouldn't do that in this initial case where the link
2393          * isn't enabled.  This means we have to use the same
2394          * workaround here, setting the bus header to 0 and then write
2395          * the right values in the bus reset tasklet.
2396          */
2397
2398         if (config_rom) {
2399                 ohci->next_config_rom =
2400                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2401                                            &ohci->next_config_rom_bus,
2402                                            GFP_KERNEL);
2403                 if (ohci->next_config_rom == NULL)
2404                         return -ENOMEM;
2405
2406                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2407         } else {
2408                 /*
2409                  * In the suspend case, config_rom is NULL, which
2410                  * means that we just reuse the old config rom.
2411                  */
2412                 ohci->next_config_rom = ohci->config_rom;
2413                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2414         }
2415
2416         ohci->next_header = ohci->next_config_rom[0];
2417         ohci->next_config_rom[0] = 0;
2418         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2419         reg_write(ohci, OHCI1394_BusOptions,
2420                   be32_to_cpu(ohci->next_config_rom[2]));
2421         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2422
2423         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2424
2425         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2426                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2427                 OHCI1394_isochTx | OHCI1394_isochRx |
2428                 OHCI1394_postedWriteErr |
2429                 OHCI1394_selfIDComplete |
2430                 OHCI1394_regAccessFail |
2431                 OHCI1394_cycleInconsistent |
2432                 OHCI1394_unrecoverableError |
2433                 OHCI1394_cycleTooLong |
2434                 OHCI1394_masterIntEnable;
2435         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2436                 irqs |= OHCI1394_busReset;
2437         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2438
2439         reg_write(ohci, OHCI1394_HCControlSet,
2440                   OHCI1394_HCControl_linkEnable |
2441                   OHCI1394_HCControl_BIBimageValid);
2442
2443         reg_write(ohci, OHCI1394_LinkControlSet,
2444                   OHCI1394_LinkControl_rcvSelfID |
2445                   OHCI1394_LinkControl_rcvPhyPkt);
2446
2447         ar_context_run(&ohci->ar_request_ctx);
2448         ar_context_run(&ohci->ar_response_ctx);
2449
2450         flush_writes(ohci);
2451
2452         /* We are ready to go, reset bus to finish initialization. */
2453         fw_schedule_bus_reset(&ohci->card, false, true);
2454
2455         return 0;
2456 }
2457
2458 static int ohci_set_config_rom(struct fw_card *card,
2459                                const __be32 *config_rom, size_t length)
2460 {
2461         struct fw_ohci *ohci;
2462         __be32 *next_config_rom;
2463         dma_addr_t uninitialized_var(next_config_rom_bus);
2464
2465         ohci = fw_ohci(card);
2466
2467         /*
2468          * When the OHCI controller is enabled, the config rom update
2469          * mechanism is a bit tricky, but easy enough to use.  See
2470          * section 5.5.6 in the OHCI specification.
2471          *
2472          * The OHCI controller caches the new config rom address in a
2473          * shadow register (ConfigROMmapNext) and needs a bus reset
2474          * for the changes to take place.  When the bus reset is
2475          * detected, the controller loads the new values for the
2476          * ConfigRomHeader and BusOptions registers from the specified
2477          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2478          * shadow register. All automatically and atomically.
2479          *
2480          * Now, there's a twist to this story.  The automatic load of
2481          * ConfigRomHeader and BusOptions doesn't honor the
2482          * noByteSwapData bit, so with a be32 config rom, the
2483          * controller will load be32 values in to these registers
2484          * during the atomic update, even on litte endian
2485          * architectures.  The workaround we use is to put a 0 in the
2486          * header quadlet; 0 is endian agnostic and means that the
2487          * config rom isn't ready yet.  In the bus reset tasklet we
2488          * then set up the real values for the two registers.
2489          *
2490          * We use ohci->lock to avoid racing with the code that sets
2491          * ohci->next_config_rom to NULL (see bus_reset_work).
2492          */
2493
2494         next_config_rom =
2495                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2496                                    &next_config_rom_bus, GFP_KERNEL);
2497         if (next_config_rom == NULL)
2498                 return -ENOMEM;
2499
2500         spin_lock_irq(&ohci->lock);
2501
2502         /*
2503          * If there is not an already pending config_rom update,
2504          * push our new allocation into the ohci->next_config_rom
2505          * and then mark the local variable as null so that we
2506          * won't deallocate the new buffer.
2507          *
2508          * OTOH, if there is a pending config_rom update, just
2509          * use that buffer with the new config_rom data, and
2510          * let this routine free the unused DMA allocation.
2511          */
2512
2513         if (ohci->next_config_rom == NULL) {
2514                 ohci->next_config_rom = next_config_rom;
2515                 ohci->next_config_rom_bus = next_config_rom_bus;
2516                 next_config_rom = NULL;
2517         }
2518
2519         copy_config_rom(ohci->next_config_rom, config_rom, length);
2520
2521         ohci->next_header = config_rom[0];
2522         ohci->next_config_rom[0] = 0;
2523
2524         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2525
2526         spin_unlock_irq(&ohci->lock);
2527
2528         /* If we didn't use the DMA allocation, delete it. */
2529         if (next_config_rom != NULL)
2530                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2531                                   next_config_rom, next_config_rom_bus);
2532
2533         /*
2534          * Now initiate a bus reset to have the changes take
2535          * effect. We clean up the old config rom memory and DMA
2536          * mappings in the bus reset tasklet, since the OHCI
2537          * controller could need to access it before the bus reset
2538          * takes effect.
