]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/amd/amdgpu/gmc_v8_0.c
Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[karo-tx-linux.git] / drivers / gpu / drm / amd / amdgpu / gmc_v8_0.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/firmware.h>
24 #include "drmP.h"
25 #include "amdgpu.h"
26 #include "gmc_v8_0.h"
27 #include "amdgpu_ucode.h"
28
29 #include "gmc/gmc_8_1_d.h"
30 #include "gmc/gmc_8_1_sh_mask.h"
31
32 #include "bif/bif_5_0_d.h"
33 #include "bif/bif_5_0_sh_mask.h"
34
35 #include "oss/oss_3_0_d.h"
36 #include "oss/oss_3_0_sh_mask.h"
37
38 #include "vid.h"
39 #include "vi.h"
40
41 #include "amdgpu_atombios.h"
42
43
44 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev);
45 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev);
46 static int gmc_v8_0_wait_for_idle(void *handle);
47
48 MODULE_FIRMWARE("amdgpu/tonga_mc.bin");
49 MODULE_FIRMWARE("amdgpu/polaris11_mc.bin");
50 MODULE_FIRMWARE("amdgpu/polaris10_mc.bin");
51 MODULE_FIRMWARE("amdgpu/polaris12_mc.bin");
52
53 static const u32 golden_settings_tonga_a11[] =
54 {
55         mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
56         mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028,
57         mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991,
58         mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
59         mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
60         mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
61         mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
62 };
63
64 static const u32 tonga_mgcg_cgcg_init[] =
65 {
66         mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
67 };
68
69 static const u32 golden_settings_fiji_a10[] =
70 {
71         mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
72         mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
73         mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
74         mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff,
75 };
76
77 static const u32 fiji_mgcg_cgcg_init[] =
78 {
79         mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
80 };
81
82 static const u32 golden_settings_polaris11_a11[] =
83 {
84         mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
85         mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
86         mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
87         mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
88 };
89
90 static const u32 golden_settings_polaris10_a11[] =
91 {
92         mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000,
93         mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff,
94         mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff,
95         mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff,
96         mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff
97 };
98
99 static const u32 cz_mgcg_cgcg_init[] =
100 {
101         mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
102 };
103
104 static const u32 stoney_mgcg_cgcg_init[] =
105 {
106         mmATC_MISC_CG, 0xffffffff, 0x000c0200,
107         mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104
108 };
109
110 static const u32 golden_settings_stoney_common[] =
111 {
112         mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004,
113         mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000
114 };
115
116 static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev)
117 {
118         switch (adev->asic_type) {
119         case CHIP_FIJI:
120                 amdgpu_program_register_sequence(adev,
121                                                  fiji_mgcg_cgcg_init,
122                                                  (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
123                 amdgpu_program_register_sequence(adev,
124                                                  golden_settings_fiji_a10,
125                                                  (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
126                 break;
127         case CHIP_TONGA:
128                 amdgpu_program_register_sequence(adev,
129                                                  tonga_mgcg_cgcg_init,
130                                                  (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
131                 amdgpu_program_register_sequence(adev,
132                                                  golden_settings_tonga_a11,
133                                                  (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
134                 break;
135         case CHIP_POLARIS11:
136         case CHIP_POLARIS12:
137                 amdgpu_program_register_sequence(adev,
138                                                  golden_settings_polaris11_a11,
139                                                  (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
140                 break;
141         case CHIP_POLARIS10:
142                 amdgpu_program_register_sequence(adev,
143                                                  golden_settings_polaris10_a11,
144                                                  (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
145                 break;
146         case CHIP_CARRIZO:
147                 amdgpu_program_register_sequence(adev,
148                                                  cz_mgcg_cgcg_init,
149                                                  (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
150                 break;
151         case CHIP_STONEY:
152                 amdgpu_program_register_sequence(adev,
153                                                  stoney_mgcg_cgcg_init,
154                                                  (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
155                 amdgpu_program_register_sequence(adev,
156                                                  golden_settings_stoney_common,
157                                                  (const u32)ARRAY_SIZE(golden_settings_stoney_common));
158                 break;
159         default:
160                 break;
161         }
162 }
163
164 static void gmc_v8_0_mc_stop(struct amdgpu_device *adev,
165                              struct amdgpu_mode_mc_save *save)
166 {
167         u32 blackout;
168
169         if (adev->mode_info.num_crtc)
170                 amdgpu_display_stop_mc_access(adev, save);
171
172         gmc_v8_0_wait_for_idle(adev);
173
174         blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
175         if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
176                 /* Block CPU access */
177                 WREG32(mmBIF_FB_EN, 0);
178                 /* blackout the MC */
179                 blackout = REG_SET_FIELD(blackout,
180                                          MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1);
181                 WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout);
182         }
183         /* wait for the MC to settle */
184         udelay(100);
185 }
186
187 static void gmc_v8_0_mc_resume(struct amdgpu_device *adev,
188                                struct amdgpu_mode_mc_save *save)
189 {
190         u32 tmp;
191
192         /* unblackout the MC */
193         tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
194         tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
195         WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp);
196         /* allow CPU access */
197         tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1);
198         tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1);
199         WREG32(mmBIF_FB_EN, tmp);
200
201         if (adev->mode_info.num_crtc)
202                 amdgpu_display_resume_mc_access(adev, save);
203 }
204
205 /**
206  * gmc_v8_0_init_microcode - load ucode images from disk
207  *
208  * @adev: amdgpu_device pointer
209  *
210  * Use the firmware interface to load the ucode images into
211  * the driver (not loaded into hw).
212  * Returns 0 on success, error on failure.
213  */
214 static int gmc_v8_0_init_microcode(struct amdgpu_device *adev)
215 {
216         const char *chip_name;
217         char fw_name[30];
218         int err;
219
220         DRM_DEBUG("\n");
221
222         switch (adev->asic_type) {
223         case CHIP_TONGA:
224                 chip_name = "tonga";
225                 break;
226         case CHIP_POLARIS11:
227                 chip_name = "polaris11";
228                 break;
229         case CHIP_POLARIS10:
230                 chip_name = "polaris10";
231                 break;
232         case CHIP_POLARIS12:
233                 chip_name = "polaris12";
234                 break;
235         case CHIP_FIJI:
236         case CHIP_CARRIZO:
237         case CHIP_STONEY:
238                 return 0;
239         default: BUG();
240         }
241
242         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name);
243         err = request_firmware(&adev->mc.fw, fw_name, adev->dev);
244         if (err)
245                 goto out;
246         err = amdgpu_ucode_validate(adev->mc.fw);
247
248 out:
249         if (err) {
250                 pr_err("mc: Failed to load firmware \"%s\"\n", fw_name);
251                 release_firmware(adev->mc.fw);
252                 adev->mc.fw = NULL;
253         }
254         return err;
255 }
256
257 /**
258  * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw
259  *
260  * @adev: amdgpu_device pointer
261  *
262  * Load the GDDR MC ucode into the hw (CIK).
