]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/gma500/cdv_intel_dp.c
drm/dp-helper: Move the legacy helpers to gma500
[karo-tx-linux.git] / drivers / gpu / drm / gma500 / cdv_intel_dp.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include "psb_drv.h"
35 #include "psb_intel_drv.h"
36 #include "psb_intel_reg.h"
37 #include "gma_display.h"
38 #include <drm/drm_dp_helper.h>
39
40 /**
41  * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
42  *                               aux algorithm
43  * @running: set by the algo indicating whether an i2c is ongoing or whether
44  *           the i2c bus is quiescent
45  * @address: i2c target address for the currently ongoing transfer
46  * @aux_ch: driver callback to transfer a single byte of the i2c payload
47  */
48 struct i2c_algo_dp_aux_data {
49         bool running;
50         u16 address;
51         int (*aux_ch) (struct i2c_adapter *adapter,
52                        int mode, uint8_t write_byte,
53                        uint8_t *read_byte);
54 };
55
56 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
57 static int
58 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
59                             uint8_t write_byte, uint8_t *read_byte)
60 {
61         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
62         int ret;
63
64         ret = (*algo_data->aux_ch)(adapter, mode,
65                                    write_byte, read_byte);
66         return ret;
67 }
68
69 /*
70  * I2C over AUX CH
71  */
72
73 /*
74  * Send the address. If the I2C link is running, this 'restarts'
75  * the connection with the new address, this is used for doing
76  * a write followed by a read (as needed for DDC)
77  */
78 static int
79 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
80 {
81         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
82         int mode = MODE_I2C_START;
83         int ret;
84
85         if (reading)
86                 mode |= MODE_I2C_READ;
87         else
88                 mode |= MODE_I2C_WRITE;
89         algo_data->address = address;
90         algo_data->running = true;
91         ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
92         return ret;
93 }
94
95 /*
96  * Stop the I2C transaction. This closes out the link, sending
97  * a bare address packet with the MOT bit turned off
98  */
99 static void
100 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
101 {
102         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
103         int mode = MODE_I2C_STOP;
104
105         if (reading)
106                 mode |= MODE_I2C_READ;
107         else
108                 mode |= MODE_I2C_WRITE;
109         if (algo_data->running) {
110                 (void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
111                 algo_data->running = false;
112         }
113 }
114
115 /*
116  * Write a single byte to the current I2C address, the
117  * the I2C link must be running or this returns -EIO
118  */
119 static int
120 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
121 {
122         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
123         int ret;
124
125         if (!algo_data->running)
126                 return -EIO;
127
128         ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
129         return ret;
130 }
131
132 /*
133  * Read a single byte from the current I2C address, the
134  * I2C link must be running or this returns -EIO
135  */
136 static int
137 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
138 {
139         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
140         int ret;
141
142         if (!algo_data->running)
143                 return -EIO;
144
145         ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
146         return ret;
147 }
148
149 static int
150 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
151                      struct i2c_msg *msgs,
152                      int num)
153 {
154         int ret = 0;
155         bool reading = false;
156         int m;
157         int b;
158
159         for (m = 0; m < num; m++) {
160                 u16 len = msgs[m].len;
161                 u8 *buf = msgs[m].buf;
162                 reading = (msgs[m].flags & I2C_M_RD) != 0;
163                 ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
164                 if (ret < 0)
165                         break;
166                 if (reading) {
167                         for (b = 0; b < len; b++) {
168                                 ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
169                                 if (ret < 0)
170                                         break;
171                         }
172                 } else {
173                         for (b = 0; b < len; b++) {
174                                 ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
175                                 if (ret < 0)
176                                         break;
177                         }
178                 }
179                 if (ret < 0)
180                         break;
181         }
182         if (ret >= 0)
183                 ret = num;
184         i2c_algo_dp_aux_stop(adapter, reading);
185         DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
186         return ret;
187 }
188
189 static u32
190 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
191 {
192         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
193                I2C_FUNC_SMBUS_READ_BLOCK_DATA |
194                I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
195                I2C_FUNC_10BIT_ADDR;
196 }
197
198 static const struct i2c_algorithm i2c_dp_aux_algo = {
199         .master_xfer    = i2c_algo_dp_aux_xfer,
200         .functionality  = i2c_algo_dp_aux_functionality,
201 };
202
203 static void
204 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
205 {
206         (void) i2c_algo_dp_aux_address(adapter, 0, false);
207         (void) i2c_algo_dp_aux_stop(adapter, false);
208 }
209
210 static int
211 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
212 {
213         adapter->algo = &i2c_dp_aux_algo;
214         adapter->retries = 3;
215         i2c_dp_aux_reset_bus(adapter);
216         return 0;
217 }
218
219 /*
