]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
Merge tag 'xfs-4.12-fixes-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[karo-tx-linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34
35 /*
36  * GPUVM
37  * GPUVM is similar to the legacy gart on older asics, however
38  * rather than there being a single global gart table
39  * for the entire GPU, there are multiple VM page tables active
40  * at any given time.  The VM page tables can contain a mix
41  * vram pages and system memory pages and system memory pages
42  * can be mapped as snooped (cached system pages) or unsnooped
43  * (uncached system pages).
44  * Each VM has an ID associated with it and there is a page table
45  * associated with each VMID.  When execting a command buffer,
46  * the kernel tells the the ring what VMID to use for that command
47  * buffer.  VMIDs are allocated dynamically as commands are submitted.
48  * The userspace drivers maintain their own address space and the kernel
49  * sets up their pages tables accordingly when they submit their
50  * command buffers and a VMID is assigned.
51  * Cayman/Trinity support up to 8 active VMs at any given time;
52  * SI supports 16.
53  */
54
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59                      START, LAST, static, amdgpu_vm_it)
60
61 #undef START
62 #undef LAST
63
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65  * the number of function parameters
66  */
67 struct amdgpu_pte_update_params {
68         /* amdgpu device we do this update for */
69         struct amdgpu_device *adev;
70         /* optional amdgpu_vm we do this update for */
71         struct amdgpu_vm *vm;
72         /* address where to copy page table entries from */
73         uint64_t src;
74         /* indirect buffer to fill with commands */
75         struct amdgpu_ib *ib;
76         /* Function which actually does the update */
77         void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78                      uint64_t addr, unsigned count, uint32_t incr,
79                      uint64_t flags);
80         /* indicate update pt or its shadow */
81         bool shadow;
82 };
83
84 /* Helper to disable partial resident texture feature from a fence callback */
85 struct amdgpu_prt_cb {
86         struct amdgpu_device *adev;
87         struct dma_fence_cb cb;
88 };
89
90 /**
91  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
92  *
93  * @adev: amdgpu_device pointer
94  *
95  * Calculate the number of entries in a page directory or page table.
96  */
97 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
98                                       unsigned level)
99 {
100         if (level == 0)
101                 /* For the root directory */
102                 return adev->vm_manager.max_pfn >>
103                         (adev->vm_manager.block_size *
104                          adev->vm_manager.num_level);
105         else if (level == adev->vm_manager.num_level)
106                 /* For the page tables on the leaves */
107                 return AMDGPU_VM_PTE_COUNT(adev);
108         else
109                 /* Everything in between */
110                 return 1 << adev->vm_manager.block_size;
111 }
112
113 /**
114  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
115  *
116  * @adev: amdgpu_device pointer
117  *
118  * Calculate the size of the BO for a page directory or page table in bytes.
119  */
120 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
121 {
122         return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
123 }
124
125 /**
126  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
127  *
128  * @vm: vm providing the BOs
129  * @validated: head of validation list
130  * @entry: entry to add
131  *
132  * Add the page directory to the list of BOs to
133  * validate for command submission.
134  */
135 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
136                          struct list_head *validated,
137                          struct amdgpu_bo_list_entry *entry)
138 {
139         entry->robj = vm->root.bo;
140         entry->priority = 0;
141         entry->tv.bo = &entry->robj->tbo;
142         entry->tv.shared = true;
143         entry->user_pages = NULL;
144         list_add(&entry->tv.head, validated);
145 }
146
147 /**
148  * amdgpu_vm_validate_layer - validate a single page table level
149  *
150  * @parent: parent page table level
151  * @validate: callback to do the validation
152  * @param: parameter for the validation callback
153  *
154  * Validate the page table BOs on command submission if neccessary.
155  */
156 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
157                                     int (*validate)(void *, struct amdgpu_bo *),
158                                     void *param)
159 {
160         unsigned i;
161         int r;
162
163         if (!parent->entries)
164                 return 0;
165
166         for (i = 0; i <= parent->last_entry_used; ++i) {
167                 struct amdgpu_vm_pt *entry = &parent->entries[i];
168
169                 if (!entry->bo)
170                         continue;
171
172                 r = validate(param, entry->bo);
173                 if (r)
174                         return r;
175
176                 /*
177                  * Recurse into the sub directory. This is harmless because we
178                  * have only a maximum of 5 layers.
179                  */
180                 r = amdgpu_vm_validate_level(entry, validate, param);
181                 if (r)
182                         return r;
183         }
184
185         return r;
186 }
187
188 /**
189  * amdgpu_vm_validate_pt_bos - validate the page table BOs
190  *
191  * @adev: amdgpu device pointer
192  * @vm: vm providing the BOs
193  * @validate: callback to do the validation
194  * @param: parameter for the validation callback
195  *
196  * Validate the page table BOs on command submission if neccessary.
197  */
198 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
199                               int (*validate)(void *p, struct amdgpu_bo *bo),
200                               void *param)
201 {
202         uint64_t num_evictions;
203
204         /* We only need to validate the page tables
205          * if they aren't already valid.
206          */
207         num_evictions = atomic64_read(&adev->num_evictions);
208         if (num_evictions == vm->last_eviction_counter)
209                 return 0;
210
211         return amdgpu_vm_validate_level(&vm->root, validate, param);
212 }
213
214 /**
215  * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail
216  *
217  * @adev: amdgpu device instance
218  * @vm: vm providing the BOs
219  *
220  * Move the PT BOs to the tail of the LRU.
221  */
222 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent)
223 {
224         unsigned i;
225
226         if (!parent->entries)
227                 return;
228
229         for (i = 0; i <= parent->last_entry_used; ++i) {
230                 struct amdgpu_vm_pt *entry = &parent->entries[i];
231
232                 if (!entry->bo)
233                         continue;
234
235                 ttm_bo_move_to_lru_tail(&entry->bo->tbo);
236                 amdgpu_vm_move_level_in_lru(entry);
237         }
238 }
239
240 /**
241  * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
242  *
243  * @adev: amdgpu device instance
244  * @vm: vm providing the BOs
245  *
246  * Move the PT BOs to the tail of the LRU.
247  */
248 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
249                                   struct amdgpu_vm *vm)
250 {
251         struct ttm_bo_global *glob = adev->mman.bdev.glob;
252
253         spin_lock(&glob->lru_lock);
254         amdgpu_vm_move_level_in_lru(&vm->root);
255         spin_unlock(&glob->lru_lock);
256 }
257
258  /**
259  * amdgpu_vm_alloc_levels - allocate the PD/PT levels
260  *
261  * @adev: amdgpu_device pointer
262  * @vm: requested vm
263  * @saddr: start of the address range
264  * @eaddr: end of the address range
265  *
266  * Make sure the page directories and page tables are allocated
267  */
268 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
269                                   struct amdgpu_vm *vm,
270                                   struct amdgpu_vm_pt *parent,
271                                   uint64_t saddr, uint64_t eaddr,
272                                   unsigned level)
273 {
274         unsigned shift = (adev->vm_manager.num_level - level) *
275                 adev->vm_manager.block_size;
276         unsigned pt_idx, from, to;
277         int r;
278
279         if (!parent->entries) {
280                 unsigned num_entries = amdgpu_vm_num_entries(adev, level);
281
282                 parent->entries = drm_calloc_large(num_entries,
283                                                    sizeof(struct amdgpu_vm_pt));
284                 if (!parent->entries)
285                         return -ENOMEM;
286                 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
287         }
288
289         from = saddr >> shift;
290         to = eaddr >> shift;
291         if (from >= amdgpu_vm_num_entries(adev, level) ||
292             to >= amdgpu_vm_num_entries(adev, level))
293                 return -EINVAL;
294
295         if (to > parent->last_entry_used)
296                 parent->last_entry_used = to;
297
298         ++level;
299         saddr = saddr & ((1 << shift) - 1);
300         eaddr = eaddr & ((1 << shift) - 1);
301
302         /* walk over the address space and allocate the page tables */
303         for (pt_idx = from; pt_idx <= to; ++pt_idx) {
304                 struct reservation_object *resv = vm->root.bo->tbo.resv;
305                 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
306                 struct amdgpu_bo *pt;
307
308                 if (!entry->bo) {
309                         r = amdgpu_bo_create(adev,
310                                              amdgpu_vm_bo_size(adev, level),
311                                              AMDGPU_GPU_PAGE_SIZE, true,
312                                              AMDGPU_GEM_DOMAIN_VRAM,
313                                              AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
314                                              AMDGPU_GEM_CREATE_SHADOW |
315                                              AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
316                                              AMDGPU_GEM_CREATE_VRAM_CLEARED,
317                                              NULL, resv, &pt);
318                         if (r)
319                                 return r;
320
321                         /* Keep a reference to the root directory to avoid
322                         * freeing them up in the wrong order.