2539          */
2540
2541         fw_schedule_bus_reset(&ohci->card, true, true);
2542
2543         return 0;
2544 }
2545
2546 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2547 {
2548         struct fw_ohci *ohci = fw_ohci(card);
2549
2550         at_context_transmit(&ohci->at_request_ctx, packet);
2551 }
2552
2553 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2554 {
2555         struct fw_ohci *ohci = fw_ohci(card);
2556
2557         at_context_transmit(&ohci->at_response_ctx, packet);
2558 }
2559
2560 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2561 {
2562         struct fw_ohci *ohci = fw_ohci(card);
2563         struct context *ctx = &ohci->at_request_ctx;
2564         struct driver_data *driver_data = packet->driver_data;
2565         int ret = -ENOENT;
2566
2567         tasklet_disable(&ctx->tasklet);
2568
2569         if (packet->ack != 0)
2570                 goto out;
2571
2572         if (packet->payload_mapped)
2573                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2574                                  packet->payload_length, DMA_TO_DEVICE);
2575
2576         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2577         driver_data->packet = NULL;
2578         packet->ack = RCODE_CANCELLED;
2579         packet->callback(packet, &ohci->card, packet->ack);
2580         ret = 0;
2581  out:
2582         tasklet_enable(&ctx->tasklet);
2583
2584         return ret;
2585 }
2586
2587 static int ohci_enable_phys_dma(struct fw_card *card,
2588                                 int node_id, int generation)
2589 {
2590 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2591         return 0;
2592 #else
2593         struct fw_ohci *ohci = fw_ohci(card);
2594         unsigned long flags;
2595         int n, ret = 0;
2596
2597         /*
2598          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2599          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2600          */
2601
2602         spin_lock_irqsave(&ohci->lock, flags);
2603
2604         if (ohci->generation != generation) {
2605                 ret = -ESTALE;
2606                 goto out;
2607         }
2608
2609         /*
2610          * Note, if the node ID contains a non-local bus ID, physical DMA is
2611          * enabled for _all_ nodes on remote buses.
2612          */
2613
2614         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2615         if (n < 32)
2616                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2617         else
2618                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2619
2620         flush_writes(ohci);
2621  out:
2622         spin_unlock_irqrestore(&ohci->lock, flags);
2623
2624         return ret;
2625 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2626 }
2627
2628 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2629 {
2630         struct fw_ohci *ohci = fw_ohci(card);
2631         unsigned long flags;
2632         u32 value;
2633
2634         switch (csr_offset) {
2635         case CSR_STATE_CLEAR:
2636         case CSR_STATE_SET:
2637                 if (ohci->is_root &&
2638                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2639                      OHCI1394_LinkControl_cycleMaster))
2640                         value = CSR_STATE_BIT_CMSTR;
2641                 else
2642                         value = 0;
2643                 if (ohci->csr_state_setclear_abdicate)
2644                         value |= CSR_STATE_BIT_ABDICATE;
2645
2646                 return value;
2647
2648         case CSR_NODE_IDS:
2649                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2650
2651         case CSR_CYCLE_TIME:
2652                 return get_cycle_time(ohci);
2653
2654         case CSR_BUS_TIME:
2655                 /*
2656                  * We might be called just after the cycle timer has wrapped
2657                  * around but just before the cycle64Seconds handler, so we
2658                  * better check here, too, if the bus time needs to be updated.
2659                  */
2660                 spin_lock_irqsave(&ohci->lock, flags);
2661                 value = update_bus_time(ohci);
2662                 spin_unlock_irqrestore(&ohci->lock, flags);
2663                 return value;
2664
2665         case CSR_BUSY_TIMEOUT:
2666                 value = reg_read(ohci, OHCI1394_ATRetries);
2667                 return (value >> 4) & 0x0ffff00f;
2668
2669         case CSR_PRIORITY_BUDGET:
2670                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2671                         (ohci->pri_req_max << 8);
2672
2673         default:
2674                 WARN_ON(1);
2675                 return 0;
2676         }
2677 }
2678
2679 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2680 {
2681         struct fw_ohci *ohci = fw_ohci(card);
2682         unsigned long flags;
2683
2684         switch (csr_offset) {
2685         case CSR_STATE_CLEAR:
2686                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2687                         reg_write(ohci, OHCI1394_LinkControlClear,
2688                                   OHCI1394_LinkControl_cycleMaster);
2689                         flush_writes(ohci);
2690                 }
2691                 if (value & CSR_STATE_BIT_ABDICATE)
2692                         ohci->csr_state_setclear_abdicate = false;
2693                 break;
2694
2695         case CSR_STATE_SET:
2696                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2697                         reg_write(ohci, OHCI1394_LinkControlSet,
2698                                   OHCI1394_LinkControl_cycleMaster);
2699                         flush_writes(ohci);
2700                 }
2701                 if (value & CSR_STATE_BIT_ABDICATE)
2702                         ohci->csr_state_setclear_abdicate = true;
2703                 break;
2704
2705         case CSR_NODE_IDS:
2706                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2707                 flush_writes(ohci);
2708                 break;
2709
2710         case CSR_CYCLE_TIME:
2711                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2712                 reg_write(ohci, OHCI1394_IntEventSet,
2713                           OHCI1394_cycleInconsistent);
2714                 flush_writes(ohci);
2715                 break;
2716
2717         case CSR_BUS_TIME:
2718                 spin_lock_irqsave(&ohci->lock, flags);
2719                 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2720                                  (value & ~0x7f);
2721                 spin_unlock_irqrestore(&ohci->lock, flags);
2722                 break;
2723
2724         case CSR_BUSY_TIMEOUT:
2725                 value = (value & 0xf) | ((value & 0xf) << 4) |
2726                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2727                 reg_write(ohci, OHCI1394_ATRetries, value);
2728                 flush_writes(ohci);
2729                 break;
2730
2731         case CSR_PRIORITY_BUDGET:
2732                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2733                 flush_writes(ohci);
2734                 break;
2735
2736         default:
2737                 WARN_ON(1);
2738                 break;
2739         }
2740 }
2741
2742 static void flush_iso_completions(struct iso_context *ctx)
2743 {
2744         ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2745                               ctx->header_length, ctx->header,
2746                               ctx->base.callback_data);
2747         ctx->header_length = 0;
2748 }
2749
2750 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2751 {
2752         u32 *ctx_hdr;
2753
2754         if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2755                 if (ctx->base.drop_overflow_headers)
2756                         return;
2757                 flush_iso_completions(ctx);
2758         }
2759
2760         ctx_hdr = ctx->header + ctx->header_length;
2761         ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2762
2763         /*
2764          * The two iso header quadlets are byteswapped to little
2765          * endian by the controller, but we want to present them
2766          * as big endian for consistency with the bus endianness.