220  * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
221  * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
222  */
223 static int __deprecated
224 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
225 {
226         int error;
227
228         error = i2c_dp_aux_prepare_bus(adapter);
229         if (error)
230                 return error;
231         error = i2c_add_adapter(adapter);
232         return error;
233 }
234
235 #define _wait_for(COND, MS, W) ({ \
236         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
237         int ret__ = 0;                                                  \
238         while (! (COND)) {                                              \
239                 if (time_after(jiffies, timeout__)) {                   \
240                         ret__ = -ETIMEDOUT;                             \
241                         break;                                          \
242                 }                                                       \
243                 if (W && !in_dbg_master()) msleep(W);                   \
244         }                                                               \
245         ret__;                                                          \
246 })      
247
248 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
249
250 #define DP_LINK_STATUS_SIZE     6
251 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
252
253 #define DP_LINK_CONFIGURATION_SIZE      9
254
255 #define CDV_FAST_LINK_TRAIN     1
256
257 struct cdv_intel_dp {
258         uint32_t output_reg;
259         uint32_t DP;
260         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
261         bool has_audio;
262         int force_audio;
263         uint32_t color_range;
264         uint8_t link_bw;
265         uint8_t lane_count;
266         uint8_t dpcd[4];
267         struct gma_encoder *encoder;
268         struct i2c_adapter adapter;
269         struct i2c_algo_dp_aux_data algo;
270         uint8_t train_set[4];
271         uint8_t link_status[DP_LINK_STATUS_SIZE];
272         int panel_power_up_delay;
273         int panel_power_down_delay;
274         int panel_power_cycle_delay;
275         int backlight_on_delay;
276         int backlight_off_delay;
277         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
278         bool panel_on;
279 };
280
281 struct ddi_regoff {
282         uint32_t        PreEmph1;
283         uint32_t        PreEmph2;
284         uint32_t        VSwing1;
285         uint32_t        VSwing2;
286         uint32_t        VSwing3;
287         uint32_t        VSwing4;
288         uint32_t        VSwing5;
289 };
290
291 static struct ddi_regoff ddi_DP_train_table[] = {
292         {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
293         .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
294         .VSwing5 = 0x8158,},
295         {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
296         .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
297         .VSwing5 = 0x8258,},
298 };
299
300 static uint32_t dp_vswing_premph_table[] = {
301         0x55338954,     0x4000,
302         0x554d8954,     0x2000,
303         0x55668954,     0,
304         0x559ac0d4,     0x6000,
305 };
306 /**
307  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
308  * @intel_dp: DP struct
309  *
310  * If a CPU or PCH DP output is attached to an eDP panel, this function
311  * will return true, and false otherwise.
312  */
313 static bool is_edp(struct gma_encoder *encoder)
314 {
315         return encoder->type == INTEL_OUTPUT_EDP;
316 }
317
318
319 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
320 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
321 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
322
323 static int
324 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
325 {
326         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
327         int max_lane_count = 4;
328
329         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
330                 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
331                 switch (max_lane_count) {
332                 case 1: case 2: case 4:
333                         break;
334                 default:
335                         max_lane_count = 4;
336                 }
337         }
338         return max_lane_count;
339 }
340
341 static int
342 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
343 {
344         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
345         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
346
347         switch (max_link_bw) {
348         case DP_LINK_BW_1_62:
349         case DP_LINK_BW_2_7:
350                 break;
351         default:
352                 max_link_bw = DP_LINK_BW_1_62;
353                 break;
354         }
355         return max_link_bw;
356 }
357
358 static int
359 cdv_intel_dp_link_clock(uint8_t link_bw)
360 {
361         if (link_bw == DP_LINK_BW_2_7)
362                 return 270000;
363         else
364                 return 162000;
365 }
366
367 static int
368 cdv_intel_dp_link_required(int pixel_clock, int bpp)
369 {
370         return (pixel_clock * bpp + 7) / 8;
371 }
372
373 static int
374 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
375 {
376         return (max_link_clock * max_lanes * 19) / 20;
377 }
378
379 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
380 {
381         struct drm_device *dev = intel_encoder->base.dev;
382         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
383         u32 pp;
384
385         if (intel_dp->panel_on) {
386                 DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
387                 return;
388         }       
389         DRM_DEBUG_KMS("\n");
390
391         pp = REG_READ(PP_CONTROL);
392
393         pp |= EDP_FORCE_VDD;
394         REG_WRITE(PP_CONTROL, pp);
395         REG_READ(PP_CONTROL);
396         msleep(intel_dp->panel_power_up_delay);
397 }
398
399 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
400 {
401         struct drm_device *dev = intel_encoder->base.dev;
402         u32 pp;
403
404         DRM_DEBUG_KMS("\n");
405         pp = REG_READ(PP_CONTROL);
406
407         pp &= ~EDP_FORCE_VDD;
408         REG_WRITE(PP_CONTROL, pp);