263  * Returns 0 on success, error on failure.
264  */
265 static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev)
266 {
267         const struct mc_firmware_header_v1_0 *hdr;
268         const __le32 *fw_data = NULL;
269         const __le32 *io_mc_regs = NULL;
270         u32 running;
271         int i, ucode_size, regs_size;
272
273         /* Skip MC ucode loading on SR-IOV capable boards.
274          * vbios does this for us in asic_init in that case.
275          * Skip MC ucode loading on VF, because hypervisor will do that
276          * for this adaptor.
277          */
278         if (amdgpu_sriov_bios(adev))
279                 return 0;
280
281         if (!adev->mc.fw)
282                 return -EINVAL;
283
284         hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
285         amdgpu_ucode_print_mc_hdr(&hdr->header);
286
287         adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
288         regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
289         io_mc_regs = (const __le32 *)
290                 (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
291         ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
292         fw_data = (const __le32 *)
293                 (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
294
295         running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN);
296
297         if (running == 0) {
298                 /* reset the engine and set to writable */
299                 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
300                 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
301
302                 /* load mc io regs */
303                 for (i = 0; i < regs_size; i++) {
304                         WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
305                         WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
306                 }
307                 /* load the MC ucode */
308                 for (i = 0; i < ucode_size; i++)
309                         WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
310
311                 /* put the engine back into the active state */
312                 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
313                 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
314                 WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
315
316                 /* wait for training to complete */
317                 for (i = 0; i < adev->usec_timeout; i++) {
318                         if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
319                                           MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0))
320                                 break;
321                         udelay(1);
322                 }
323                 for (i = 0; i < adev->usec_timeout; i++) {
324                         if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL),
325                                           MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1))
326                                 break;
327                         udelay(1);
328                 }
329         }
330
331         return 0;
332 }
333
334 static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev)
335 {
336         const struct mc_firmware_header_v1_0 *hdr;
337         const __le32 *fw_data = NULL;
338         const __le32 *io_mc_regs = NULL;
339         u32 data, vbios_version;
340         int i, ucode_size, regs_size;
341
342         /* Skip MC ucode loading on SR-IOV capable boards.
343          * vbios does this for us in asic_init in that case.
344          * Skip MC ucode loading on VF, because hypervisor will do that
345          * for this adaptor.
346          */
347         if (amdgpu_sriov_bios(adev))
348                 return 0;
349
350         WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
351         data = RREG32(mmMC_SEQ_IO_DEBUG_DATA);
352         vbios_version = data & 0xf;
353
354         if (vbios_version == 0)
355                 return 0;
356
357         if (!adev->mc.fw)
358                 return -EINVAL;
359
360         hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data;
361         amdgpu_ucode_print_mc_hdr(&hdr->header);
362
363         adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version);
364         regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2);
365         io_mc_regs = (const __le32 *)
366                 (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes));
367         ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
368         fw_data = (const __le32 *)
369                 (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
370
371         data = RREG32(mmMC_SEQ_MISC0);
372         data &= ~(0x40);
373         WREG32(mmMC_SEQ_MISC0, data);
374
375         /* load mc io regs */
376         for (i = 0; i < regs_size; i++) {
377                 WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++));
378                 WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++));
379         }
380
381         WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
382         WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010);
383
384         /* load the MC ucode */
385         for (i = 0; i < ucode_size; i++)
386                 WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++));
387
388         /* put the engine back into the active state */
389         WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008);
390         WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004);
391         WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001);
392
393         /* wait for training to complete */
394         for (i = 0; i < adev->usec_timeout; i++) {
395                 data = RREG32(mmMC_SEQ_MISC0);
396                 if (data & 0x80)
397                         break;
398                 udelay(1);
399         }
400
401         return 0;
402 }
403
404 static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev,
405                                        struct amdgpu_mc *mc)
406 {
407         if (mc->mc_vram_size > 0xFFC0000000ULL) {
408                 /* leave room for at least 1024M GTT */
409                 dev_warn(adev->dev, "limiting VRAM\n");
410                 mc->real_vram_size = 0xFFC0000000ULL;
411                 mc->mc_vram_size = 0xFFC0000000ULL;
412         }
413         amdgpu_vram_location(adev, &adev->mc, 0);
414         adev->mc.gtt_base_align = 0;
415         amdgpu_gtt_location(adev, mc);
416 }
417
418 /**
419  * gmc_v8_0_mc_program - program the GPU memory controller
420  *
421  * @adev: amdgpu_device pointer
422  *
423  * Set the location of vram, gart, and AGP in the GPU's
424  * physical address space (CIK).
425  */
426 static void gmc_v8_0_mc_program(struct amdgpu_device *adev)
427 {
428         struct amdgpu_mode_mc_save save;
429         u32 tmp;
430         int i, j;
431
432         /* Initialize HDP */
433         for (i = 0, j = 0; i < 32; i++, j += 0x6) {
434                 WREG32((0xb05 + j), 0x00000000);
435                 WREG32((0xb06 + j), 0x00000000);
436                 WREG32((0xb07 + j), 0x00000000);
437                 WREG32((0xb08 + j), 0x00000000);
438                 WREG32((0xb09 + j), 0x00000000);
439         }
440         WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0);
441
442         if (adev->mode_info.num_crtc)
443                 amdgpu_display_set_vga_render_state(adev, false);
444
445         gmc_v8_0_mc_stop(adev, &save);
446         if (gmc_v8_0_wait_for_idle((void *)adev)) {
447                 dev_warn(adev->dev, "Wait for MC idle timedout !\n");
448         }
449         /* Update configuration */
450         WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR,
451                adev->mc.vram_start >> 12);
452         WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR,
453                adev->mc.vram_end >> 12);
454         WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
455                adev->vram_scratch.gpu_addr >> 12);
456         tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16;
457         tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF);
458         WREG32(mmMC_VM_FB_LOCATION, tmp);
459         /* XXX double check these! */
460         WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8));
461         WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
462         WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF);
463         WREG32(mmMC_VM_AGP_BASE, 0);
464         WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF);
465         WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF);
466         if (gmc_v8_0_wait_for_idle((void *)adev)) {
467                 dev_warn(adev->dev, "Wait for MC idle timedout !\n");
468         }
469         gmc_v8_0_mc_resume(adev, &save);
470
471         WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK);
472
473         tmp = RREG32(mmHDP_MISC_CNTL);
474         tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0);
475         WREG32(mmHDP_MISC_CNTL, tmp);
476
477         tmp = RREG32(mmHDP_HOST_PATH_CNTL);
478         WREG32(mmHDP_HOST_PATH_CNTL, tmp);
479 }
480
481 /**
482  * gmc_v8_0_mc_init - initialize the memory controller driver params
483  *
484  * @adev: amdgpu_device pointer
485  *
486  * Look up the amount of vram, vram width, and decide how to place
487  * vram and gart within the GPU's physical address space (CIK).