2767          */
2768         if (ctx->base.header_size > 0)
2769                 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2770         if (ctx->base.header_size > 4)
2771                 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2772         if (ctx->base.header_size > 8)
2773                 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2774         ctx->header_length += ctx->base.header_size;
2775 }
2776
2777 static int handle_ir_packet_per_buffer(struct context *context,
2778                                        struct descriptor *d,
2779                                        struct descriptor *last)
2780 {
2781         struct iso_context *ctx =
2782                 container_of(context, struct iso_context, context);
2783         struct descriptor *pd;
2784         u32 buffer_dma;
2785
2786         for (pd = d; pd <= last; pd++)
2787                 if (pd->transfer_status)
2788                         break;
2789         if (pd > last)
2790                 /* Descriptor(s) not done yet, stop iteration */
2791                 return 0;
2792
2793         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2794                 d++;
2795                 buffer_dma = le32_to_cpu(d->data_address);
2796                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2797                                               buffer_dma & PAGE_MASK,
2798                                               buffer_dma & ~PAGE_MASK,
2799                                               le16_to_cpu(d->req_count),
2800                                               DMA_FROM_DEVICE);
2801         }
2802
2803         copy_iso_headers(ctx, (u32 *) (last + 1));
2804
2805         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2806                 flush_iso_completions(ctx);
2807
2808         return 1;
2809 }
2810
2811 /* d == last because each descriptor block is only a single descriptor. */
2812 static int handle_ir_buffer_fill(struct context *context,
2813                                  struct descriptor *d,
2814                                  struct descriptor *last)
2815 {
2816         struct iso_context *ctx =
2817                 container_of(context, struct iso_context, context);
2818         unsigned int req_count, res_count, completed;
2819         u32 buffer_dma;
2820
2821         req_count = le16_to_cpu(last->req_count);
2822         res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2823         completed = req_count - res_count;
2824         buffer_dma = le32_to_cpu(last->data_address);
2825
2826         if (completed > 0) {
2827                 ctx->mc_buffer_bus = buffer_dma;
2828                 ctx->mc_completed = completed;
2829         }
2830
2831         if (res_count != 0)
2832                 /* Descriptor(s) not done yet, stop iteration */
2833                 return 0;
2834
2835         dma_sync_single_range_for_cpu(context->ohci->card.device,
2836                                       buffer_dma & PAGE_MASK,
2837                                       buffer_dma & ~PAGE_MASK,
2838                                       completed, DMA_FROM_DEVICE);
2839
2840         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2841                 ctx->base.callback.mc(&ctx->base,
2842                                       buffer_dma + completed,
2843                                       ctx->base.callback_data);
2844                 ctx->mc_completed = 0;
2845         }
2846
2847         return 1;
2848 }
2849
2850 static void flush_ir_buffer_fill(struct iso_context *ctx)
2851 {
2852         dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2853                                       ctx->mc_buffer_bus & PAGE_MASK,
2854                                       ctx->mc_buffer_bus & ~PAGE_MASK,
2855                                       ctx->mc_completed, DMA_FROM_DEVICE);
2856
2857         ctx->base.callback.mc(&ctx->base,
2858                               ctx->mc_buffer_bus + ctx->mc_completed,
2859                               ctx->base.callback_data);
2860         ctx->mc_completed = 0;
2861 }
2862
2863 static inline void sync_it_packet_for_cpu(struct context *context,
2864                                           struct descriptor *pd)
2865 {
2866         __le16 control;
2867         u32 buffer_dma;
2868
2869         /* only packets beginning with OUTPUT_MORE* have data buffers */
2870         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2871                 return;
2872
2873         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2874         pd += 2;
2875
2876         /*
2877          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2878          * data buffer is in the context program's coherent page and must not
2879          * be synced.
2880          */
2881         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2882             (context->current_bus          & PAGE_MASK)) {
2883                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2884                         return;
2885                 pd++;
2886         }
2887
2888         do {
2889                 buffer_dma = le32_to_cpu(pd->data_address);
2890                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2891                                               buffer_dma & PAGE_MASK,
2892                                               buffer_dma & ~PAGE_MASK,
2893                                               le16_to_cpu(pd->req_count),
2894                                               DMA_TO_DEVICE);
2895                 control = pd->control;
2896                 pd++;
2897         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2898 }
2899
2900 static int handle_it_packet(struct context *context,
2901                             struct descriptor *d,
2902                             struct descriptor *last)
2903 {
2904         struct iso_context *ctx =
2905                 container_of(context, struct iso_context, context);
2906         struct descriptor *pd;
2907         __be32 *ctx_hdr;
2908
2909         for (pd = d; pd <= last; pd++)
2910                 if (pd->transfer_status)
2911                         break;
2912         if (pd > last)
2913                 /* Descriptor(s) not done yet, stop iteration */
2914                 return 0;
2915
2916         sync_it_packet_for_cpu(context, d);
2917
2918         if (ctx->header_length + 4 > PAGE_SIZE) {
2919                 if (ctx->base.drop_overflow_headers)
2920                         return 1;
2921                 flush_iso_completions(ctx);
2922         }
2923
2924         ctx_hdr = ctx->header + ctx->header_length;
2925         ctx->last_timestamp = le16_to_cpu(last->res_count);
2926         /* Present this value as big-endian to match the receive code */
2927         *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2928                                le16_to_cpu(pd->res_count));
2929         ctx->header_length += 4;
2930
2931         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2932                 flush_iso_completions(ctx);
2933
2934         return 1;
2935 }
2936
2937 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2938 {
2939         u32 hi = channels >> 32, lo = channels;
2940
2941         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2942         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2943         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2944         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2945         mmiowb();
2946         ohci->mc_channels = channels;