323                         */
324                         pt->parent = amdgpu_bo_ref(vm->root.bo);
325
326                         entry->bo = pt;
327                         entry->addr = 0;
328                 }
329
330                 if (level < adev->vm_manager.num_level) {
331                         uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
332                         uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
333                                 ((1 << shift) - 1);
334                         r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
335                                                    sub_eaddr, level);
336                         if (r)
337                                 return r;
338                 }
339         }
340
341         return 0;
342 }
343
344 /**
345  * amdgpu_vm_alloc_pts - Allocate page tables.
346  *
347  * @adev: amdgpu_device pointer
348  * @vm: VM to allocate page tables for
349  * @saddr: Start address which needs to be allocated
350  * @size: Size from start address we need.
351  *
352  * Make sure the page tables are allocated.
353  */
354 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
355                         struct amdgpu_vm *vm,
356                         uint64_t saddr, uint64_t size)
357 {
358         uint64_t last_pfn;
359         uint64_t eaddr;
360
361         /* validate the parameters */
362         if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
363                 return -EINVAL;
364
365         eaddr = saddr + size - 1;
366         last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
367         if (last_pfn >= adev->vm_manager.max_pfn) {
368                 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
369                         last_pfn, adev->vm_manager.max_pfn);
370                 return -EINVAL;
371         }
372
373         saddr /= AMDGPU_GPU_PAGE_SIZE;
374         eaddr /= AMDGPU_GPU_PAGE_SIZE;
375
376         return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
377 }
378
379 /**
380  * amdgpu_vm_had_gpu_reset - check if reset occured since last use
381  *
382  * @adev: amdgpu_device pointer
383  * @id: VMID structure
384  *
385  * Check if GPU reset occured since last use of the VMID.
386  */
387 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
388                                     struct amdgpu_vm_id *id)
389 {
390         return id->current_gpu_reset_count !=
391                 atomic_read(&adev->gpu_reset_counter);
392 }
393
394 /**
395  * amdgpu_vm_grab_id - allocate the next free VMID
396  *
397  * @vm: vm to allocate id for
398  * @ring: ring we want to submit job to
399  * @sync: sync object where we add dependencies
400  * @fence: fence protecting ID from reuse
401  *
402  * Allocate an id for the vm, adding fences to the sync obj as necessary.
403  */
404 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
405                       struct amdgpu_sync *sync, struct dma_fence *fence,
406                       struct amdgpu_job *job)
407 {
408         struct amdgpu_device *adev = ring->adev;
409         unsigned vmhub = ring->funcs->vmhub;
410         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
411         uint64_t fence_context = adev->fence_context + ring->idx;
412         struct dma_fence *updates = sync->last_vm_update;
413         struct amdgpu_vm_id *id, *idle;
414         struct dma_fence **fences;
415         unsigned i;
416         int r = 0;
417
418         fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
419         if (!fences)
420                 return -ENOMEM;
421
422         mutex_lock(&id_mgr->lock);
423
424         /* Check if we have an idle VMID */
425         i = 0;
426         list_for_each_entry(idle, &id_mgr->ids_lru, list) {
427                 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
428                 if (!fences[i])
429                         break;
430                 ++i;
431         }
432
433         /* If we can't find a idle VMID to use, wait till one becomes available */
434         if (&idle->list == &id_mgr->ids_lru) {
435                 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
436                 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
437                 struct dma_fence_array *array;
438                 unsigned j;
439
440                 for (j = 0; j < i; ++j)
441                         dma_fence_get(fences[j]);
442
443                 array = dma_fence_array_create(i, fences, fence_context,
444                                            seqno, true);
445                 if (!array) {
446                         for (j = 0; j < i; ++j)
447                                 dma_fence_put(fences[j]);
448                         kfree(fences);
449                         r = -ENOMEM;
450                         goto error;
451                 }
452
453
454                 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
455                 dma_fence_put(&array->base);
456                 if (r)
457                         goto error;
458
459                 mutex_unlock(&id_mgr->lock);
460                 return 0;
461
462         }
463         kfree(fences);
464
465         job->vm_needs_flush = false;
466         /* Check if we can use a VMID already assigned to this VM */
467         list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
468                 struct dma_fence *flushed;
469                 bool needs_flush = false;
470
471                 /* Check all the prerequisites to using this VMID */
472                 if (amdgpu_vm_had_gpu_reset(adev, id))
473                         continue;
474
475                 if (atomic64_read(&id->owner) != vm->client_id)
476                         continue;
477
478                 if (job->vm_pd_addr != id->pd_gpu_addr)
479                         continue;
480
481                 if (!id->last_flush ||
482                     (id->last_flush->context != fence_context &&
483                      !dma_fence_is_signaled(id->last_flush)))
484                         needs_flush = true;
485
486                 flushed  = id->flushed_updates;
487                 if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
488                         needs_flush = true;
489
490                 /* Concurrent flushes are only possible starting with Vega10 */
491                 if (adev->asic_type < CHIP_VEGA10 && needs_flush)
492                         continue;
493
494                 /* Good we can use this VMID. Remember this submission as
495                  * user of the VMID.
496                  */
497                 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
498                 if (r)
499                         goto error;
500
501                 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
502                         dma_fence_put(id->flushed_updates);
503                         id->flushed_updates = dma_fence_get(updates);
504                 }
505
506                 if (needs_flush)
507                         goto needs_flush;
508                 else
509                         goto no_flush_needed;
510
511         };
512
513         /* Still no ID to use? Then use the idle one found earlier */
514         id = idle;
515
516         /* Remember this submission as user of the VMID */
517         r = amdgpu_sync_fence(ring->adev, &id->active, fence);
518         if (r)
519                 goto error;
520
521         id->pd_gpu_addr = job->vm_pd_addr;
522         dma_fence_put(id->flushed_updates);
523         id->flushed_updates = dma_fence_get(updates);
524         id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
525         atomic64_set(&id->owner, vm->client_id);
526
527 needs_flush:
528         job->vm_needs_flush = true;
529         dma_fence_put(id->last_flush);
530         id->last_flush = NULL;
531
532 no_flush_needed:
533         list_move_tail(&id->list, &id_mgr->ids_lru);
534
535         job->vm_id = id - id_mgr->ids;
536         trace_amdgpu_vm_grab_id(vm, ring, job);
537
538 error:
539         mutex_unlock(&id_mgr->lock);
540         return r;
541 }
542
543 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring)
544 {
545         struct amdgpu_device *adev = ring->adev;
546         const struct amdgpu_ip_block *ip_block;
547
548         if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE)
549                 /* only compute rings */
550                 return false;
551
552         ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
553         if (!ip_block)
554                 return false;
555
556         if (ip_block->version->major <= 7) {
557                 /* gfx7 has no workaround */
558                 return true;
559         } else if (ip_block->version->major == 8) {
560                 if (adev->gfx.mec_fw_version >= 673)
561                         /* gfx8 is fixed in MEC firmware 673 */
562                         return false;
563                 else
564                         return true;
565         }
566         return false;
567 }
568
569 static u64 amdgpu_vm_adjust_mc_addr(struct amdgpu_device *adev, u64 mc_addr)
570 {
571         u64 addr = mc_addr;
572
573         if (adev->gart.gart_funcs->adjust_mc_addr)
574                 addr = adev->gart.gart_funcs->adjust_mc_addr(adev, addr);
575
576         return addr;
577 }
578
579 /**
580  * amdgpu_vm_flush - hardware flush the vm
581  *
582  * @ring: ring to use for flush
583  * @vm_id: vmid number to use
584  * @pd_addr: address of the page directory
585  *
586  * Emit a VM flush when it is necessary.