488  * Returns 0 for success.
489  */
490 static int gmc_v8_0_mc_init(struct amdgpu_device *adev)
491 {
492         adev->mc.vram_width = amdgpu_atombios_get_vram_width(adev);
493         if (!adev->mc.vram_width) {
494                 u32 tmp;
495                 int chansize, numchan;
496
497                 /* Get VRAM informations */
498                 tmp = RREG32(mmMC_ARB_RAMCFG);
499                 if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) {
500                         chansize = 64;
501                 } else {
502                         chansize = 32;
503                 }
504                 tmp = RREG32(mmMC_SHARED_CHMAP);
505                 switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) {
506                 case 0:
507                 default:
508                         numchan = 1;
509                         break;
510                 case 1:
511                         numchan = 2;
512                         break;
513                 case 2:
514                         numchan = 4;
515                         break;
516                 case 3:
517                         numchan = 8;
518                         break;
519                 case 4:
520                         numchan = 3;
521                         break;
522                 case 5:
523                         numchan = 6;
524                         break;
525                 case 6:
526                         numchan = 10;
527                         break;
528                 case 7:
529                         numchan = 12;
530                         break;
531                 case 8:
532                         numchan = 16;
533                         break;
534                 }
535                 adev->mc.vram_width = numchan * chansize;
536         }
537         /* Could aper size report 0 ? */
538         adev->mc.aper_base = pci_resource_start(adev->pdev, 0);
539         adev->mc.aper_size = pci_resource_len(adev->pdev, 0);
540         /* size in MB on si */
541         adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
542         adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL;
543
544 #ifdef CONFIG_X86_64
545         if (adev->flags & AMD_IS_APU) {
546                 adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22;
547                 adev->mc.aper_size = adev->mc.real_vram_size;
548         }
549 #endif
550
551         /* In case the PCI BAR is larger than the actual amount of vram */
552         adev->mc.visible_vram_size = adev->mc.aper_size;
553         if (adev->mc.visible_vram_size > adev->mc.real_vram_size)
554                 adev->mc.visible_vram_size = adev->mc.real_vram_size;
555
556         /* unless the user had overridden it, set the gart
557          * size equal to the 1024 or vram, whichever is larger.
558          */
559         if (amdgpu_gart_size == -1)
560                 adev->mc.gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
561                                         adev->mc.mc_vram_size);
562         else
563                 adev->mc.gtt_size = (uint64_t)amdgpu_gart_size << 20;
564
565         gmc_v8_0_vram_gtt_location(adev, &adev->mc);
566
567         return 0;
568 }
569
570 /*
571  * GART
572  * VMID 0 is the physical GPU addresses as used by the kernel.
573  * VMIDs 1-15 are used for userspace clients and are handled
574  * by the amdgpu vm/hsa code.
575  */
576
577 /**
578  * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback
579  *
580  * @adev: amdgpu_device pointer
581  * @vmid: vm instance to flush
582  *
583  * Flush the TLB for the requested page table (CIK).
584  */
585 static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev,
586                                         uint32_t vmid)
587 {
588         /* flush hdp cache */
589         WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0);
590
591         /* bits 0-15 are the VM contexts0-15 */
592         WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
593 }
594
595 /**
596  * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO
597  *
598  * @adev: amdgpu_device pointer
599  * @cpu_pt_addr: cpu address of the page table
600  * @gpu_page_idx: entry in the page table to update
601  * @addr: dst addr to write into pte/pde
602  * @flags: access flags
603  *
604  * Update the page tables using the CPU.
605  */
606 static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev,
607                                      void *cpu_pt_addr,
608                                      uint32_t gpu_page_idx,
609                                      uint64_t addr,
610                                      uint64_t flags)
611 {
612         void __iomem *ptr = (void *)cpu_pt_addr;
613         uint64_t value;
614
615         /*
616          * PTE format on VI:
617          * 63:40 reserved
618          * 39:12 4k physical page base address
619          * 11:7 fragment
620          * 6 write
621          * 5 read
622          * 4 exe
623          * 3 reserved
624          * 2 snooped
625          * 1 system
626          * 0 valid
627          *
628          * PDE format on VI:
629          * 63:59 block fragment size
630          * 58:40 reserved
631          * 39:1 physical base address of PTE
632          * bits 5:1 must be 0.
633          * 0 valid
634          */
635         value = addr & 0x000000FFFFFFF000ULL;
636         value |= flags;
637         writeq(value, ptr + (gpu_page_idx * 8));
638
639         return 0;
640 }
641
642 static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev,
643                                           uint32_t flags)
644 {
645         uint64_t pte_flag = 0;
646
647         if (flags & AMDGPU_VM_PAGE_EXECUTABLE)
648                 pte_flag |= AMDGPU_PTE_EXECUTABLE;
649         if (flags & AMDGPU_VM_PAGE_READABLE)
650                 pte_flag |= AMDGPU_PTE_READABLE;
651         if (flags & AMDGPU_VM_PAGE_WRITEABLE)
652                 pte_flag |= AMDGPU_PTE_WRITEABLE;
653         if (flags & AMDGPU_VM_PAGE_PRT)
654                 pte_flag |= AMDGPU_PTE_PRT;
655
656         return pte_flag;
657 }
658
659 /**
660  * gmc_v8_0_set_fault_enable_default - update VM fault handling
661  *
662  * @adev: amdgpu_device pointer
663  * @value: true redirects VM faults to the default page
664  */
665 static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev,
666                                               bool value)
667 {
668         u32 tmp;
669
670         tmp = RREG32(mmVM_CONTEXT1_CNTL);
671         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
672                             RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
673         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
674                             DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
675         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
676                             PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
677         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
678                             VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
679         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
680                             READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
681         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
682                             WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
683         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
684                             EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
685         WREG32(mmVM_CONTEXT1_CNTL, tmp);
686 }
687
688 /**
689  * gmc_v8_0_set_prt - set PRT VM fault
690  *
691  * @adev: amdgpu_device pointer
692  * @enable: enable/disable VM fault handling for PRT
693 */
694 static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable)
695 {
696         u32 tmp;
697
698         if (enable && !adev->mc.prt_warning) {
699                 dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
700                 adev->mc.prt_warning = true;
701         }
702
703         tmp = RREG32(mmVM_PRT_CNTL);
704         tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
705                             CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
706         tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
707                             CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
708         tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
709                             TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
710         tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
711                             TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
712         tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
713                             L2_CACHE_STORE_INVALID_ENTRIES, enable);
714         tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
715                             L1_TLB_STORE_INVALID_ENTRIES, enable);
716         tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
717                             MASK_PDE0_FAULT, enable);
718         WREG32(mmVM_PRT_CNTL, tmp);
719
720         if (enable) {
721                 uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
722                 uint32_t high = adev->vm_manager.max_pfn;
723
724                 WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
725                 WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
726                 WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
727                 WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
728                 WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
729                 WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
730                 WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
731                 WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
732         } else {
733                 WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff);
734                 WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff);
735                 WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff);
736                 WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff);
737                 WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0);
738                 WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0);
739                 WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0);
740                 WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0);
741         }
742 }
743
744 /**
745  * gmc_v8_0_gart_enable - gart enable
746  *
747  * @adev: amdgpu_device pointer
748  *
749  * This sets up the TLBs, programs the page tables for VMID0,
750  * sets up the hw for VMIDs 1-15 which are allocated on
751  * demand, and sets up the global locations for the LDS, GDS,
752  * and GPUVM for FSA64 clients (CIK).