2947 }
2948
2949 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2950                                 int type, int channel, size_t header_size)
2951 {
2952         struct fw_ohci *ohci = fw_ohci(card);
2953         struct iso_context *uninitialized_var(ctx);
2954         descriptor_callback_t uninitialized_var(callback);
2955         u64 *uninitialized_var(channels);
2956         u32 *uninitialized_var(mask), uninitialized_var(regs);
2957         int index, ret = -EBUSY;
2958
2959         spin_lock_irq(&ohci->lock);
2960
2961         switch (type) {
2962         case FW_ISO_CONTEXT_TRANSMIT:
2963                 mask     = &ohci->it_context_mask;
2964                 callback = handle_it_packet;
2965                 index    = ffs(*mask) - 1;
2966                 if (index >= 0) {
2967                         *mask &= ~(1 << index);
2968                         regs = OHCI1394_IsoXmitContextBase(index);
2969                         ctx  = &ohci->it_context_list[index];
2970                 }
2971                 break;
2972
2973         case FW_ISO_CONTEXT_RECEIVE:
2974                 channels = &ohci->ir_context_channels;
2975                 mask     = &ohci->ir_context_mask;
2976                 callback = handle_ir_packet_per_buffer;
2977                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2978                 if (index >= 0) {
2979                         *channels &= ~(1ULL << channel);
2980                         *mask     &= ~(1 << index);
2981                         regs = OHCI1394_IsoRcvContextBase(index);
2982                         ctx  = &ohci->ir_context_list[index];
2983                 }
2984                 break;
2985
2986         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2987                 mask     = &ohci->ir_context_mask;
2988                 callback = handle_ir_buffer_fill;
2989                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2990                 if (index >= 0) {
2991                         ohci->mc_allocated = true;
2992                         *mask &= ~(1 << index);
2993                         regs = OHCI1394_IsoRcvContextBase(index);
2994                         ctx  = &ohci->ir_context_list[index];
2995                 }
2996                 break;
2997
2998         default:
2999                 index = -1;
3000                 ret = -ENOSYS;
3001         }
3002
3003         spin_unlock_irq(&ohci->lock);
3004
3005         if (index < 0)
3006                 return ERR_PTR(ret);
3007
3008         memset(ctx, 0, sizeof(*ctx));
3009         ctx->header_length = 0;
3010         ctx->header = (void *) __get_free_page(GFP_KERNEL);
3011         if (ctx->header == NULL) {
3012                 ret = -ENOMEM;
3013                 goto out;
3014         }
3015         ret = context_init(&ctx->context, ohci, regs, callback);
3016         if (ret < 0)
3017                 goto out_with_header;
3018
3019         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3020                 set_multichannel_mask(ohci, 0);
3021                 ctx->mc_completed = 0;
3022         }
3023
3024         return &ctx->base;
3025
3026  out_with_header:
3027         free_page((unsigned long)ctx->header);
3028  out:
3029         spin_lock_irq(&ohci->lock);
3030
3031         switch (type) {
3032         case FW_ISO_CONTEXT_RECEIVE:
3033                 *channels |= 1ULL << channel;
3034                 break;
3035
3036         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3037                 ohci->mc_allocated = false;
3038                 break;
3039         }
3040         *mask |= 1 << index;
3041
3042         spin_unlock_irq(&ohci->lock);
3043
3044         return ERR_PTR(ret);
3045 }
3046
3047 static int ohci_start_iso(struct fw_iso_context *base,
3048                           s32 cycle, u32 sync, u32 tags)
3049 {
3050         struct iso_context *ctx = container_of(base, struct iso_context, base);
3051         struct fw_ohci *ohci = ctx->context.ohci;
3052         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3053         int index;
3054
3055         /* the controller cannot start without any queued packets */
3056         if (ctx->context.last->branch_address == 0)
3057                 return -ENODATA;
3058
3059         switch (ctx->base.type) {
3060         case FW_ISO_CONTEXT_TRANSMIT:
3061                 index = ctx - ohci->it_context_list;
3062                 match = 0;
3063                 if (cycle >= 0)
3064                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3065                                 (cycle & 0x7fff) << 16;
3066
3067                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3068                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3069                 context_run(&ctx->context, match);
3070                 break;
3071
3072         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3073                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3074                 /* fall through */
3075         case FW_ISO_CONTEXT_RECEIVE:
3076                 index = ctx - ohci->ir_context_list;
3077                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3078                 if (cycle >= 0) {
3079                         match |= (cycle & 0x07fff) << 12;
3080                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3081                 }
3082
3083                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3084                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3085                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3086                 context_run(&ctx->context, control);
3087
3088                 ctx->sync = sync;
3089                 ctx->tags = tags;
3090
3091                 break;
3092         }
3093
3094         return 0;
3095 }
3096
3097 static int ohci_stop_iso(struct fw_iso_context *base)
3098 {
3099         struct fw_ohci *ohci = fw_ohci(base->card);
3100         struct iso_context *ctx = container_of(base, struct iso_context, base);
3101         int index;
3102
3103         switch (ctx->base.type) {
3104         case FW_ISO_CONTEXT_TRANSMIT:
3105                 index = ctx - ohci->it_context_list;
3106                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3107                 break;
3108
3109         case FW_ISO_CONTEXT_RECEIVE:
3110         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3111                 index = ctx - ohci->ir_context_list;
3112                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3113                 break;
3114         }
3115         flush_writes(ohci);
3116         context_stop(&ctx->context);
3117         tasklet_kill(&ctx->context.tasklet);
3118
3119         return 0;
3120 }
3121
3122 static void ohci_free_iso_context(struct fw_iso_context *base)
3123 {
3124         struct fw_ohci *ohci = fw_ohci(base->card);
3125         struct iso_context *ctx = container_of(base, struct iso_context, base);
3126         unsigned long flags;
3127         int index;
3128
3129         ohci_stop_iso(base);
3130         context_release(&ctx->context);
3131         free_page((unsigned long)ctx->header);
3132
3133         spin_lock_irqsave(&ohci->lock, flags);
3134
3135         switch (base->type) {
3136         case FW_ISO_CONTEXT_TRANSMIT:
3137                 index = ctx - ohci->it_context_list;
3138                 ohci->it_context_mask |= 1 << index;
3139                 break;
3140
3141         case FW_ISO_CONTEXT_RECEIVE:
3142                 index = ctx - ohci->ir_context_list;