587  */
588 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
589 {
590         struct amdgpu_device *adev = ring->adev;
591         unsigned vmhub = ring->funcs->vmhub;
592         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
593         struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
594         bool gds_switch_needed = ring->funcs->emit_gds_switch && (
595                 id->gds_base != job->gds_base ||
596                 id->gds_size != job->gds_size ||
597                 id->gws_base != job->gws_base ||
598                 id->gws_size != job->gws_size ||
599                 id->oa_base != job->oa_base ||
600                 id->oa_size != job->oa_size);
601         bool vm_flush_needed = job->vm_needs_flush ||
602                 amdgpu_vm_ring_has_compute_vm_bug(ring);
603         unsigned patch_offset = 0;
604         int r;
605
606         if (amdgpu_vm_had_gpu_reset(adev, id)) {
607                 gds_switch_needed = true;
608                 vm_flush_needed = true;
609         }
610
611         if (!vm_flush_needed && !gds_switch_needed)
612                 return 0;
613
614         if (ring->funcs->init_cond_exec)
615                 patch_offset = amdgpu_ring_init_cond_exec(ring);
616
617         if (ring->funcs->emit_pipeline_sync && !job->need_pipeline_sync)
618                 amdgpu_ring_emit_pipeline_sync(ring);
619
620         if (ring->funcs->emit_vm_flush && vm_flush_needed) {
621                 u64 pd_addr = amdgpu_vm_adjust_mc_addr(adev, job->vm_pd_addr);
622                 struct dma_fence *fence;
623
624                 trace_amdgpu_vm_flush(ring, job->vm_id, pd_addr);
625                 amdgpu_ring_emit_vm_flush(ring, job->vm_id, pd_addr);
626
627                 r = amdgpu_fence_emit(ring, &fence);
628                 if (r)
629                         return r;
630
631                 mutex_lock(&id_mgr->lock);
632                 dma_fence_put(id->last_flush);
633                 id->last_flush = fence;
634                 mutex_unlock(&id_mgr->lock);
635         }
636
637         if (ring->funcs->emit_gds_switch && gds_switch_needed) {
638                 id->gds_base = job->gds_base;
639                 id->gds_size = job->gds_size;
640                 id->gws_base = job->gws_base;
641                 id->gws_size = job->gws_size;
642                 id->oa_base = job->oa_base;
643                 id->oa_size = job->oa_size;
644                 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
645                                             job->gds_size, job->gws_base,
646                                             job->gws_size, job->oa_base,
647                                             job->oa_size);
648         }
649
650         if (ring->funcs->patch_cond_exec)
651                 amdgpu_ring_patch_cond_exec(ring, patch_offset);
652
653         /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
654         if (ring->funcs->emit_switch_buffer) {
655                 amdgpu_ring_emit_switch_buffer(ring);
656                 amdgpu_ring_emit_switch_buffer(ring);
657         }
658         return 0;
659 }
660
661 /**
662  * amdgpu_vm_reset_id - reset VMID to zero
663  *
664  * @adev: amdgpu device structure
665  * @vm_id: vmid number to use
666  *
667  * Reset saved GDW, GWS and OA to force switch on next flush.
668  */
669 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
670                         unsigned vmid)
671 {
672         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
673         struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
674
675         atomic64_set(&id->owner, 0);
676         id->gds_base = 0;
677         id->gds_size = 0;
678         id->gws_base = 0;
679         id->gws_size = 0;
680         id->oa_base = 0;
681         id->oa_size = 0;
682 }
683
684 /**
685  * amdgpu_vm_reset_all_id - reset VMID to zero
686  *
687  * @adev: amdgpu device structure
688  *
689  * Reset VMID to force flush on next use
690  */
691 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
692 {
693         unsigned i, j;
694
695         for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
696                 struct amdgpu_vm_id_manager *id_mgr =
697                         &adev->vm_manager.id_mgr[i];
698
699                 for (j = 1; j < id_mgr->num_ids; ++j)
700                         amdgpu_vm_reset_id(adev, i, j);
701         }
702 }
703
704 /**
705  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
706  *
707  * @vm: requested vm
708  * @bo: requested buffer object
709  *
710  * Find @bo inside the requested vm.
711  * Search inside the @bos vm list for the requested vm
712  * Returns the found bo_va or NULL if none is found
713  *
714  * Object has to be reserved!
715  */
716 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
717                                        struct amdgpu_bo *bo)
718 {
719         struct amdgpu_bo_va *bo_va;
720
721         list_for_each_entry(bo_va, &bo->va, bo_list) {
722                 if (bo_va->vm == vm) {
723                         return bo_va;
724                 }
725         }
726         return NULL;
727 }
728
729 /**
730  * amdgpu_vm_do_set_ptes - helper to call the right asic function
731  *
732  * @params: see amdgpu_pte_update_params definition
733  * @pe: addr of the page entry
734  * @addr: dst addr to write into pe
735  * @count: number of page entries to update
736  * @incr: increase next addr by incr bytes
737  * @flags: hw access flags
738  *
739  * Traces the parameters and calls the right asic functions
740  * to setup the page table using the DMA.
741  */
742 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
743                                   uint64_t pe, uint64_t addr,
744                                   unsigned count, uint32_t incr,
745                                   uint64_t flags)
746 {
747         trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
748
749         if (count < 3) {
750                 amdgpu_vm_write_pte(params->adev, params->ib, pe,
751                                     addr | flags, count, incr);
752
753         } else {
754                 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
755                                       count, incr, flags);
756         }
757 }
758
759 /**
760  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
761  *
762  * @params: see amdgpu_pte_update_params definition
763  * @pe: addr of the page entry
764  * @addr: dst addr to write into pe
765  * @count: number of page entries to update
766  * @incr: increase next addr by incr bytes
767  * @flags: hw access flags
768  *
769  * Traces the parameters and calls the DMA function to copy the PTEs.
770  */
771 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
772                                    uint64_t pe, uint64_t addr,
773                                    unsigned count, uint32_t incr,
774                                    uint64_t flags)
775 {
776         uint64_t src = (params->src + (addr >> 12) * 8);
777
778
779         trace_amdgpu_vm_copy_ptes(pe, src, count);
780
781         amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
782 }
783
784 /**
785  * amdgpu_vm_map_gart - Resolve gart mapping of addr
786  *
787  * @pages_addr: optional DMA address to use for lookup
788  * @addr: the unmapped addr
789  *
790  * Look up the physical address of the page that the pte resolves
791  * to and return the pointer for the page table entry.
792  */
793 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
794 {
795         uint64_t result;
796
797         /* page table offset */
798         result = pages_addr[addr >> PAGE_SHIFT];
799
800         /* in case cpu page size != gpu page size*/
801         result |= addr & (~PAGE_MASK);
802
803         result &= 0xFFFFFFFFFFFFF000ULL;
804
805         return result;
806 }
807
808 /*
809  * amdgpu_vm_update_level - update a single level in the hierarchy
810  *
811  * @adev: amdgpu_device pointer
812  * @vm: requested vm
813  * @parent: parent directory
814  *
815  * Makes sure all entries in @parent are up to date.
816  * Returns 0 for success, error for failure.
817  */
818 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
819                                   struct amdgpu_vm *vm,
820                                   struct amdgpu_vm_pt *parent,
821                                   unsigned level)
822 {
823         struct amdgpu_bo *shadow;
824         struct amdgpu_ring *ring;
825         uint64_t pd_addr, shadow_addr;
826         uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
827         uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
828         unsigned count = 0, pt_idx, ndw;
829         struct amdgpu_job *job;
830         struct amdgpu_pte_update_params params;
831         struct dma_fence *fence = NULL;
832
833         int r;
834
835         if (!parent->entries)
836                 return 0;
837         ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
838
839         /* padding, etc. */
840         ndw = 64;
841
842         /* assume the worst case */
843         ndw += parent->last_entry_used * 6;
844
845         pd_addr = amdgpu_bo_gpu_offset(parent->bo);
846
847         shadow = parent->bo->shadow;
848         if (shadow) {
849                 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
850                 if (r)
851                         return r;
852                 shadow_addr = amdgpu_bo_gpu_offset(shadow);
853                 ndw *= 2;
854         } else {
855                 shadow_addr = 0;
856         }
857
858         r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
859         if (r)
860                 return r;
861
862         memset(&params, 0, sizeof(params));
863         params.adev = adev;
864         params.ib = &job->ibs[0];
865
866         /* walk over the address space and update the directory */
867         for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
868                 struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
869                 uint64_t pde, pt;
870
871                 if (bo == NULL)
872                         continue;
873
874                 if (bo->shadow) {
875                         struct amdgpu_bo *pt_shadow = bo->shadow;
876
877                         r = amdgpu_ttm_bind(&pt_shadow->tbo,
878                                             &pt_shadow->tbo.mem);
879                         if (r)
880                                 return r;
881                 }
882
883                 pt = amdgpu_bo_gpu_offset(bo);
884                 if (parent->entries[pt_idx].addr == pt)
885                         continue;
886
887                 parent->entries[pt_idx].addr = pt;
888
889                 pde = pd_addr + pt_idx * 8;
890                 if (((last_pde + 8 * count) != pde) ||
891                     ((last_pt + incr * count) != pt) ||
892                     (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
893
894                         if (count) {
895                                 uint64_t pt_addr =
896                                         amdgpu_vm_adjust_mc_addr(adev, last_pt);
897
898                                 if (shadow)
899                                         amdgpu_vm_do_set_ptes(&params,
900                                                               last_shadow,
901                                                               pt_addr, count,
902                                                               incr,
903                                                               AMDGPU_PTE_VALID);
904
905                                 amdgpu_vm_do_set_ptes(&params, last_pde,
906                                                       pt_addr, count, incr,
907                                                       AMDGPU_PTE_VALID);
908                         }
909
910                         count = 1;
911                         last_pde = pde;
912                         last_shadow = shadow_addr + pt_idx * 8;
913                         last_pt = pt;
914                 } else {
915                         ++count;
916                 }
917         }
918
919         if (count) {
920                 uint64_t pt_addr = amdgpu_vm_adjust_mc_addr(adev, last_pt);
921
922                 if (vm->root.bo->shadow)
923                         amdgpu_vm_do_set_ptes(&params, last_shadow, pt_addr,
924                                               count, incr, AMDGPU_PTE_VALID);
925
926                 amdgpu_vm_do_set_ptes(&params, last_pde, pt_addr,
927                                       count, incr, AMDGPU_PTE_VALID);
928         }
929
930         if (params.ib->length_dw == 0) {
931                 amdgpu_job_free(job);
932         } else {
933                 amdgpu_ring_pad_ib(ring, params.ib);
934                 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
935                                  AMDGPU_FENCE_OWNER_VM);
936                 if (shadow)
937                         amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv,
938                                          AMDGPU_FENCE_OWNER_VM);
939
940                 WARN_ON(params.ib->length_dw > ndw);
941                 r = amdgpu_job_submit(job, ring, &vm->entity,
942                                 AMDGPU_FENCE_OWNER_VM, &fence);
943                 if (r)
944                         goto error_free;
945
946                 amdgpu_bo_fence(parent->bo, fence, true);
947                 dma_fence_put(vm->last_dir_update);
948                 vm->last_dir_update = dma_fence_get(fence);
949                 dma_fence_put(fence);
950         }
951         /*
952          * Recurse into the subdirectories. This recursion is harmless because
953          * we only have a maximum of 5 layers.