753  * Returns 0 for success, errors for failure.
754  */
755 static int gmc_v8_0_gart_enable(struct amdgpu_device *adev)
756 {
757         int r, i;
758         u32 tmp;
759
760         if (adev->gart.robj == NULL) {
761                 dev_err(adev->dev, "No VRAM object for PCIE GART.\n");
762                 return -EINVAL;
763         }
764         r = amdgpu_gart_table_vram_pin(adev);
765         if (r)
766                 return r;
767         /* Setup TLB control */
768         tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
769         tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1);
770         tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1);
771         tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3);
772         tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1);
773         tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0);
774         WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
775         /* Setup L2 cache */
776         tmp = RREG32(mmVM_L2_CNTL);
777         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1);
778         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1);
779         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1);
780         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1);
781         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7);
782         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1);
783         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1);
784         WREG32(mmVM_L2_CNTL, tmp);
785         tmp = RREG32(mmVM_L2_CNTL2);
786         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1);
787         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1);
788         WREG32(mmVM_L2_CNTL2, tmp);
789         tmp = RREG32(mmVM_L2_CNTL3);
790         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1);
791         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4);
792         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4);
793         WREG32(mmVM_L2_CNTL3, tmp);
794         /* XXX: set to enable PTE/PDE in system memory */
795         tmp = RREG32(mmVM_L2_CNTL4);
796         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0);
797         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0);
798         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0);
799         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0);
800         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0);
801         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0);
802         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0);
803         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0);
804         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0);
805         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0);
806         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0);
807         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0);
808         WREG32(mmVM_L2_CNTL4, tmp);
809         /* setup context0 */
810         WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12);
811         WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gtt_end >> 12);
812         WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12);
813         WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
814                         (u32)(adev->dummy_page.addr >> 12));
815         WREG32(mmVM_CONTEXT0_CNTL2, 0);
816         tmp = RREG32(mmVM_CONTEXT0_CNTL);
817         tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1);
818         tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0);
819         tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
820         WREG32(mmVM_CONTEXT0_CNTL, tmp);
821
822         WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0);
823         WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0);
824         WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0);
825
826         /* empty context1-15 */
827         /* FIXME start with 4G, once using 2 level pt switch to full
828          * vm size space
829          */
830         /* set vm size, must be a multiple of 4 */
831         WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
832         WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1);
833         for (i = 1; i < 16; i++) {
834                 if (i < 8)
835                         WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i,
836                                adev->gart.table_addr >> 12);
837                 else
838                         WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8,
839                                adev->gart.table_addr >> 12);
840         }
841
842         /* enable context1-15 */
843         WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
844                (u32)(adev->dummy_page.addr >> 12));
845         WREG32(mmVM_CONTEXT1_CNTL2, 4);
846         tmp = RREG32(mmVM_CONTEXT1_CNTL);
847         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1);
848         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1);
849         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
850         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
851         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
852         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
853         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
854         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
855         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1);
856         tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE,
857                             adev->vm_manager.block_size - 9);
858         WREG32(mmVM_CONTEXT1_CNTL, tmp);
859         if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS)
860                 gmc_v8_0_set_fault_enable_default(adev, false);
861         else
862                 gmc_v8_0_set_fault_enable_default(adev, true);
863
864         gmc_v8_0_gart_flush_gpu_tlb(adev, 0);
865         DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
866                  (unsigned)(adev->mc.gtt_size >> 20),
867                  (unsigned long long)adev->gart.table_addr);
868         adev->gart.ready = true;
869         return 0;
870 }
871
872 static int gmc_v8_0_gart_init(struct amdgpu_device *adev)
873 {
874         int r;
875
876         if (adev->gart.robj) {
877                 WARN(1, "R600 PCIE GART already initialized\n");
878                 return 0;
879         }
880         /* Initialize common gart structure */
881         r = amdgpu_gart_init(adev);
882         if (r)
883                 return r;
884         adev->gart.table_size = adev->gart.num_gpu_pages * 8;
885         adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE;
886         return amdgpu_gart_table_vram_alloc(adev);
887 }
888
889 /**
890  * gmc_v8_0_gart_disable - gart disable
891  *
892  * @adev: amdgpu_device pointer
893  *
894  * This disables all VM page table (CIK).
895  */
896 static void gmc_v8_0_gart_disable(struct amdgpu_device *adev)
897 {
898         u32 tmp;
899
900         /* Disable all tables */
901         WREG32(mmVM_CONTEXT0_CNTL, 0);
902         WREG32(mmVM_CONTEXT1_CNTL, 0);
903         /* Setup TLB control */
904         tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL);
905         tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0);
906         tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0);
907         tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0);
908         WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp);
909         /* Setup L2 cache */
910         tmp = RREG32(mmVM_L2_CNTL);
911         tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0);
912         WREG32(mmVM_L2_CNTL, tmp);
913         WREG32(mmVM_L2_CNTL2, 0);
914         amdgpu_gart_table_vram_unpin(adev);
915 }
916
917 /**
918  * gmc_v8_0_gart_fini - vm fini callback
919  *
920  * @adev: amdgpu_device pointer
921  *
922  * Tears down the driver GART/VM setup (CIK).
923  */
924 static void gmc_v8_0_gart_fini(struct amdgpu_device *adev)
925 {
926         amdgpu_gart_table_vram_free(adev);
927         amdgpu_gart_fini(adev);
928 }
929
930 /*
931  * vm
932  * VMID 0 is the physical GPU addresses as used by the kernel.
933  * VMIDs 1-15 are used for userspace clients and are handled
934  * by the amdgpu vm/hsa code.
935  */
936 /**
937  * gmc_v8_0_vm_init - cik vm init callback
938  *
939  * @adev: amdgpu_device pointer
940  *
941  * Inits cik specific vm parameters (number of VMs, base of vram for
942  * VMIDs 1-15) (CIK).
943  * Returns 0 for success.