3143                 ohci->ir_context_mask |= 1 << index;
3144                 ohci->ir_context_channels |= 1ULL << base->channel;
3145                 break;
3146
3147         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3148                 index = ctx - ohci->ir_context_list;
3149                 ohci->ir_context_mask |= 1 << index;
3150                 ohci->ir_context_channels |= ohci->mc_channels;
3151                 ohci->mc_channels = 0;
3152                 ohci->mc_allocated = false;
3153                 break;
3154         }
3155
3156         spin_unlock_irqrestore(&ohci->lock, flags);
3157 }
3158
3159 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3160 {
3161         struct fw_ohci *ohci = fw_ohci(base->card);
3162         unsigned long flags;
3163         int ret;
3164
3165         switch (base->type) {
3166         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3167
3168                 spin_lock_irqsave(&ohci->lock, flags);
3169
3170                 /* Don't allow multichannel to grab other contexts' channels. */
3171                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3172                         *channels = ohci->ir_context_channels;
3173                         ret = -EBUSY;
3174                 } else {
3175                         set_multichannel_mask(ohci, *channels);
3176                         ret = 0;
3177                 }
3178
3179                 spin_unlock_irqrestore(&ohci->lock, flags);
3180
3181                 break;
3182         default:
3183                 ret = -EINVAL;
3184         }
3185
3186         return ret;
3187 }
3188
3189 #ifdef CONFIG_PM
3190 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3191 {
3192         int i;
3193         struct iso_context *ctx;
3194
3195         for (i = 0 ; i < ohci->n_ir ; i++) {
3196                 ctx = &ohci->ir_context_list[i];
3197                 if (ctx->context.running)
3198                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3199         }
3200
3201         for (i = 0 ; i < ohci->n_it ; i++) {
3202                 ctx = &ohci->it_context_list[i];
3203                 if (ctx->context.running)
3204                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3205         }
3206 }
3207 #endif
3208
3209 static int queue_iso_transmit(struct iso_context *ctx,
3210                               struct fw_iso_packet *packet,
3211                               struct fw_iso_buffer *buffer,
3212                               unsigned long payload)
3213 {
3214         struct descriptor *d, *last, *pd;
3215         struct fw_iso_packet *p;
3216         __le32 *header;
3217         dma_addr_t d_bus, page_bus;
3218         u32 z, header_z, payload_z, irq;
3219         u32 payload_index, payload_end_index, next_page_index;
3220         int page, end_page, i, length, offset;
3221
3222         p = packet;
3223         payload_index = payload;
3224
3225         if (p->skip)
3226                 z = 1;
3227         else
3228                 z = 2;
3229         if (p->header_length > 0)
3230                 z++;
3231
3232         /* Determine the first page the payload isn't contained in. */
3233         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3234         if (p->payload_length > 0)
3235                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3236         else
3237                 payload_z = 0;
3238
3239         z += payload_z;
3240
3241         /* Get header size in number of descriptors. */
3242         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3243
3244         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3245         if (d == NULL)
3246                 return -ENOMEM;
3247
3248         if (!p->skip) {
3249                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3250                 d[0].req_count = cpu_to_le16(8);
3251                 /*
3252                  * Link the skip address to this descriptor itself.  This causes
3253                  * a context to skip a cycle whenever lost cycles or FIFO
3254                  * overruns occur, without dropping the data.  The application
3255                  * should then decide whether this is an error condition or not.
3256                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3257                  */
3258                 d[0].branch_address = cpu_to_le32(d_bus | z);
3259
3260                 header = (__le32 *) &d[1];
3261                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3262                                         IT_HEADER_TAG(p->tag) |
3263                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3264                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3265                                         IT_HEADER_SPEED(ctx->base.speed));
3266                 header[1] =
3267                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3268                                                           p->payload_length));
3269         }
3270
3271         if (p->header_length > 0) {
3272                 d[2].req_count    = cpu_to_le16(p->header_length);
3273                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3274                 memcpy(&d[z], p->header, p->header_length);
3275         }
3276
3277         pd = d + z - payload_z;
3278         payload_end_index = payload_index + p->payload_length;
3279         for (i = 0; i < payload_z; i++) {
3280                 page               = payload_index >> PAGE_SHIFT;
3281                 offset             = payload_index & ~PAGE_MASK;
3282                 next_page_index    = (page + 1) << PAGE_SHIFT;
3283                 length             =
3284                         min(next_page_index, payload_end_index) - payload_index;
3285                 pd[i].req_count    = cpu_to_le16(length);
3286
3287                 page_bus = page_private(buffer->pages[page]);
3288                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3289
3290                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3291                                                  page_bus, offset, length,
3292                                                  DMA_TO_DEVICE);
3293
3294                 payload_index += length;
3295         }
3296
3297         if (p->interrupt)
3298                 irq = DESCRIPTOR_IRQ_ALWAYS;
3299         else
3300                 irq = DESCRIPTOR_NO_IRQ;
3301
3302         last = z == 2 ? d : d + z - 1;
3303         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3304                                      DESCRIPTOR_STATUS |
3305                                      DESCRIPTOR_BRANCH_ALWAYS |
3306                                      irq);
3307
3308         context_append(&ctx->context, d, z, header_z);
3309
3310         return 0;
3311 }
3312
3313 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3314                                        struct fw_iso_packet *packet,
3315                                        struct fw_iso_buffer *buffer,
3316                                        unsigned long payload)
3317 {
3318         struct device *device = ctx->context.ohci->card.device;
3319         struct descriptor *d, *pd;
3320         dma_addr_t d_bus, page_bus;
3321         u32 z, header_z, rest;
3322         int i, j, length;
3323         int page, offset, packet_count, header_size, payload_per_buffer;
3324
3325         /*
3326          * The OHCI controller puts the isochronous header and trailer in the
3327          * buffer, so we need at least 8 bytes.