954          */
955         for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
956                 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
957
958                 if (!entry->bo)
959                         continue;
960
961                 r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
962                 if (r)
963                         return r;
964         }
965
966         return 0;
967
968 error_free:
969         amdgpu_job_free(job);
970         return r;
971 }
972
973 /*
974  * amdgpu_vm_update_directories - make sure that all directories are valid
975  *
976  * @adev: amdgpu_device pointer
977  * @vm: requested vm
978  *
979  * Makes sure all directories are up to date.
980  * Returns 0 for success, error for failure.
981  */
982 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
983                                  struct amdgpu_vm *vm)
984 {
985         return amdgpu_vm_update_level(adev, vm, &vm->root, 0);
986 }
987
988 /**
989  * amdgpu_vm_find_pt - find the page table for an address
990  *
991  * @p: see amdgpu_pte_update_params definition
992  * @addr: virtual address in question
993  *
994  * Find the page table BO for a virtual address, return NULL when none found.
995  */
996 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p,
997                                           uint64_t addr)
998 {
999         struct amdgpu_vm_pt *entry = &p->vm->root;
1000         unsigned idx, level = p->adev->vm_manager.num_level;
1001
1002         while (entry->entries) {
1003                 idx = addr >> (p->adev->vm_manager.block_size * level--);
1004                 idx %= amdgpu_bo_size(entry->bo) / 8;
1005                 entry = &entry->entries[idx];
1006         }
1007
1008         if (level)
1009                 return NULL;
1010
1011         return entry->bo;
1012 }
1013
1014 /**
1015  * amdgpu_vm_update_ptes - make sure that page tables are valid
1016  *
1017  * @params: see amdgpu_pte_update_params definition
1018  * @vm: requested vm
1019  * @start: start of GPU address range
1020  * @end: end of GPU address range
1021  * @dst: destination address to map to, the next dst inside the function
1022  * @flags: mapping flags
1023  *
1024  * Update the page tables in the range @start - @end.
1025  */
1026 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1027                                   uint64_t start, uint64_t end,
1028                                   uint64_t dst, uint64_t flags)
1029 {
1030         struct amdgpu_device *adev = params->adev;
1031         const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1032
1033         uint64_t cur_pe_start, cur_nptes, cur_dst;
1034         uint64_t addr; /* next GPU address to be updated */
1035         struct amdgpu_bo *pt;
1036         unsigned nptes; /* next number of ptes to be updated */
1037         uint64_t next_pe_start;
1038
1039         /* initialize the variables */
1040         addr = start;
1041         pt = amdgpu_vm_get_pt(params, addr);
1042         if (!pt) {
1043                 pr_err("PT not found, aborting update_ptes\n");
1044                 return;
1045         }
1046
1047         if (params->shadow) {
1048                 if (!pt->shadow)
1049                         return;
1050                 pt = pt->shadow;
1051         }
1052         if ((addr & ~mask) == (end & ~mask))
1053                 nptes = end - addr;
1054         else
1055                 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1056
1057         cur_pe_start = amdgpu_bo_gpu_offset(pt);
1058         cur_pe_start += (addr & mask) * 8;
1059         cur_nptes = nptes;
1060         cur_dst = dst;
1061
1062         /* for next ptb*/
1063         addr += nptes;
1064         dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1065
1066         /* walk over the address space and update the page tables */
1067         while (addr < end) {
1068                 pt = amdgpu_vm_get_pt(params, addr);
1069                 if (!pt) {
1070                         pr_err("PT not found, aborting update_ptes\n");
1071                         return;
1072                 }
1073
1074                 if (params->shadow) {
1075                         if (!pt->shadow)
1076                                 return;
1077                         pt = pt->shadow;
1078                 }
1079
1080                 if ((addr & ~mask) == (end & ~mask))
1081                         nptes = end - addr;
1082                 else
1083                         nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1084
1085                 next_pe_start = amdgpu_bo_gpu_offset(pt);
1086                 next_pe_start += (addr & mask) * 8;
1087
1088                 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start &&
1089                     ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) {
1090                         /* The next ptb is consecutive to current ptb.
1091                          * Don't call the update function now.
1092                          * Will update two ptbs together in future.
1093                         */
1094                         cur_nptes += nptes;
1095                 } else {
1096                         params->func(params, cur_pe_start, cur_dst, cur_nptes,
1097                                      AMDGPU_GPU_PAGE_SIZE, flags);
1098
1099                         cur_pe_start = next_pe_start;
1100                         cur_nptes = nptes;
1101                         cur_dst = dst;
1102                 }
1103
1104                 /* for next ptb*/
1105                 addr += nptes;
1106                 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1107         }
1108
1109         params->func(params, cur_pe_start, cur_dst, cur_nptes,
1110                      AMDGPU_GPU_PAGE_SIZE, flags);
1111 }
1112
1113 /*
1114  * amdgpu_vm_frag_ptes - add fragment information to PTEs
1115  *
1116  * @params: see amdgpu_pte_update_params definition
1117  * @vm: requested vm
1118  * @start: first PTE to handle
1119  * @end: last PTE to handle
1120  * @dst: addr those PTEs should point to
1121  * @flags: hw mapping flags
1122  */
1123 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
1124                                 uint64_t start, uint64_t end,
1125                                 uint64_t dst, uint64_t flags)
1126 {
1127         /**
1128          * The MC L1 TLB supports variable sized pages, based on a fragment
1129          * field in the PTE. When this field is set to a non-zero value, page
1130          * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1131          * flags are considered valid for all PTEs within the fragment range
1132          * and corresponding mappings are assumed to be physically contiguous.
1133          *
1134          * The L1 TLB can store a single PTE for the whole fragment,
1135          * significantly increasing the space available for translation
1136          * caching. This leads to large improvements in throughput when the
1137          * TLB is under pressure.
1138          *
1139          * The L2 TLB distributes small and large fragments into two
1140          * asymmetric partitions. The large fragment cache is significantly
1141          * larger. Thus, we try to use large fragments wherever possible.
1142          * Userspace can support this by aligning virtual base address and
1143          * allocation size to the fragment size.
1144          */
1145
1146         /* SI and newer are optimized for 64KB */
1147         uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
1148         uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
1149
1150         uint64_t frag_start = ALIGN(start, frag_align);
1151         uint64_t frag_end = end & ~(frag_align - 1);
1152
1153         /* system pages are non continuously */
1154         if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1155             (frag_start >= frag_end)) {
1156
1157                 amdgpu_vm_update_ptes(params, start, end, dst, flags);
1158                 return;
1159         }
1160
1161         /* handle the 4K area at the beginning */
1162         if (start != frag_start) {
1163                 amdgpu_vm_update_ptes(params, start, frag_start,
1164                                       dst, flags);
1165                 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1166         }
1167
1168         /* handle the area in the middle */
1169         amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1170                               flags | frag_flags);
1171
1172         /* handle the 4K area at the end */
1173         if (frag_end != end) {
1174                 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1175                 amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1176         }
1177 }
1178
1179 /**
1180  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1181  *
1182  * @adev: amdgpu_device pointer
1183  * @exclusive: fence we need to sync to
1184  * @src: address where to copy page table entries from
1185  * @pages_addr: DMA addresses to use for mapping
1186  * @vm: requested vm
1187  * @start: start of mapped range
1188  * @last: last mapped entry
1189  * @flags: flags for the entries
1190  * @addr: addr to set the area to
1191  * @fence: optional resulting fence
1192  *
1193  * Fill in the page table entries between @start and @last.
1194  * Returns 0 for success, -EINVAL for failure.