944  */
945 static int gmc_v8_0_vm_init(struct amdgpu_device *adev)
946 {
947         /*
948          * number of VMs
949          * VMID 0 is reserved for System
950          * amdgpu graphics/compute will use VMIDs 1-7
951          * amdkfd will use VMIDs 8-15
952          */
953         adev->vm_manager.id_mgr[0].num_ids = AMDGPU_NUM_OF_VMIDS;
954         adev->vm_manager.num_level = 1;
955         amdgpu_vm_manager_init(adev);
956
957         /* base offset of vram pages */
958         if (adev->flags & AMD_IS_APU) {
959                 u64 tmp = RREG32(mmMC_VM_FB_OFFSET);
960                 tmp <<= 22;
961                 adev->vm_manager.vram_base_offset = tmp;
962         } else
963                 adev->vm_manager.vram_base_offset = 0;
964
965         return 0;
966 }
967
968 /**
969  * gmc_v8_0_vm_fini - cik vm fini callback
970  *
971  * @adev: amdgpu_device pointer
972  *
973  * Tear down any asic specific VM setup (CIK).
974  */
975 static void gmc_v8_0_vm_fini(struct amdgpu_device *adev)
976 {
977 }
978
979 /**
980  * gmc_v8_0_vm_decode_fault - print human readable fault info
981  *
982  * @adev: amdgpu_device pointer
983  * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value
984  * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value
985  *
986  * Print human readable fault information (CIK).
987  */
988 static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev,
989                                      u32 status, u32 addr, u32 mc_client)
990 {
991         u32 mc_id;
992         u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
993         u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
994                                         PROTECTIONS);
995         char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff,
996                 (mc_client >> 8) & 0xff, mc_client & 0xff, 0 };
997
998         mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
999                               MEMORY_CLIENT_ID);
1000
1001         dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n",
1002                protections, vmid, addr,
1003                REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS,
1004                              MEMORY_CLIENT_RW) ?
1005                "write" : "read", block, mc_client, mc_id);
1006 }
1007
1008 static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type)
1009 {
1010         switch (mc_seq_vram_type) {
1011         case MC_SEQ_MISC0__MT__GDDR1:
1012                 return AMDGPU_VRAM_TYPE_GDDR1;
1013         case MC_SEQ_MISC0__MT__DDR2:
1014                 return AMDGPU_VRAM_TYPE_DDR2;
1015         case MC_SEQ_MISC0__MT__GDDR3:
1016                 return AMDGPU_VRAM_TYPE_GDDR3;
1017         case MC_SEQ_MISC0__MT__GDDR4:
1018                 return AMDGPU_VRAM_TYPE_GDDR4;
1019         case MC_SEQ_MISC0__MT__GDDR5:
1020                 return AMDGPU_VRAM_TYPE_GDDR5;
1021         case MC_SEQ_MISC0__MT__HBM:
1022                 return AMDGPU_VRAM_TYPE_HBM;
1023         case MC_SEQ_MISC0__MT__DDR3:
1024                 return AMDGPU_VRAM_TYPE_DDR3;
1025         default:
1026                 return AMDGPU_VRAM_TYPE_UNKNOWN;
1027         }
1028 }
1029
1030 static int gmc_v8_0_early_init(void *handle)
1031 {
1032         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1033
1034         gmc_v8_0_set_gart_funcs(adev);
1035         gmc_v8_0_set_irq_funcs(adev);
1036
1037         adev->mc.shared_aperture_start = 0x2000000000000000ULL;
1038         adev->mc.shared_aperture_end =
1039                 adev->mc.shared_aperture_start + (4ULL << 30) - 1;
1040         adev->mc.private_aperture_start =
1041                 adev->mc.shared_aperture_end + 1;
1042         adev->mc.private_aperture_end =
1043                 adev->mc.private_aperture_start + (4ULL << 30) - 1;
1044
1045         return 0;
1046 }
1047
1048 static int gmc_v8_0_late_init(void *handle)
1049 {
1050         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1051
1052         if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS)
1053                 return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0);
1054         else
1055                 return 0;
1056 }
1057
1058 #define mmMC_SEQ_MISC0_FIJI 0xA71
1059
1060 static int gmc_v8_0_sw_init(void *handle)
1061 {
1062         int r;
1063         int dma_bits;
1064         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1065
1066         if (adev->flags & AMD_IS_APU) {
1067                 adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
1068         } else {
1069                 u32 tmp;
1070
1071                 if (adev->asic_type == CHIP_FIJI)
1072                         tmp = RREG32(mmMC_SEQ_MISC0_FIJI);
1073                 else
1074                         tmp = RREG32(mmMC_SEQ_MISC0);
1075                 tmp &= MC_SEQ_MISC0__MT__MASK;
1076                 adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp);
1077         }
1078
1079         r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->mc.vm_fault);
1080         if (r)
1081                 return r;
1082
1083         r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->mc.vm_fault);
1084         if (r)
1085                 return r;
1086
1087         /* Adjust VM size here.
1088          * Currently set to 4GB ((1 << 20) 4k pages).
1089          * Max GPUVM size for cayman and SI is 40 bits.
1090          */
1091         amdgpu_vm_adjust_size(adev, 64);
1092         adev->vm_manager.max_pfn = adev->vm_manager.vm_size << 18;
1093
1094         /* Set the internal MC address mask
1095          * This is the max address of the GPU's
1096          * internal address space.
1097          */
1098         adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */
1099
1100         /* set DMA mask + need_dma32 flags.
1101          * PCIE - can handle 40-bits.