3328          */
3329         packet_count = packet->header_length / ctx->base.header_size;
3330         header_size  = max(ctx->base.header_size, (size_t)8);
3331
3332         /* Get header size in number of descriptors. */
3333         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3334         page     = payload >> PAGE_SHIFT;
3335         offset   = payload & ~PAGE_MASK;
3336         payload_per_buffer = packet->payload_length / packet_count;
3337
3338         for (i = 0; i < packet_count; i++) {
3339                 /* d points to the header descriptor */
3340                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3341                 d = context_get_descriptors(&ctx->context,
3342                                 z + header_z, &d_bus);
3343                 if (d == NULL)
3344                         return -ENOMEM;
3345
3346                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3347                                               DESCRIPTOR_INPUT_MORE);
3348                 if (packet->skip && i == 0)
3349                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3350                 d->req_count    = cpu_to_le16(header_size);
3351                 d->res_count    = d->req_count;
3352                 d->transfer_status = 0;
3353                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3354
3355                 rest = payload_per_buffer;
3356                 pd = d;
3357                 for (j = 1; j < z; j++) {
3358                         pd++;
3359                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3360                                                   DESCRIPTOR_INPUT_MORE);
3361
3362                         if (offset + rest < PAGE_SIZE)
3363                                 length = rest;
3364                         else
3365                                 length = PAGE_SIZE - offset;
3366                         pd->req_count = cpu_to_le16(length);
3367                         pd->res_count = pd->req_count;
3368                         pd->transfer_status = 0;
3369
3370                         page_bus = page_private(buffer->pages[page]);
3371                         pd->data_address = cpu_to_le32(page_bus + offset);
3372
3373                         dma_sync_single_range_for_device(device, page_bus,
3374                                                          offset, length,
3375                                                          DMA_FROM_DEVICE);
3376
3377                         offset = (offset + length) & ~PAGE_MASK;
3378                         rest -= length;
3379                         if (offset == 0)
3380                                 page++;
3381                 }
3382                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3383                                           DESCRIPTOR_INPUT_LAST |
3384                                           DESCRIPTOR_BRANCH_ALWAYS);
3385                 if (packet->interrupt && i == packet_count - 1)
3386                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3387
3388                 context_append(&ctx->context, d, z, header_z);
3389         }
3390
3391         return 0;
3392 }
3393
3394 static int queue_iso_buffer_fill(struct iso_context *ctx,
3395                                  struct fw_iso_packet *packet,
3396                                  struct fw_iso_buffer *buffer,
3397                                  unsigned long payload)
3398 {
3399         struct descriptor *d;
3400         dma_addr_t d_bus, page_bus;
3401         int page, offset, rest, z, i, length;
3402
3403         page   = payload >> PAGE_SHIFT;
3404         offset = payload & ~PAGE_MASK;
3405         rest   = packet->payload_length;
3406
3407         /* We need one descriptor for each page in the buffer. */
3408         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3409
3410         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3411                 return -EFAULT;
3412
3413         for (i = 0; i < z; i++) {
3414                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3415                 if (d == NULL)
3416                         return -ENOMEM;
3417
3418                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3419                                          DESCRIPTOR_BRANCH_ALWAYS);
3420                 if (packet->skip && i == 0)
3421                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3422                 if (packet->interrupt && i == z - 1)
3423                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3424
3425                 if (offset + rest < PAGE_SIZE)
3426                         length = rest;
3427                 else
3428                         length = PAGE_SIZE - offset;
3429                 d->req_count = cpu_to_le16(length);
3430                 d->res_count = d->req_count;
3431                 d->transfer_status = 0;
3432
3433                 page_bus = page_private(buffer->pages[page]);
3434                 d->data_address = cpu_to_le32(page_bus + offset);
3435
3436                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3437                                                  page_bus, offset, length,
3438                                                  DMA_FROM_DEVICE);
3439
3440                 rest -= length;
3441                 offset = 0;
3442                 page++;
3443
3444                 context_append(&ctx->context, d, 1, 0);
3445         }
3446
3447         return 0;
3448 }
3449
3450 static int ohci_queue_iso(struct fw_iso_context *base,
3451                           struct fw_iso_packet *packet,
3452                           struct fw_iso_buffer *buffer,
3453                           unsigned long payload)
3454 {
3455         struct iso_context *ctx = container_of(base, struct iso_context, base);
3456         unsigned long flags;
3457         int ret = -ENOSYS;
3458
3459         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3460         switch (base->type) {
3461         case FW_ISO_CONTEXT_TRANSMIT:
3462                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3463                 break;
3464         case FW_ISO_CONTEXT_RECEIVE:
3465                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3466                 break;
3467         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3468                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3469                 break;
3470         }
3471         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3472
3473         return ret;
3474 }
3475
3476 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3477 {
3478         struct context *ctx =
3479                         &container_of(base, struct iso_context, base)->context;
3480
3481         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3482 }
3483
3484 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3485 {
3486         struct iso_context *ctx = container_of(base, struct iso_context, base);
3487         int ret = 0;
3488
3489         tasklet_disable(&ctx->context.tasklet);
3490
3491         if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3492                 context_tasklet((unsigned long)&ctx->context);
3493
3494                 switch (base->type) {
3495                 case FW_ISO_CONTEXT_TRANSMIT:
3496                 case FW_ISO_CONTEXT_RECEIVE:
3497                         if (ctx->header_length != 0)
3498                                 flush_iso_completions(ctx);
3499                         break;
3500                 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3501                         if (ctx->mc_completed != 0)