1195  */
1196 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1197                                        struct dma_fence *exclusive,
1198                                        uint64_t src,
1199                                        dma_addr_t *pages_addr,
1200                                        struct amdgpu_vm *vm,
1201                                        uint64_t start, uint64_t last,
1202                                        uint64_t flags, uint64_t addr,
1203                                        struct dma_fence **fence)
1204 {
1205         struct amdgpu_ring *ring;
1206         void *owner = AMDGPU_FENCE_OWNER_VM;
1207         unsigned nptes, ncmds, ndw;
1208         struct amdgpu_job *job;
1209         struct amdgpu_pte_update_params params;
1210         struct dma_fence *f = NULL;
1211         int r;
1212
1213         memset(&params, 0, sizeof(params));
1214         params.adev = adev;
1215         params.vm = vm;
1216         params.src = src;
1217
1218         ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1219
1220         /* sync to everything on unmapping */
1221         if (!(flags & AMDGPU_PTE_VALID))
1222                 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1223
1224         nptes = last - start + 1;
1225
1226         /*
1227          * reserve space for one command every (1 << BLOCK_SIZE)
1228          *  entries or 2k dwords (whatever is smaller)
1229          */
1230         ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1231
1232         /* padding, etc. */
1233         ndw = 64;
1234
1235         if (src) {
1236                 /* only copy commands needed */
1237                 ndw += ncmds * 7;
1238
1239                 params.func = amdgpu_vm_do_copy_ptes;
1240
1241         } else if (pages_addr) {
1242                 /* copy commands needed */
1243                 ndw += ncmds * 7;
1244
1245                 /* and also PTEs */
1246                 ndw += nptes * 2;
1247
1248                 params.func = amdgpu_vm_do_copy_ptes;
1249
1250         } else {
1251                 /* set page commands needed */
1252                 ndw += ncmds * 10;
1253
1254                 /* two extra commands for begin/end of fragment */
1255                 ndw += 2 * 10;
1256
1257                 params.func = amdgpu_vm_do_set_ptes;
1258         }
1259
1260         r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1261         if (r)
1262                 return r;
1263
1264         params.ib = &job->ibs[0];
1265
1266         if (!src && pages_addr) {
1267                 uint64_t *pte;
1268                 unsigned i;
1269
1270                 /* Put the PTEs at the end of the IB. */
1271                 i = ndw - nptes * 2;
1272                 pte= (uint64_t *)&(job->ibs->ptr[i]);
1273                 params.src = job->ibs->gpu_addr + i * 4;
1274
1275                 for (i = 0; i < nptes; ++i) {
1276                         pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1277                                                     AMDGPU_GPU_PAGE_SIZE);
1278                         pte[i] |= flags;
1279                 }
1280                 addr = 0;
1281         }
1282
1283         r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1284         if (r)
1285                 goto error_free;
1286
1287         r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1288                              owner);
1289         if (r)
1290                 goto error_free;
1291
1292         r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1293         if (r)
1294                 goto error_free;
1295
1296         params.shadow = true;
1297         amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1298         params.shadow = false;
1299         amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1300
1301         amdgpu_ring_pad_ib(ring, params.ib);
1302         WARN_ON(params.ib->length_dw > ndw);
1303         r = amdgpu_job_submit(job, ring, &vm->entity,
1304                               AMDGPU_FENCE_OWNER_VM, &f);
1305         if (r)
1306                 goto error_free;
1307
1308         amdgpu_bo_fence(vm->root.bo, f, true);
1309         dma_fence_put(*fence);
1310         *fence = f;
1311         return 0;
1312
1313 error_free:
1314         amdgpu_job_free(job);
1315         return r;
1316 }
1317
1318 /**
1319  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1320  *
1321  * @adev: amdgpu_device pointer
1322  * @exclusive: fence we need to sync to
1323  * @gtt_flags: flags as they are used for GTT
1324  * @pages_addr: DMA addresses to use for mapping
1325  * @vm: requested vm
1326  * @mapping: mapped range and flags to use for the update
1327  * @flags: HW flags for the mapping
1328  * @nodes: array of drm_mm_nodes with the MC addresses
1329  * @fence: optional resulting fence
1330  *
1331  * Split the mapping into smaller chunks so that each update fits
1332  * into a SDMA IB.
1333  * Returns 0 for success, -EINVAL for failure.
1334  */
1335 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1336                                       struct dma_fence *exclusive,
1337                                       uint64_t gtt_flags,
1338                                       dma_addr_t *pages_addr,
1339                                       struct amdgpu_vm *vm,
1340                                       struct amdgpu_bo_va_mapping *mapping,
1341                                       uint64_t flags,
1342                                       struct drm_mm_node *nodes,
1343                                       struct dma_fence **fence)
1344 {
1345         uint64_t pfn, src = 0, start = mapping->start;
1346         int r;
1347
1348         /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1349          * but in case of something, we filter the flags in first place
1350          */
1351         if (!(mapping->flags & AMDGPU_PTE_READABLE))
1352                 flags &= ~AMDGPU_PTE_READABLE;
1353         if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1354                 flags &= ~AMDGPU_PTE_WRITEABLE;
1355
1356         flags &= ~AMDGPU_PTE_EXECUTABLE;
1357         flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1358
1359         flags &= ~AMDGPU_PTE_MTYPE_MASK;
1360         flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1361
1362         if ((mapping->flags & AMDGPU_PTE_PRT) &&
1363             (adev->asic_type >= CHIP_VEGA10)) {
1364                 flags |= AMDGPU_PTE_PRT;
1365                 flags &= ~AMDGPU_PTE_VALID;
1366         }
1367
1368         trace_amdgpu_vm_bo_update(mapping);
1369
1370         pfn = mapping->offset >> PAGE_SHIFT;
1371         if (nodes) {
1372                 while (pfn >= nodes->size) {
1373                         pfn -= nodes->size;
1374                         ++nodes;
1375                 }
1376         }
1377
1378         do {
1379                 uint64_t max_entries;
1380                 uint64_t addr, last;
1381
1382                 if (nodes) {
1383                         addr = nodes->start << PAGE_SHIFT;
1384                         max_entries = (nodes->size - pfn) *
1385                                 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1386                 } else {
1387                         addr = 0;
1388                         max_entries = S64_MAX;
1389                 }
1390
1391                 if (pages_addr) {
1392                         if (flags == gtt_flags)
1393                                 src = adev->gart.table_addr +
1394                                         (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1395                         else
1396                                 max_entries = min(max_entries, 16ull * 1024ull);
1397                         addr = 0;
1398                 } else if (flags & AMDGPU_PTE_VALID) {
1399                         addr += adev->vm_manager.vram_base_offset;
1400                 }
1401                 addr += pfn << PAGE_SHIFT;
1402
1403                 last = min((uint64_t)mapping->last, start + max_entries - 1);
1404                 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1405                                                 src, pages_addr, vm,
1406                                                 start, last, flags, addr,
1407                                                 fence);
1408                 if (r)
1409                         return r;
1410
1411                 pfn += last - start + 1;
1412                 if (nodes && nodes->size == pfn) {
1413                         pfn = 0;
1414                         ++nodes;
1415                 }
1416                 start = last + 1;
1417
1418         } while (unlikely(start != mapping->last + 1));
1419
1420         return 0;
1421 }
1422
1423 /**
1424  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1425  *
1426  * @adev: amdgpu_device pointer
1427  * @bo_va: requested BO and VM object
1428  * @clear: if true clear the entries
1429  *
1430  * Fill in the page table entries for @bo_va.
1431  * Returns 0 for success, -EINVAL for failure.
1432  */
1433 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1434                         struct amdgpu_bo_va *bo_va,
1435                         bool clear)
1436 {
1437         struct amdgpu_vm *vm = bo_va->vm;
1438         struct amdgpu_bo_va_mapping *mapping;
1439         dma_addr_t *pages_addr = NULL;
1440         uint64_t gtt_flags, flags;
1441         struct ttm_mem_reg *mem;
1442         struct drm_mm_node *nodes;
1443         struct dma_fence *exclusive;
1444         int r;
1445
1446         if (clear || !bo_va->bo) {
1447                 mem = NULL;
1448                 nodes = NULL;
1449                 exclusive = NULL;
1450         } else {
1451                 struct ttm_dma_tt *ttm;
1452
1453                 mem = &bo_va->bo->tbo.mem;
1454                 nodes = mem->mm_node;
1455                 if (mem->mem_type == TTM_PL_TT) {
1456                         ttm = container_of(bo_va->bo->tbo.ttm, struct
1457                                            ttm_dma_tt, ttm);
1458                         pages_addr = ttm->dma_address;
1459                 }
1460                 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1461         }
1462
1463         if (bo_va->bo) {
1464                 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1465                 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1466                         adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ?