1102          * IGP - can handle 40-bits
1103          * PCI - dma32 for legacy pci gart, 40 bits on newer asics
1104          */
1105         adev->need_dma32 = false;
1106         dma_bits = adev->need_dma32 ? 32 : 40;
1107         r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
1108         if (r) {
1109                 adev->need_dma32 = true;
1110                 dma_bits = 32;
1111                 pr_warn("amdgpu: No suitable DMA available\n");
1112         }
1113         r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits));
1114         if (r) {
1115                 pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32));
1116                 pr_warn("amdgpu: No coherent DMA available\n");
1117         }
1118
1119         r = gmc_v8_0_init_microcode(adev);
1120         if (r) {
1121                 DRM_ERROR("Failed to load mc firmware!\n");
1122                 return r;
1123         }
1124
1125         r = gmc_v8_0_mc_init(adev);
1126         if (r)
1127                 return r;
1128
1129         /* Memory manager */
1130         r = amdgpu_bo_init(adev);
1131         if (r)
1132                 return r;
1133
1134         r = gmc_v8_0_gart_init(adev);
1135         if (r)
1136                 return r;
1137
1138         if (!adev->vm_manager.enabled) {
1139                 r = gmc_v8_0_vm_init(adev);
1140                 if (r) {
1141                         dev_err(adev->dev, "vm manager initialization failed (%d).\n", r);
1142                         return r;
1143                 }
1144                 adev->vm_manager.enabled = true;
1145         }
1146
1147         return r;
1148 }
1149
1150 static int gmc_v8_0_sw_fini(void *handle)
1151 {
1152         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1153
1154         if (adev->vm_manager.enabled) {
1155                 amdgpu_vm_manager_fini(adev);
1156                 gmc_v8_0_vm_fini(adev);
1157                 adev->vm_manager.enabled = false;
1158         }
1159         gmc_v8_0_gart_fini(adev);
1160         amdgpu_gem_force_release(adev);
1161         amdgpu_bo_fini(adev);
1162
1163         return 0;
1164 }
1165
1166 static int gmc_v8_0_hw_init(void *handle)
1167 {
1168         int r;
1169         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1170
1171         gmc_v8_0_init_golden_registers(adev);
1172
1173         gmc_v8_0_mc_program(adev);
1174
1175         if (adev->asic_type == CHIP_TONGA) {
1176                 r = gmc_v8_0_tonga_mc_load_microcode(adev);
1177                 if (r) {
1178                         DRM_ERROR("Failed to load MC firmware!\n");
1179                         return r;
1180                 }
1181         } else if (adev->asic_type == CHIP_POLARIS11 ||
1182                         adev->asic_type == CHIP_POLARIS10 ||
1183                         adev->asic_type == CHIP_POLARIS12) {
1184                 r = gmc_v8_0_polaris_mc_load_microcode(adev);
1185                 if (r) {
1186                         DRM_ERROR("Failed to load MC firmware!\n");
1187                         return r;
1188                 }
1189         }
1190
1191         r = gmc_v8_0_gart_enable(adev);
1192         if (r)
1193                 return r;
1194
1195         return r;
1196 }
1197
1198 static int gmc_v8_0_hw_fini(void *handle)
1199 {
1200         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1201
1202         amdgpu_irq_put(adev, &adev->mc.vm_fault, 0);
1203         gmc_v8_0_gart_disable(adev);
1204
1205         return 0;
1206 }
1207
1208 static int gmc_v8_0_suspend(void *handle)
1209 {
1210         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1211
1212         gmc_v8_0_hw_fini(adev);
1213
1214         return 0;
1215 }
1216
1217 static int gmc_v8_0_resume(void *handle)
1218 {
1219         int r;
1220         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1221
1222         r = gmc_v8_0_hw_init(adev);
1223         if (r)
1224                 return r;
1225
1226         amdgpu_vm_reset_all_ids(adev);
1227
1228         return 0;
1229 }
1230
1231 static bool gmc_v8_0_is_idle(void *handle)
1232 {
1233         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1234         u32 tmp = RREG32(mmSRBM_STATUS);
1235
1236         if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1237                    SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK))
1238                 return false;
1239
1240         return true;
1241 }
1242
1243 static int gmc_v8_0_wait_for_idle(void *handle)
1244 {
1245         unsigned i;
1246         u32 tmp;
1247         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1248
1249         for (i = 0; i < adev->usec_timeout; i++) {
1250                 /* read MC_STATUS */
1251                 tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK |
1252                                                SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1253                                                SRBM_STATUS__MCC_BUSY_MASK |
1254                                                SRBM_STATUS__MCD_BUSY_MASK |
1255                                                SRBM_STATUS__VMC_BUSY_MASK |
1256                                                SRBM_STATUS__VMC1_BUSY_MASK);
1257                 if (!tmp)
1258                         return 0;
1259                 udelay(1);
1260         }
1261         return -ETIMEDOUT;
1262
1263 }
1264
1265 static bool gmc_v8_0_check_soft_reset(void *handle)
1266 {
1267         u32 srbm_soft_reset = 0;
1268         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1269         u32 tmp = RREG32(mmSRBM_STATUS);
1270
1271         if (tmp & SRBM_STATUS__VMC_BUSY_MASK)
1272                 srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
1273                                                 SRBM_SOFT_RESET, SOFT_RESET_VMC, 1);
1274
1275         if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK |
1276                    SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) {
1277                 if (!(adev->flags & AMD_IS_APU))
1278                         srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset,
1279                                                         SRBM_SOFT_RESET, SOFT_RESET_MC, 1);
1280         }
1281         if (srbm_soft_reset) {
1282                 adev->mc.srbm_soft_reset = srbm_soft_reset;
1283                 return true;
1284         } else {
1285                 adev->mc.srbm_soft_reset = 0;
1286                 return false;
1287         }
1288 }
1289
1290 static int gmc_v8_0_pre_soft_reset(void *handle)
1291 {
1292         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1293
1294         if (!adev->mc.srbm_soft_reset)
1295                 return 0;
1296
1297         gmc_v8_0_mc_stop(adev, &adev->mc.save);
1298         if (gmc_v8_0_wait_for_idle(adev)) {
1299                 dev_warn(adev->dev, "Wait for GMC idle timed out !\n");
1300         }
1301
1302         return 0;
1303 }
1304
1305 static int gmc_v8_0_soft_reset(void *handle)
1306 {
1307         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1308         u32 srbm_soft_reset;
1309
1310         if (!adev->mc.srbm_soft_reset)
1311                 return 0;
1312         srbm_soft_reset = adev->mc.srbm_soft_reset;
1313
1314         if (srbm_soft_reset) {
1315                 u32 tmp;
1316
1317                 tmp = RREG32(mmSRBM_SOFT_RESET);
1318                 tmp |= srbm_soft_reset;
1319                 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1320                 WREG32(mmSRBM_SOFT_RESET, tmp);
1321                 tmp = RREG32(mmSRBM_SOFT_RESET);
1322
1323                 udelay(50);
1324
1325                 tmp &= ~srbm_soft_reset;
1326                 WREG32(mmSRBM_SOFT_RESET, tmp);
1327                 tmp = RREG32(mmSRBM_SOFT_RESET);