3502                                 flush_ir_buffer_fill(ctx);
3503                         break;
3504                 default:
3505                         ret = -ENOSYS;
3506                 }
3507
3508                 clear_bit_unlock(0, &ctx->flushing_completions);
3509                 smp_mb__after_clear_bit();
3510         }
3511
3512         tasklet_enable(&ctx->context.tasklet);
3513
3514         return ret;
3515 }
3516
3517 static const struct fw_card_driver ohci_driver = {
3518         .enable                 = ohci_enable,
3519         .read_phy_reg           = ohci_read_phy_reg,
3520         .update_phy_reg         = ohci_update_phy_reg,
3521         .set_config_rom         = ohci_set_config_rom,
3522         .send_request           = ohci_send_request,
3523         .send_response          = ohci_send_response,
3524         .cancel_packet          = ohci_cancel_packet,
3525         .enable_phys_dma        = ohci_enable_phys_dma,
3526         .read_csr               = ohci_read_csr,
3527         .write_csr              = ohci_write_csr,
3528
3529         .allocate_iso_context   = ohci_allocate_iso_context,
3530         .free_iso_context       = ohci_free_iso_context,
3531         .set_iso_channels       = ohci_set_iso_channels,
3532         .queue_iso              = ohci_queue_iso,
3533         .flush_queue_iso        = ohci_flush_queue_iso,
3534         .flush_iso_completions  = ohci_flush_iso_completions,
3535         .start_iso              = ohci_start_iso,
3536         .stop_iso               = ohci_stop_iso,
3537 };
3538
3539 #ifdef CONFIG_PPC_PMAC
3540 static void pmac_ohci_on(struct pci_dev *dev)
3541 {
3542         if (machine_is(powermac)) {
3543                 struct device_node *ofn = pci_device_to_OF_node(dev);
3544
3545                 if (ofn) {
3546                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3547                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3548                 }
3549         }
3550 }
3551
3552 static void pmac_ohci_off(struct pci_dev *dev)
3553 {
3554         if (machine_is(powermac)) {
3555                 struct device_node *ofn = pci_device_to_OF_node(dev);
3556
3557                 if (ofn) {
3558                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3559                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3560                 }
3561         }
3562 }
3563 #else
3564 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3565 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3566 #endif /* CONFIG_PPC_PMAC */
3567
3568 static int pci_probe(struct pci_dev *dev,
3569                                const struct pci_device_id *ent)
3570 {
3571         struct fw_ohci *ohci;
3572         u32 bus_options, max_receive, link_speed, version;
3573         u64 guid;
3574         int i, err;
3575         size_t size;
3576
3577         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3578                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3579                 return -ENOSYS;
3580         }
3581
3582         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3583         if (ohci == NULL) {
3584                 err = -ENOMEM;
3585                 goto fail;
3586         }
3587
3588         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3589
3590         pmac_ohci_on(dev);
3591
3592         err = pci_enable_device(dev);
3593         if (err) {
3594                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3595                 goto fail_free;
3596         }
3597
3598         pci_set_master(dev);
3599         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3600         pci_set_drvdata(dev, ohci);
3601
3602         spin_lock_init(&ohci->lock);
3603         mutex_init(&ohci->phy_reg_mutex);
3604
3605         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3606
3607         if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3608             pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3609                 ohci_err(ohci, "invalid MMIO resource\n");
3610                 err = -ENXIO;
3611                 goto fail_disable;
3612         }
3613
3614         err = pci_request_region(dev, 0, ohci_driver_name);
3615         if (err) {
3616                 ohci_err(ohci, "MMIO resource unavailable\n");
3617                 goto fail_disable;
3618         }
3619
3620         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3621         if (ohci->registers == NULL) {
3622                 ohci_err(ohci, "failed to remap registers\n");
3623                 err = -ENXIO;
3624                 goto fail_iomem;
3625         }
3626
3627         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3628                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3629                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3630                      ohci_quirks[i].device == dev->device) &&
3631                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3632                      ohci_quirks[i].revision >= dev->revision)) {
3633                         ohci->quirks = ohci_quirks[i].flags;
3634                         break;
3635                 }
3636         if (param_quirks)
3637                 ohci->quirks = param_quirks;
3638
3639         /*
3640          * Because dma_alloc_coherent() allocates at least one page,
3641          * we save space by using a common buffer for the AR request/
3642          * response descriptors and the self IDs buffer.
3643          */
3644         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3645         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3646         ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3647                                                PAGE_SIZE,
3648                                                &ohci->misc_buffer_bus,
3649                                                GFP_KERNEL);
3650         if (!ohci->misc_buffer) {
3651                 err = -ENOMEM;
3652                 goto fail_iounmap;
3653         }
3654
3655         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3656                               OHCI1394_AsReqRcvContextControlSet);
3657         if (err < 0)
3658                 goto fail_misc_buf;
3659
3660         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3661                               OHCI1394_AsRspRcvContextControlSet);
3662         if (err < 0)
3663                 goto fail_arreq_ctx;
3664
3665         err = context_init(&ohci->at_request_ctx, ohci,
3666                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3667         if (err < 0)
3668                 goto fail_arrsp_ctx;
3669
3670         err = context_init(&ohci->at_response_ctx, ohci,
3671                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3672         if (err < 0)
3673                 goto fail_atreq_ctx;
3674
3675         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3676         ohci->ir_context_channels = ~0ULL;
3677         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3678         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3679         ohci->ir_context_mask = ohci->ir_context_support;
3680         ohci->n_ir = hweight32(ohci->ir_context_mask);
3681         size = sizeof(struct iso_context) * ohci->n_ir;
3682         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3683
3684         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3685         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3686         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3687         ohci->it_context_mask = ohci->it_context_support;