1467                         flags : 0;
1468         } else {
1469                 flags = 0x0;
1470                 gtt_flags = ~0x0;
1471         }
1472
1473         spin_lock(&vm->status_lock);
1474         if (!list_empty(&bo_va->vm_status))
1475                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1476         spin_unlock(&vm->status_lock);
1477
1478         list_for_each_entry(mapping, &bo_va->invalids, list) {
1479                 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1480                                                gtt_flags, pages_addr, vm,
1481                                                mapping, flags, nodes,
1482                                                &bo_va->last_pt_update);
1483                 if (r)
1484                         return r;
1485         }
1486
1487         if (trace_amdgpu_vm_bo_mapping_enabled()) {
1488                 list_for_each_entry(mapping, &bo_va->valids, list)
1489                         trace_amdgpu_vm_bo_mapping(mapping);
1490
1491                 list_for_each_entry(mapping, &bo_va->invalids, list)
1492                         trace_amdgpu_vm_bo_mapping(mapping);
1493         }
1494
1495         spin_lock(&vm->status_lock);
1496         list_splice_init(&bo_va->invalids, &bo_va->valids);
1497         list_del_init(&bo_va->vm_status);
1498         if (clear)
1499                 list_add(&bo_va->vm_status, &vm->cleared);
1500         spin_unlock(&vm->status_lock);
1501
1502         return 0;
1503 }
1504
1505 /**
1506  * amdgpu_vm_update_prt_state - update the global PRT state
1507  */
1508 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1509 {
1510         unsigned long flags;
1511         bool enable;
1512
1513         spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1514         enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1515         adev->gart.gart_funcs->set_prt(adev, enable);
1516         spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1517 }
1518
1519 /**
1520  * amdgpu_vm_prt_get - add a PRT user
1521  */
1522 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1523 {
1524         if (!adev->gart.gart_funcs->set_prt)
1525                 return;
1526
1527         if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1528                 amdgpu_vm_update_prt_state(adev);
1529 }
1530
1531 /**
1532  * amdgpu_vm_prt_put - drop a PRT user
1533  */
1534 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1535 {
1536         if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1537                 amdgpu_vm_update_prt_state(adev);
1538 }
1539
1540 /**
1541  * amdgpu_vm_prt_cb - callback for updating the PRT status
1542  */
1543 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1544 {
1545         struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1546
1547         amdgpu_vm_prt_put(cb->adev);
1548         kfree(cb);
1549 }
1550
1551 /**
1552  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1553  */
1554 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1555                                  struct dma_fence *fence)
1556 {
1557         struct amdgpu_prt_cb *cb;
1558
1559         if (!adev->gart.gart_funcs->set_prt)
1560                 return;
1561
1562         cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1563         if (!cb) {
1564                 /* Last resort when we are OOM */
1565                 if (fence)
1566                         dma_fence_wait(fence, false);
1567
1568                 amdgpu_vm_prt_put(adev);
1569         } else {
1570                 cb->adev = adev;
1571                 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1572                                                      amdgpu_vm_prt_cb))
1573                         amdgpu_vm_prt_cb(fence, &cb->cb);
1574         }
1575 }
1576
1577 /**
1578  * amdgpu_vm_free_mapping - free a mapping
1579  *
1580  * @adev: amdgpu_device pointer
1581  * @vm: requested vm
1582  * @mapping: mapping to be freed
1583  * @fence: fence of the unmap operation
1584  *
1585  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1586  */
1587 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1588                                    struct amdgpu_vm *vm,
1589                                    struct amdgpu_bo_va_mapping *mapping,
1590                                    struct dma_fence *fence)
1591 {
1592         if (mapping->flags & AMDGPU_PTE_PRT)
1593                 amdgpu_vm_add_prt_cb(adev, fence);
1594         kfree(mapping);
1595 }
1596
1597 /**
1598  * amdgpu_vm_prt_fini - finish all prt mappings
1599  *
1600  * @adev: amdgpu_device pointer
1601  * @vm: requested vm
1602  *
1603  * Register a cleanup callback to disable PRT support after VM dies.
1604  */
1605 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1606 {
1607         struct reservation_object *resv = vm->root.bo->tbo.resv;
1608         struct dma_fence *excl, **shared;
1609         unsigned i, shared_count;
1610         int r;
1611
1612         r = reservation_object_get_fences_rcu(resv, &excl,
1613                                               &shared_count, &shared);
1614         if (r) {
1615                 /* Not enough memory to grab the fence list, as last resort
1616                  * block for all the fences to complete.
1617                  */
1618                 reservation_object_wait_timeout_rcu(resv, true, false,
1619                                                     MAX_SCHEDULE_TIMEOUT);
1620                 return;
1621         }
1622
1623         /* Add a callback for each fence in the reservation object */
1624         amdgpu_vm_prt_get(adev);
1625         amdgpu_vm_add_prt_cb(adev, excl);
1626
1627         for (i = 0; i < shared_count; ++i) {
1628                 amdgpu_vm_prt_get(adev);
1629                 amdgpu_vm_add_prt_cb(adev, shared[i]);
1630         }
1631
1632         kfree(shared);
1633 }
1634
1635 /**
1636  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1637  *
1638  * @adev: amdgpu_device pointer
1639  * @vm: requested vm
1640  * @fence: optional resulting fence (unchanged if no work needed to be done
1641  * or if an error occurred)
1642  *
1643  * Make sure all freed BOs are cleared in the PT.
1644  * Returns 0 for success.
1645  *
1646  * PTs have to be reserved and mutex must be locked!
1647  */
1648 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1649                           struct amdgpu_vm *vm,
1650                           struct dma_fence **fence)
1651 {
1652         struct amdgpu_bo_va_mapping *mapping;
1653         struct dma_fence *f = NULL;
1654         int r;
1655
1656         while (!list_empty(&vm->freed)) {
1657                 mapping = list_first_entry(&vm->freed,
1658                         struct amdgpu_bo_va_mapping, list);
1659                 list_del(&mapping->list);
1660
1661                 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm,
1662                                                 mapping->start, mapping->last,
1663                                                 0, 0, &f);
1664                 amdgpu_vm_free_mapping(adev, vm, mapping, f);
1665                 if (r) {
1666                         dma_fence_put(f);
1667                         return r;
1668                 }
1669         }
1670
1671         if (fence && f) {
1672                 dma_fence_put(*fence);
1673                 *fence = f;
1674         } else {
1675                 dma_fence_put(f);
1676         }
1677
1678         return 0;
1679
1680 }
1681
1682 /**
1683  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1684  *
1685  * @adev: amdgpu_device pointer
1686  * @vm: requested vm
1687  *
1688  * Make sure all invalidated BOs are cleared in the PT.
1689  * Returns 0 for success.
1690  *
1691  * PTs have to be reserved and mutex must be locked!
1692  */
1693 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1694                              struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1695 {
1696         struct amdgpu_bo_va *bo_va = NULL;
1697         int r = 0;
1698
1699         spin_lock(&vm->status_lock);
1700         while (!list_empty(&vm->invalidated)) {
1701                 bo_va = list_first_entry(&vm->invalidated,
1702                         struct amdgpu_bo_va, vm_status);
1703                 spin_unlock(&vm->status_lock);
1704
1705                 r = amdgpu_vm_bo_update(adev, bo_va, true);
1706                 if (r)
1707                         return r;
1708
1709                 spin_lock(&vm->status_lock);
1710         }
1711         spin_unlock(&vm->status_lock);
1712
1713         if (bo_va)
1714                 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1715
1716         return r;
1717 }
1718
1719 /**
1720  * amdgpu_vm_bo_add - add a bo to a specific vm
1721  *
1722  * @adev: amdgpu_device pointer
1723  * @vm: requested vm
1724  * @bo: amdgpu buffer object
1725  *
1726  * Add @bo into the requested vm.
1727  * Add @bo to the list of bos associated with the vm
1728  * Returns newly added bo_va or NULL for failure
1729  *
1730  * Object has to be reserved!
1731  */
1732 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1733                                       struct amdgpu_vm *vm,
1734                                       struct amdgpu_bo *bo)
1735 {
1736         struct amdgpu_bo_va *bo_va;
1737
1738         bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1739         if (bo_va == NULL) {
1740                 return NULL;
1741         }
1742         bo_va->vm = vm;
1743         bo_va->bo = bo;
1744         bo_va->ref_count = 1;
1745         INIT_LIST_HEAD(&bo_va->bo_list);
1746         INIT_LIST_HEAD(&bo_va->valids);
1747         INIT_LIST_HEAD(&bo_va->invalids);
1748         INIT_LIST_HEAD(&bo_va->vm_status);
1749
1750         if (bo)
1751                 list_add_tail(&bo_va->bo_list, &bo->va);
1752
1753         return bo_va;
1754 }
1755
1756 /**
1757  * amdgpu_vm_bo_map - map bo inside a vm
1758  *
1759  * @adev: amdgpu_device pointer
1760  * @bo_va: bo_va to store the address
1761  * @saddr: where to map the BO
1762  * @offset: requested offset in the BO
1763  * @flags: attributes of pages (read/write/valid/etc.)
1764  *
1765  * Add a mapping of the BO at the specefied addr into the VM.
1766  * Returns 0 for success, error for failure.
1767  *
1768  * Object has to be reserved and unreserved outside!