1328
1329                 /* Wait a little for things to settle down */
1330                 udelay(50);
1331         }
1332
1333         return 0;
1334 }
1335
1336 static int gmc_v8_0_post_soft_reset(void *handle)
1337 {
1338         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1339
1340         if (!adev->mc.srbm_soft_reset)
1341                 return 0;
1342
1343         gmc_v8_0_mc_resume(adev, &adev->mc.save);
1344         return 0;
1345 }
1346
1347 static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev,
1348                                              struct amdgpu_irq_src *src,
1349                                              unsigned type,
1350                                              enum amdgpu_interrupt_state state)
1351 {
1352         u32 tmp;
1353         u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1354                     VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1355                     VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1356                     VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1357                     VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1358                     VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK |
1359                     VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK);
1360
1361         switch (state) {
1362         case AMDGPU_IRQ_STATE_DISABLE:
1363                 /* system context */
1364                 tmp = RREG32(mmVM_CONTEXT0_CNTL);
1365                 tmp &= ~bits;
1366                 WREG32(mmVM_CONTEXT0_CNTL, tmp);
1367                 /* VMs */
1368                 tmp = RREG32(mmVM_CONTEXT1_CNTL);
1369                 tmp &= ~bits;
1370                 WREG32(mmVM_CONTEXT1_CNTL, tmp);
1371                 break;
1372         case AMDGPU_IRQ_STATE_ENABLE:
1373                 /* system context */
1374                 tmp = RREG32(mmVM_CONTEXT0_CNTL);
1375                 tmp |= bits;
1376                 WREG32(mmVM_CONTEXT0_CNTL, tmp);
1377                 /* VMs */
1378                 tmp = RREG32(mmVM_CONTEXT1_CNTL);
1379                 tmp |= bits;
1380                 WREG32(mmVM_CONTEXT1_CNTL, tmp);
1381                 break;
1382         default:
1383                 break;
1384         }
1385
1386         return 0;
1387 }
1388
1389 static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev,
1390                                       struct amdgpu_irq_src *source,
1391                                       struct amdgpu_iv_entry *entry)
1392 {
1393         u32 addr, status, mc_client;
1394
1395         if (amdgpu_sriov_vf(adev)) {
1396                 dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
1397                         entry->src_id, entry->src_data[0]);
1398                 dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n");
1399                 return 0;
1400         }
1401
1402         addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR);
1403         status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
1404         mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT);
1405         /* reset addr and status */
1406         WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1);
1407
1408         if (!addr && !status)
1409                 return 0;
1410
1411         if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST)
1412                 gmc_v8_0_set_fault_enable_default(adev, false);
1413
1414         if (printk_ratelimit()) {
1415                 dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n",
1416                         entry->src_id, entry->src_data[0]);
1417                 dev_err(adev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_ADDR   0x%08X\n",
1418                         addr);
1419                 dev_err(adev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
1420                         status);
1421                 gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client);
1422         }
1423
1424         return 0;
1425 }
1426
1427 static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev,
1428                                                      bool enable)
1429 {
1430         uint32_t data;
1431
1432         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) {
1433                 data = RREG32(mmMC_HUB_MISC_HUB_CG);
1434                 data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK;
1435                 WREG32(mmMC_HUB_MISC_HUB_CG, data);
1436
1437                 data = RREG32(mmMC_HUB_MISC_SIP_CG);
1438                 data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK;
1439                 WREG32(mmMC_HUB_MISC_SIP_CG, data);
1440
1441                 data = RREG32(mmMC_HUB_MISC_VM_CG);
1442                 data |= MC_HUB_MISC_VM_CG__ENABLE_MASK;
1443                 WREG32(mmMC_HUB_MISC_VM_CG, data);
1444
1445                 data = RREG32(mmMC_XPB_CLK_GAT);
1446                 data |= MC_XPB_CLK_GAT__ENABLE_MASK;
1447                 WREG32(mmMC_XPB_CLK_GAT, data);
1448
1449                 data = RREG32(mmATC_MISC_CG);
1450                 data |= ATC_MISC_CG__ENABLE_MASK;
1451                 WREG32(mmATC_MISC_CG, data);
1452
1453                 data = RREG32(mmMC_CITF_MISC_WR_CG);
1454                 data |= MC_CITF_MISC_WR_CG__ENABLE_MASK;
1455                 WREG32(mmMC_CITF_MISC_WR_CG, data);
1456
1457                 data = RREG32(mmMC_CITF_MISC_RD_CG);
1458                 data |= MC_CITF_MISC_RD_CG__ENABLE_MASK;
1459                 WREG32(mmMC_CITF_MISC_RD_CG, data);
1460
1461                 data = RREG32(mmMC_CITF_MISC_VM_CG);
1462                 data |= MC_CITF_MISC_VM_CG__ENABLE_MASK;
1463                 WREG32(mmMC_CITF_MISC_VM_CG, data);
1464
1465                 data = RREG32(mmVM_L2_CG);
1466                 data |= VM_L2_CG__ENABLE_MASK;
1467                 WREG32(mmVM_L2_CG, data);
1468         } else {
1469                 data = RREG32(mmMC_HUB_MISC_HUB_CG);
1470                 data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK;
1471                 WREG32(mmMC_HUB_MISC_HUB_CG, data);
1472
1473                 data = RREG32(mmMC_HUB_MISC_SIP_CG);
1474                 data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK;
1475                 WREG32(mmMC_HUB_MISC_SIP_CG, data);
1476
1477                 data = RREG32(mmMC_HUB_MISC_VM_CG);
1478                 data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK;
1479                 WREG32(mmMC_HUB_MISC_VM_CG, data);
1480
1481                 data = RREG32(mmMC_XPB_CLK_GAT);
1482                 data &= ~MC_XPB_CLK_GAT__ENABLE_MASK;
1483                 WREG32(mmMC_XPB_CLK_GAT, data);
1484
1485                 data = RREG32(mmATC_MISC_CG);
1486                 data &= ~ATC_MISC_CG__ENABLE_MASK;
1487                 WREG32(mmATC_MISC_CG, data);
1488
1489                 data = RREG32(mmMC_CITF_MISC_WR_CG);
1490                 data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK;
1491                 WREG32(mmMC_CITF_MISC_WR_CG, data);
1492
1493                 data = RREG32(mmMC_CITF_MISC_RD_CG);
1494                 data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK;
1495                 WREG32(mmMC_CITF_MISC_RD_CG, data);
1496
1497                 data = RREG32(mmMC_CITF_MISC_VM_CG);
1498                 data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK;
1499                 WREG32(mmMC_CITF_MISC_VM_CG, data);
1500
1501                 data = RREG32(mmVM_L2_CG);
1502                 data &= ~VM_L2_CG__ENABLE_MASK;
1503                 WREG32(mmVM_L2_CG, data);
1504         }
1505 }
1506
1507 static void fiji_update_mc_light_sleep(struct amdgpu_device *adev,
1508                                        bool enable)
1509 {
1510         uint32_t data;