3688         ohci->n_it = hweight32(ohci->it_context_mask);
3689         size = sizeof(struct iso_context) * ohci->n_it;
3690         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3691
3692         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3693                 err = -ENOMEM;
3694                 goto fail_contexts;
3695         }
3696
3697         ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3698         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3699
3700         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3701         max_receive = (bus_options >> 12) & 0xf;
3702         link_speed = bus_options & 0x7;
3703         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3704                 reg_read(ohci, OHCI1394_GUIDLo);
3705
3706         if (!(ohci->quirks & QUIRK_NO_MSI))
3707                 pci_enable_msi(dev);
3708         if (request_irq(dev->irq, irq_handler,
3709                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3710                         ohci_driver_name, ohci)) {
3711                 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3712                 err = -EIO;
3713                 goto fail_msi;
3714         }
3715
3716         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3717         if (err)
3718                 goto fail_irq;
3719
3720         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3721         ohci_notice(ohci,
3722                     "added OHCI v%x.%x device as card %d, "
3723                     "%d IR + %d IT contexts, quirks 0x%x\n",
3724                     version >> 16, version & 0xff, ohci->card.index,
3725                     ohci->n_ir, ohci->n_it, ohci->quirks);
3726
3727         return 0;
3728
3729  fail_irq:
3730         free_irq(dev->irq, ohci);
3731  fail_msi:
3732         pci_disable_msi(dev);
3733  fail_contexts:
3734         kfree(ohci->ir_context_list);
3735         kfree(ohci->it_context_list);
3736         context_release(&ohci->at_response_ctx);
3737  fail_atreq_ctx:
3738         context_release(&ohci->at_request_ctx);
3739  fail_arrsp_ctx:
3740         ar_context_release(&ohci->ar_response_ctx);
3741  fail_arreq_ctx:
3742         ar_context_release(&ohci->ar_request_ctx);
3743  fail_misc_buf:
3744         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3745                           ohci->misc_buffer, ohci->misc_buffer_bus);
3746  fail_iounmap:
3747         pci_iounmap(dev, ohci->registers);
3748  fail_iomem:
3749         pci_release_region(dev, 0);
3750  fail_disable:
3751         pci_disable_device(dev);
3752  fail_free:
3753         kfree(ohci);
3754         pmac_ohci_off(dev);
3755  fail:
3756         return err;
3757 }
3758
3759 static void pci_remove(struct pci_dev *dev)
3760 {
3761         struct fw_ohci *ohci = pci_get_drvdata(dev);
3762
3763         /*
3764          * If the removal is happening from the suspend state, LPS won't be
3765          * enabled and host registers (eg., IntMaskClear) won't be accessible.
3766          */
3767         if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3768                 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3769                 flush_writes(ohci);
3770         }
3771         cancel_work_sync(&ohci->bus_reset_work);
3772         fw_core_remove_card(&ohci->card);
3773
3774         /*
3775          * FIXME: Fail all pending packets here, now that the upper
3776          * layers can't queue any more.
3777          */
3778
3779         software_reset(ohci);
3780         free_irq(dev->irq, ohci);
3781
3782         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3783                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3784                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3785         if (ohci->config_rom)
3786                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3787                                   ohci->config_rom, ohci->config_rom_bus);
3788         ar_context_release(&ohci->ar_request_ctx);
3789         ar_context_release(&ohci->ar_response_ctx);
3790         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3791                           ohci->misc_buffer, ohci->misc_buffer_bus);
3792         context_release(&ohci->at_request_ctx);
3793         context_release(&ohci->at_response_ctx);
3794         kfree(ohci->it_context_list);
3795         kfree(ohci->ir_context_list);
3796         pci_disable_msi(dev);
3797         pci_iounmap(dev, ohci->registers);
3798         pci_release_region(dev, 0);
3799         pci_disable_device(dev);
3800         kfree(ohci);
3801         pmac_ohci_off(dev);
3802
3803         dev_notice(&dev->dev, "removed fw-ohci device\n");
3804 }
3805
3806 #ifdef CONFIG_PM
3807 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3808 {
3809         struct fw_ohci *ohci = pci_get_drvdata(dev);
3810         int err;
3811
3812         software_reset(ohci);
3813         err = pci_save_state(dev);
3814         if (err) {
3815                 ohci_err(ohci, "pci_save_state failed\n");
3816                 return err;
3817         }
3818         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3819         if (err)
3820                 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3821         pmac_ohci_off(dev);
3822
3823         return 0;
3824 }
3825
3826 static int pci_resume(struct pci_dev *dev)
3827 {
3828         struct fw_ohci *ohci = pci_get_drvdata(dev);
3829         int err;
3830
3831         pmac_ohci_on(dev);
3832         pci_set_power_state(dev, PCI_D0);
3833         pci_restore_state(dev);
3834         err = pci_enable_device(dev);
3835         if (err) {
3836                 ohci_err(ohci, "pci_enable_device failed\n");
3837                 return err;
3838         }
3839
3840         /* Some systems don't setup GUID register on resume from ram  */
3841         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3842                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3843                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3844                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3845         }
3846
3847         err = ohci_enable(&ohci->card, NULL, 0);
3848         if (err)
3849                 return err;
3850
3851         ohci_resume_iso_dma(ohci);
3852
3853         return 0;
3854 }
3855 #endif
3856
3857 static const struct pci_device_id pci_table[] = {
3858         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3859         { }
3860 };
3861
3862 MODULE_DEVICE_TABLE(pci, pci_table);
3863
3864 static struct pci_driver fw_ohci_pci_driver = {
3865         .name           = ohci_driver_name,
3866         .id_table       = pci_table,
3867         .probe          = pci_probe,
3868         .remove         = pci_remove,
3869 #ifdef CONFIG_PM
3870         .resume         = pci_resume,
3871         .suspend        = pci_suspend,
3872 #endif
3873 };
3874
3875 static int __init fw_ohci_init(void)
3876 {
3877         selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3878         if (!selfid_workqueue)
3879                 return -ENOMEM;
3880
3881         return pci_register_driver(&fw_ohci_pci_driver);
3882 }
3883
3884 static void __exit fw_ohci_cleanup(void)
3885 {
3886         pci_unregister_driver(&fw_ohci_pci_driver);
3887         destroy_workqueue(selfid_workqueue);
3888 }
3889
3890 module_init(fw_ohci_init);
3891 module_exit(fw_ohci_cleanup);
3892
3893 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3894 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3895 MODULE_LICENSE("GPL");
3896
3897 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3898 MODULE_ALIAS("ohci1394");