409         REG_READ(PP_CONTROL);
410
411 }
412
413 /* Returns true if the panel was already on when called */
414 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
415 {
416         struct drm_device *dev = intel_encoder->base.dev;
417         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
418         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
419
420         if (intel_dp->panel_on)
421                 return true;
422
423         DRM_DEBUG_KMS("\n");
424         pp = REG_READ(PP_CONTROL);
425         pp &= ~PANEL_UNLOCK_MASK;
426
427         pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
428         REG_WRITE(PP_CONTROL, pp);
429         REG_READ(PP_CONTROL);
430
431         if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
432                 DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
433                 intel_dp->panel_on = false;
434         } else
435                 intel_dp->panel_on = true;      
436         msleep(intel_dp->panel_power_up_delay);
437
438         return false;
439 }
440
441 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
442 {
443         struct drm_device *dev = intel_encoder->base.dev;
444         u32 pp, idle_off_mask = PP_ON ;
445         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
446
447         DRM_DEBUG_KMS("\n");
448
449         pp = REG_READ(PP_CONTROL);
450
451         if ((pp & POWER_TARGET_ON) == 0) 
452                 return;
453
454         intel_dp->panel_on = false;
455         pp &= ~PANEL_UNLOCK_MASK;
456         /* ILK workaround: disable reset around power sequence */
457
458         pp &= ~POWER_TARGET_ON;
459         pp &= ~EDP_FORCE_VDD;
460         pp &= ~EDP_BLC_ENABLE;
461         REG_WRITE(PP_CONTROL, pp);
462         REG_READ(PP_CONTROL);
463         DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
464
465         if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
466                 DRM_DEBUG_KMS("Error in turning off Panel\n");  
467         }
468
469         msleep(intel_dp->panel_power_cycle_delay);
470         DRM_DEBUG_KMS("Over\n");
471 }
472
473 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
474 {
475         struct drm_device *dev = intel_encoder->base.dev;
476         u32 pp;
477
478         DRM_DEBUG_KMS("\n");
479         /*
480          * If we enable the backlight right away following a panel power
481          * on, we may see slight flicker as the panel syncs with the eDP
482          * link.  So delay a bit to make sure the image is solid before
483          * allowing it to appear.
484          */
485         msleep(300);
486         pp = REG_READ(PP_CONTROL);
487
488         pp |= EDP_BLC_ENABLE;
489         REG_WRITE(PP_CONTROL, pp);
490         gma_backlight_enable(dev);
491 }
492
493 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
494 {
495         struct drm_device *dev = intel_encoder->base.dev;
496         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
497         u32 pp;
498
499         DRM_DEBUG_KMS("\n");
500         gma_backlight_disable(dev);
501         msleep(10);
502         pp = REG_READ(PP_CONTROL);
503
504         pp &= ~EDP_BLC_ENABLE;
505         REG_WRITE(PP_CONTROL, pp);
506         msleep(intel_dp->backlight_off_delay);
507 }
508
509 static int
510 cdv_intel_dp_mode_valid(struct drm_connector *connector,
511                     struct drm_display_mode *mode)
512 {
513         struct gma_encoder *encoder = gma_attached_encoder(connector);
514         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
515         int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
516         int max_lanes = cdv_intel_dp_max_lane_count(encoder);
517         struct drm_psb_private *dev_priv = connector->dev->dev_private;
518
519         if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
520                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
521                         return MODE_PANEL;
522                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
523                         return MODE_PANEL;
524         }
525
526         /* only refuse the mode on non eDP since we have seen some weird eDP panels
527            which are outside spec tolerances but somehow work by magic */
528         if (!is_edp(encoder) &&
529             (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
530              > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
531                 return MODE_CLOCK_HIGH;
532
533         if (is_edp(encoder)) {
534             if (cdv_intel_dp_link_required(mode->clock, 24)
535                 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
536                 return MODE_CLOCK_HIGH;
537                 
538         }
539         if (mode->clock < 10000)
540                 return MODE_CLOCK_LOW;
541
542         return MODE_OK;
543 }
544
545 static uint32_t
546 pack_aux(uint8_t *src, int src_bytes)
547 {
548         int     i;
549         uint32_t v = 0;
550
551         if (src_bytes > 4)
552                 src_bytes = 4;
553         for (i = 0; i < src_bytes; i++)
554                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
555         return v;
556 }
557
558 static void
559 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
560 {
561         int i;
562         if (dst_bytes > 4)
563                 dst_bytes = 4;
564         for (i = 0; i < dst_bytes; i++)
565                 dst[i] = src >> ((3-i) * 8);
566 }
567
568 static int
569 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
570                 uint8_t *send, int send_bytes,
571                 uint8_t *recv, int recv_size)
572 {
573         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
574         uint32_t output_reg = intel_dp->output_reg;
575         struct drm_device *dev = encoder->base.dev;
576         uint32_t ch_ctl = output_reg + 0x10;
577         uint32_t ch_data = ch_ctl + 4;
578         int i;
579         int recv_bytes;
580         uint32_t status;
581         uint32_t aux_clock_divider;
582         int try, precharge;
583
584         /* The clock divider is based off the hrawclk,
585          * and would like to run at 2MHz. So, take the
586          * hrawclk value and divide by 2 and use that
587          * On CDV platform it uses 200MHz as hrawclk.