1511
1512         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) {
1513                 data = RREG32(mmMC_HUB_MISC_HUB_CG);
1514                 data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
1515                 WREG32(mmMC_HUB_MISC_HUB_CG, data);
1516
1517                 data = RREG32(mmMC_HUB_MISC_SIP_CG);
1518                 data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
1519                 WREG32(mmMC_HUB_MISC_SIP_CG, data);
1520
1521                 data = RREG32(mmMC_HUB_MISC_VM_CG);
1522                 data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1523                 WREG32(mmMC_HUB_MISC_VM_CG, data);
1524
1525                 data = RREG32(mmMC_XPB_CLK_GAT);
1526                 data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
1527                 WREG32(mmMC_XPB_CLK_GAT, data);
1528
1529                 data = RREG32(mmATC_MISC_CG);
1530                 data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK;
1531                 WREG32(mmATC_MISC_CG, data);
1532
1533                 data = RREG32(mmMC_CITF_MISC_WR_CG);
1534                 data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
1535                 WREG32(mmMC_CITF_MISC_WR_CG, data);
1536
1537                 data = RREG32(mmMC_CITF_MISC_RD_CG);
1538                 data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
1539                 WREG32(mmMC_CITF_MISC_RD_CG, data);
1540
1541                 data = RREG32(mmMC_CITF_MISC_VM_CG);
1542                 data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1543                 WREG32(mmMC_CITF_MISC_VM_CG, data);
1544
1545                 data = RREG32(mmVM_L2_CG);
1546                 data |= VM_L2_CG__MEM_LS_ENABLE_MASK;
1547                 WREG32(mmVM_L2_CG, data);
1548         } else {
1549                 data = RREG32(mmMC_HUB_MISC_HUB_CG);
1550                 data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK;
1551                 WREG32(mmMC_HUB_MISC_HUB_CG, data);
1552
1553                 data = RREG32(mmMC_HUB_MISC_SIP_CG);
1554                 data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK;
1555                 WREG32(mmMC_HUB_MISC_SIP_CG, data);
1556
1557                 data = RREG32(mmMC_HUB_MISC_VM_CG);
1558                 data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1559                 WREG32(mmMC_HUB_MISC_VM_CG, data);
1560
1561                 data = RREG32(mmMC_XPB_CLK_GAT);
1562                 data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK;
1563                 WREG32(mmMC_XPB_CLK_GAT, data);
1564
1565                 data = RREG32(mmATC_MISC_CG);
1566                 data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK;
1567                 WREG32(mmATC_MISC_CG, data);
1568
1569                 data = RREG32(mmMC_CITF_MISC_WR_CG);
1570                 data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK;
1571                 WREG32(mmMC_CITF_MISC_WR_CG, data);
1572
1573                 data = RREG32(mmMC_CITF_MISC_RD_CG);
1574                 data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK;
1575                 WREG32(mmMC_CITF_MISC_RD_CG, data);
1576
1577                 data = RREG32(mmMC_CITF_MISC_VM_CG);
1578                 data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK;
1579                 WREG32(mmMC_CITF_MISC_VM_CG, data);
1580
1581                 data = RREG32(mmVM_L2_CG);
1582                 data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK;
1583                 WREG32(mmVM_L2_CG, data);
1584         }
1585 }
1586
1587 static int gmc_v8_0_set_clockgating_state(void *handle,
1588                                           enum amd_clockgating_state state)
1589 {
1590         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1591
1592         if (amdgpu_sriov_vf(adev))
1593                 return 0;
1594
1595         switch (adev->asic_type) {
1596         case CHIP_FIJI:
1597                 fiji_update_mc_medium_grain_clock_gating(adev,
1598                                 state == AMD_CG_STATE_GATE);
1599                 fiji_update_mc_light_sleep(adev,
1600                                 state == AMD_CG_STATE_GATE);
1601                 break;
1602         default:
1603                 break;
1604         }
1605         return 0;
1606 }
1607
1608 static int gmc_v8_0_set_powergating_state(void *handle,
1609                                           enum amd_powergating_state state)
1610 {
1611         return 0;
1612 }
1613
1614 static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags)
1615 {
1616         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1617         int data;
1618
1619         if (amdgpu_sriov_vf(adev))
1620                 *flags = 0;
1621
1622         /* AMD_CG_SUPPORT_MC_MGCG */
1623         data = RREG32(mmMC_HUB_MISC_HUB_CG);
1624         if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK)
1625                 *flags |= AMD_CG_SUPPORT_MC_MGCG;
1626
1627         /* AMD_CG_SUPPORT_MC_LS */
1628         if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK)
1629                 *flags |= AMD_CG_SUPPORT_MC_LS;
1630 }
1631
1632 static const struct amd_ip_funcs gmc_v8_0_ip_funcs = {
1633         .name = "gmc_v8_0",
1634         .early_init = gmc_v8_0_early_init,
1635         .late_init = gmc_v8_0_late_init,
1636         .sw_init = gmc_v8_0_sw_init,
1637         .sw_fini = gmc_v8_0_sw_fini,
1638         .hw_init = gmc_v8_0_hw_init,
1639         .hw_fini = gmc_v8_0_hw_fini,
1640         .suspend = gmc_v8_0_suspend,
1641         .resume = gmc_v8_0_resume,
1642         .is_idle = gmc_v8_0_is_idle,
1643         .wait_for_idle = gmc_v8_0_wait_for_idle,
1644         .check_soft_reset = gmc_v8_0_check_soft_reset,
1645         .pre_soft_reset = gmc_v8_0_pre_soft_reset,
1646         .soft_reset = gmc_v8_0_soft_reset,
1647         .post_soft_reset = gmc_v8_0_post_soft_reset,
1648         .set_clockgating_state = gmc_v8_0_set_clockgating_state,
1649         .set_powergating_state = gmc_v8_0_set_powergating_state,
1650         .get_clockgating_state = gmc_v8_0_get_clockgating_state,
1651 };
1652
1653 static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = {
1654         .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb,
1655         .set_pte_pde = gmc_v8_0_gart_set_pte_pde,
1656         .set_prt = gmc_v8_0_set_prt,
1657         .get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags
1658 };
1659
1660 static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = {
1661         .set = gmc_v8_0_vm_fault_interrupt_state,
1662         .process = gmc_v8_0_process_interrupt,
1663 };
1664
1665 static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev)
1666 {
1667         if (adev->gart.gart_funcs == NULL)
1668                 adev->gart.gart_funcs = &gmc_v8_0_gart_funcs;
1669 }
1670
1671 static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev)
1672 {
1673         adev->mc.vm_fault.num_types = 1;
1674         adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs;
1675 }
1676
1677 const struct amdgpu_ip_block_version gmc_v8_0_ip_block =
1678 {
1679         .type = AMD_IP_BLOCK_TYPE_GMC,
1680         .major = 8,
1681         .minor = 0,
1682         .rev = 0,
1683         .funcs = &gmc_v8_0_ip_funcs,
1684 };
1685
1686 const struct amdgpu_ip_block_version gmc_v8_1_ip_block =
1687 {
1688         .type = AMD_IP_BLOCK_TYPE_GMC,
1689         .major = 8,
1690         .minor = 1,
1691         .rev = 0,
1692         .funcs = &gmc_v8_0_ip_funcs,
1693 };
1694
1695 const struct amdgpu_ip_block_version gmc_v8_5_ip_block =
1696 {
1697         .type = AMD_IP_BLOCK_TYPE_GMC,
1698         .major = 8,
1699         .minor = 5,
1700         .rev = 0,
1701         .funcs = &gmc_v8_0_ip_funcs,
1702 };