1769  */
1770 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1771                      struct amdgpu_bo_va *bo_va,
1772                      uint64_t saddr, uint64_t offset,
1773                      uint64_t size, uint64_t flags)
1774 {
1775         struct amdgpu_bo_va_mapping *mapping, *tmp;
1776         struct amdgpu_vm *vm = bo_va->vm;
1777         uint64_t eaddr;
1778
1779         /* validate the parameters */
1780         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1781             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1782                 return -EINVAL;
1783
1784         /* make sure object fit at this offset */
1785         eaddr = saddr + size - 1;
1786         if (saddr >= eaddr ||
1787             (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1788                 return -EINVAL;
1789
1790         saddr /= AMDGPU_GPU_PAGE_SIZE;
1791         eaddr /= AMDGPU_GPU_PAGE_SIZE;
1792
1793         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1794         if (tmp) {
1795                 /* bo and tmp overlap, invalid addr */
1796                 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1797                         "0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr,
1798                         tmp->start, tmp->last + 1);
1799                 return -EINVAL;
1800         }
1801
1802         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1803         if (!mapping)
1804                 return -ENOMEM;
1805
1806         INIT_LIST_HEAD(&mapping->list);
1807         mapping->start = saddr;
1808         mapping->last = eaddr;
1809         mapping->offset = offset;
1810         mapping->flags = flags;
1811
1812         list_add(&mapping->list, &bo_va->invalids);
1813         amdgpu_vm_it_insert(mapping, &vm->va);
1814
1815         if (flags & AMDGPU_PTE_PRT)
1816                 amdgpu_vm_prt_get(adev);
1817
1818         return 0;
1819 }
1820
1821 /**
1822  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1823  *
1824  * @adev: amdgpu_device pointer
1825  * @bo_va: bo_va to store the address
1826  * @saddr: where to map the BO
1827  * @offset: requested offset in the BO
1828  * @flags: attributes of pages (read/write/valid/etc.)
1829  *
1830  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1831  * mappings as we do so.
1832  * Returns 0 for success, error for failure.
1833  *
1834  * Object has to be reserved and unreserved outside!
1835  */
1836 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1837                              struct amdgpu_bo_va *bo_va,
1838                              uint64_t saddr, uint64_t offset,
1839                              uint64_t size, uint64_t flags)
1840 {
1841         struct amdgpu_bo_va_mapping *mapping;
1842         struct amdgpu_vm *vm = bo_va->vm;
1843         uint64_t eaddr;
1844         int r;
1845
1846         /* validate the parameters */
1847         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1848             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1849                 return -EINVAL;
1850
1851         /* make sure object fit at this offset */
1852         eaddr = saddr + size - 1;
1853         if (saddr >= eaddr ||
1854             (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1855                 return -EINVAL;
1856
1857         /* Allocate all the needed memory */
1858         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1859         if (!mapping)
1860                 return -ENOMEM;
1861
1862         r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size);
1863         if (r) {
1864                 kfree(mapping);
1865                 return r;
1866         }
1867
1868         saddr /= AMDGPU_GPU_PAGE_SIZE;
1869         eaddr /= AMDGPU_GPU_PAGE_SIZE;
1870
1871         mapping->start = saddr;
1872         mapping->last = eaddr;
1873         mapping->offset = offset;
1874         mapping->flags = flags;
1875
1876         list_add(&mapping->list, &bo_va->invalids);
1877         amdgpu_vm_it_insert(mapping, &vm->va);
1878
1879         if (flags & AMDGPU_PTE_PRT)
1880                 amdgpu_vm_prt_get(adev);
1881
1882         return 0;
1883 }
1884
1885 /**
1886  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1887  *
1888  * @adev: amdgpu_device pointer
1889  * @bo_va: bo_va to remove the address from
1890  * @saddr: where to the BO is mapped
1891  *
1892  * Remove a mapping of the BO at the specefied addr from the VM.
1893  * Returns 0 for success, error for failure.
1894  *
1895  * Object has to be reserved and unreserved outside!
1896  */
1897 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1898                        struct amdgpu_bo_va *bo_va,
1899                        uint64_t saddr)
1900 {
1901         struct amdgpu_bo_va_mapping *mapping;
1902         struct amdgpu_vm *vm = bo_va->vm;
1903         bool valid = true;
1904
1905         saddr /= AMDGPU_GPU_PAGE_SIZE;
1906
1907         list_for_each_entry(mapping, &bo_va->valids, list) {
1908                 if (mapping->start == saddr)
1909                         break;
1910         }
1911
1912         if (&mapping->list == &bo_va->valids) {
1913                 valid = false;
1914
1915                 list_for_each_entry(mapping, &bo_va->invalids, list) {
1916                         if (mapping->start == saddr)
1917                                 break;
1918                 }
1919
1920                 if (&mapping->list == &bo_va->invalids)
1921                         return -ENOENT;
1922         }
1923
1924         list_del(&mapping->list);
1925         amdgpu_vm_it_remove(mapping, &vm->va);
1926         trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1927
1928         if (valid)
1929                 list_add(&mapping->list, &vm->freed);
1930         else
1931                 amdgpu_vm_free_mapping(adev, vm, mapping,
1932                                        bo_va->last_pt_update);
1933
1934         return 0;
1935 }
1936
1937 /**
1938  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1939  *
1940  * @adev: amdgpu_device pointer
1941  * @vm: VM structure to use
1942  * @saddr: start of the range
1943  * @size: size of the range
1944  *
1945  * Remove all mappings in a range, split them as appropriate.
1946  * Returns 0 for success, error for failure.
1947  */
1948 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1949                                 struct amdgpu_vm *vm,
1950                                 uint64_t saddr, uint64_t size)
1951 {
1952         struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1953         LIST_HEAD(removed);
1954         uint64_t eaddr;
1955
1956         eaddr = saddr + size - 1;
1957         saddr /= AMDGPU_GPU_PAGE_SIZE;
1958         eaddr /= AMDGPU_GPU_PAGE_SIZE;
1959
1960         /* Allocate all the needed memory */
1961         before = kzalloc(sizeof(*before), GFP_KERNEL);
1962         if (!before)
1963                 return -ENOMEM;
1964         INIT_LIST_HEAD(&before->list);
1965
1966         after = kzalloc(sizeof(*after), GFP_KERNEL);
1967         if (!after) {
1968                 kfree(before);
1969                 return -ENOMEM;
1970         }
1971         INIT_LIST_HEAD(&after->list);
1972
1973         /* Now gather all removed mappings */
1974         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1975         while (tmp) {
1976                 /* Remember mapping split at the start */
1977                 if (tmp->start < saddr) {
1978                         before->start = tmp->start;
1979                         before->last = saddr - 1;
1980                         before->offset = tmp->offset;
1981                         before->flags = tmp->flags;
1982                         list_add(&before->list, &tmp->list);
1983                 }
1984
1985                 /* Remember mapping split at the end */
1986                 if (tmp->last > eaddr) {
1987                         after->start = eaddr + 1;
1988                         after->last = tmp->last;
1989                         after->offset = tmp->offset;
1990                         after->offset += after->start - tmp->start;
1991                         after->flags = tmp->flags;
1992                         list_add(&after->list, &tmp->list);
1993                 }
1994
1995                 list_del(&tmp->list);
1996                 list_add(&tmp->list, &removed);
1997
1998                 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1999         }
2000
2001         /* And free them up */
2002         list_for_each_entry_safe(tmp, next, &removed, list) {
2003                 amdgpu_vm_it_remove(tmp, &vm->va);
2004                 list_del(&tmp->list);
2005
2006                 if (tmp->start < saddr)
2007                     tmp->start = saddr;
2008                 if (tmp->last > eaddr)
2009                     tmp->last = eaddr;
2010
2011                 list_add(&tmp->list, &vm->freed);
2012                 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2013         }
2014
2015         /* Insert partial mapping before the range */
2016         if (!list_empty(&before->list)) {
2017                 amdgpu_vm_it_insert(before, &vm->va);
2018                 if (before->flags & AMDGPU_PTE_PRT)
2019                         amdgpu_vm_prt_get(adev);
2020         } else {
2021                 kfree(before);
2022         }
2023
2024         /* Insert partial mapping after the range */
2025         if (!list_empty(&after->list)) {
2026                 amdgpu_vm_it_insert(after, &vm->va);
2027                 if (after->flags & AMDGPU_PTE_PRT)
2028                         amdgpu_vm_prt_get(adev);
2029         } else {
2030                 kfree(after);
2031         }
2032
2033         return 0;
2034 }
2035
2036 /**
2037  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2038  *
2039  * @adev: amdgpu_device pointer
2040  * @bo_va: requested bo_va
2041  *
2042  * Remove @bo_va->bo from the requested vm.
2043  *
2044  * Object have to be reserved!
2045  */
2046 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2047                       struct amdgpu_bo_va *bo_va)
2048 {
2049         struct amdgpu_bo_va_mapping *mapping, *next;
2050         struct amdgpu_vm *vm = bo_va->vm;
2051
2052         list_del(&bo_va->bo_list);
2053
2054         spin_lock(&vm->status_lock);
2055         list_del(&bo_va->vm_status);
2056         spin_unlock(&vm->status_lock);
2057
2058         list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2059                 list_del(&mapping->list);
2060                 amdgpu_vm_it_remove(mapping, &vm->va);
2061                 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2062                 list_add(&mapping->list, &vm->freed);
2063         }
2064         list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2065                 list_del(&mapping->list);
2066                 amdgpu_vm_it_remove(mapping, &vm->va);
2067                 amdgpu_vm_free_mapping(adev, vm, mapping,
2068                                        bo_va->last_pt_update);
2069         }
2070
2071         dma_fence_put(bo_va->last_pt_update);
2072         kfree(bo_va);
2073 }
2074
2075 /**
2076  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2077  *
2078  * @adev: amdgpu_device pointer
2079  * @vm: requested vm
2080  * @bo: amdgpu buffer object
2081  *
2082  * Mark @bo as invalid.
2083  */
2084 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2085                              struct amdgpu_bo *bo)
2086 {
2087         struct amdgpu_bo_va *bo_va;
2088
2089         list_for_each_entry(bo_va, &bo->va, bo_list) {
2090                 spin_lock(&bo_va->vm->status_lock);
2091                 if (list_empty(&bo_va->vm_status))
2092                         list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
2093                 spin_unlock(&bo_va->vm->status_lock);
2094         }
2095 }
2096
2097 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2098 {
2099         /* Total bits covered by PD + PTs */
2100         unsigned bits = ilog2(vm_size) + 18;
2101
2102         /* Make sure the PD is 4K in size up to 8GB address space.
2103            Above that split equal between PD and PTs */
2104         if (vm_size <= 8)
2105                 return (bits - 9);
2106         else
2107                 return ((bits + 3) / 2);
2108 }
2109
2110 /**
2111  * amdgpu_vm_adjust_size - adjust vm size and block size
2112  *
2113  * @adev: amdgpu_device pointer
2114  * @vm_size: the default vm size if it's set auto
2115  */
2116 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size)
2117 {
2118         /* adjust vm size firstly */
2119         if (amdgpu_vm_size == -1)
2120                 adev->vm_manager.vm_size = vm_size;
2121         else
2122                 adev->vm_manager.vm_size = amdgpu_vm_size;
2123
2124         /* block size depends on vm size */
2125         if (amdgpu_vm_block_size == -1)
2126                 adev->vm_manager.block_size =
2127                         amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2128         else
2129                 adev->vm_manager.block_size = amdgpu_vm_block_size;
2130
2131         DRM_INFO("vm size is %llu GB, block size is %u-bit\n",
2132                 adev->vm_manager.vm_size, adev->vm_manager.block_size);
2133 }
2134
2135 /**
2136  * amdgpu_vm_init - initialize a vm instance
2137  *
2138  * @adev: amdgpu_device pointer
2139  * @vm: requested vm
2140  *
2141  * Init @vm fields.
2142  */
2143 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2144 {
2145         const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2146                 AMDGPU_VM_PTE_COUNT(adev) * 8);
2147         unsigned ring_instance;
2148         struct amdgpu_ring *ring;
2149         struct amd_sched_rq *rq;
2150         int r;
2151
2152         vm->va = RB_ROOT;
2153         vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2154         spin_lock_init(&vm->status_lock);
2155         INIT_LIST_HEAD(&vm->invalidated);
2156         INIT_LIST_HEAD(&vm->cleared);
2157         INIT_LIST_HEAD(&vm->freed);
2158
2159         /* create scheduler entity for page table updates */
2160
2161         ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2162         ring_instance %= adev->vm_manager.vm_pte_num_rings;
2163         ring = adev->vm_manager.vm_pte_rings[ring_instance];
2164         rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2165         r = amd_sched_entity_init(&ring->sched, &vm->entity,
2166                                   rq, amdgpu_sched_jobs);
2167         if (r)
2168                 return r;
2169
2170         vm->last_dir_update = NULL;
2171
2172         r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2173                              AMDGPU_GEM_DOMAIN_VRAM,
2174                              AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2175                              AMDGPU_GEM_CREATE_SHADOW |
2176                              AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2177                              AMDGPU_GEM_CREATE_VRAM_CLEARED,
2178                              NULL, NULL, &vm->root.bo);
2179         if (r)
2180                 goto error_free_sched_entity;
2181
2182         r = amdgpu_bo_reserve(vm->root.bo, false);
2183         if (r)
2184                 goto error_free_root;
2185
2186         vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2187         amdgpu_bo_unreserve(vm->root.bo);
2188
2189         return 0;
2190
2191 error_free_root:
2192         amdgpu_bo_unref(&vm->root.bo->shadow);
2193         amdgpu_bo_unref(&vm->root.bo);
2194         vm->root.bo = NULL;
2195
2196 error_free_sched_entity:
2197         amd_sched_entity_fini(&ring->sched, &vm->entity);
2198
2199         return r;
2200 }
2201
2202 /**
2203  * amdgpu_vm_free_levels - free PD/PT levels
2204  *
2205  * @level: PD/PT starting level to free
2206  *
2207  * Free the page directory or page table level and all sub levels.
2208  */
2209 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2210 {
2211         unsigned i;
2212
2213         if (level->bo) {
2214                 amdgpu_bo_unref(&level->bo->shadow);
2215                 amdgpu_bo_unref(&level->bo);
2216         }
2217
2218         if (level->entries)
2219                 for (i = 0; i <= level->last_entry_used; i++)
2220                         amdgpu_vm_free_levels(&level->entries[i]);
2221
2222         drm_free_large(level->entries);
2223 }
2224
2225 /**
2226  * amdgpu_vm_fini - tear down a vm instance
2227  *
2228  * @adev: amdgpu_device pointer
2229  * @vm: requested vm
2230  *
2231  * Tear down @vm.
2232  * Unbind the VM and remove all bos from the vm bo list
2233  */
2234 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2235 {
2236         struct amdgpu_bo_va_mapping *mapping, *tmp;
2237         bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2238
2239         amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2240
2241         if (!RB_EMPTY_ROOT(&vm->va)) {
2242                 dev_err(adev->dev, "still active bo inside vm\n");
2243         }
2244         rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2245                 list_del(&mapping->list);
2246                 amdgpu_vm_it_remove(mapping, &vm->va);
2247                 kfree(mapping);
2248         }
2249         list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2250                 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2251                         amdgpu_vm_prt_fini(adev, vm);
2252                         prt_fini_needed = false;
2253                 }
2254
2255                 list_del(&mapping->list);
2256                 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2257         }
2258
2259         amdgpu_vm_free_levels(&vm->root);
2260         dma_fence_put(vm->last_dir_update);
2261 }
2262
2263 /**
2264  * amdgpu_vm_manager_init - init the VM manager
2265  *
2266  * @adev: amdgpu_device pointer
2267  *
2268  * Initialize the VM manager structures
2269  */
2270 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2271 {
2272         unsigned i, j;
2273
2274         for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2275                 struct amdgpu_vm_id_manager *id_mgr =
2276                         &adev->vm_manager.id_mgr[i];
2277
2278                 mutex_init(&id_mgr->lock);
2279                 INIT_LIST_HEAD(&id_mgr->ids_lru);
2280
2281                 /* skip over VMID 0, since it is the system VM */
2282                 for (j = 1; j < id_mgr->num_ids; ++j) {
2283                         amdgpu_vm_reset_id(adev, i, j);
2284                         amdgpu_sync_create(&id_mgr->ids[i].active);
2285                         list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2286                 }
2287         }
2288
2289         adev->vm_manager.fence_context =
2290                 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2291         for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2292                 adev->vm_manager.seqno[i] = 0;
2293
2294         atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2295         atomic64_set(&adev->vm_manager.client_counter, 0);
2296         spin_lock_init(&adev->vm_manager.prt_lock);
2297         atomic_set(&adev->vm_manager.num_prt_users, 0);
2298 }
2299
2300 /**
2301  * amdgpu_vm_manager_fini - cleanup VM manager
2302  *
2303  * @adev: amdgpu_device pointer
2304  *
2305  * Cleanup the VM manager and free resources.
2306  */
2307 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2308 {
2309         unsigned i, j;
2310
2311         for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2312                 struct amdgpu_vm_id_manager *id_mgr =
2313                         &adev->vm_manager.id_mgr[i];
2314
2315                 mutex_destroy(&id_mgr->lock);
2316                 for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2317                         struct amdgpu_vm_id *id = &id_mgr->ids[j];
2318
2319                         amdgpu_sync_free(&id->active);
2320                         dma_fence_put(id->flushed_updates);
2321                         dma_fence_put(id->last_flush);
2322                 }
2323         }
2324 }