588          *
589          */
590         aux_clock_divider = 200 / 2;
591
592         precharge = 4;
593         if (is_edp(encoder))
594                 precharge = 10;
595
596         if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
597                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
598                           REG_READ(ch_ctl));
599                 return -EBUSY;
600         }
601
602         /* Must try at least 3 times according to DP spec */
603         for (try = 0; try < 5; try++) {
604                 /* Load the send data into the aux channel data registers */
605                 for (i = 0; i < send_bytes; i += 4)
606                         REG_WRITE(ch_data + i,
607                                    pack_aux(send + i, send_bytes - i));
608         
609                 /* Send the command and wait for it to complete */
610                 REG_WRITE(ch_ctl,
611                            DP_AUX_CH_CTL_SEND_BUSY |
612                            DP_AUX_CH_CTL_TIME_OUT_400us |
613                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
614                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
615                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
616                            DP_AUX_CH_CTL_DONE |
617                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
618                            DP_AUX_CH_CTL_RECEIVE_ERROR);
619                 for (;;) {
620                         status = REG_READ(ch_ctl);
621                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
622                                 break;
623                         udelay(100);
624                 }
625         
626                 /* Clear done status and any errors */
627                 REG_WRITE(ch_ctl,
628                            status |
629                            DP_AUX_CH_CTL_DONE |
630                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
631                            DP_AUX_CH_CTL_RECEIVE_ERROR);
632                 if (status & DP_AUX_CH_CTL_DONE)
633                         break;
634         }
635
636         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
637                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
638                 return -EBUSY;
639         }
640
641         /* Check for timeout or receive error.
642          * Timeouts occur when the sink is not connected
643          */
644         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
645                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
646                 return -EIO;
647         }
648
649         /* Timeouts occur when the device isn't connected, so they're
650          * "normal" -- don't fill the kernel log with these */
651         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
652                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
653                 return -ETIMEDOUT;
654         }
655
656         /* Unload any bytes sent back from the other side */
657         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
658                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
659         if (recv_bytes > recv_size)
660                 recv_bytes = recv_size;
661         
662         for (i = 0; i < recv_bytes; i += 4)
663                 unpack_aux(REG_READ(ch_data + i),
664                            recv + i, recv_bytes - i);
665
666         return recv_bytes;
667 }
668
669 /* Write data to the aux channel in native mode */
670 static int
671 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
672                           uint16_t address, uint8_t *send, int send_bytes)
673 {
674         int ret;
675         uint8_t msg[20];
676         int msg_bytes;
677         uint8_t ack;
678
679         if (send_bytes > 16)
680                 return -1;
681         msg[0] = DP_AUX_NATIVE_WRITE << 4;
682         msg[1] = address >> 8;
683         msg[2] = address & 0xff;
684         msg[3] = send_bytes - 1;
685         memcpy(&msg[4], send, send_bytes);
686         msg_bytes = send_bytes + 4;
687         for (;;) {
688                 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
689                 if (ret < 0)
690                         return ret;
691                 ack >>= 4;
692                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
693                         break;
694                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
695                         udelay(100);
696                 else
697                         return -EIO;
698         }
699         return send_bytes;
700 }
701
702 /* Write a single byte to the aux channel in native mode */
703 static int
704 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
705                             uint16_t address, uint8_t byte)
706 {
707         return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
708 }
709
710 /* read bytes from a native aux channel */
711 static int
712 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
713                          uint16_t address, uint8_t *recv, int recv_bytes)
714 {
715         uint8_t msg[4];
716         int msg_bytes;
717         uint8_t reply[20];
718         int reply_bytes;
719         uint8_t ack;
720         int ret;
721
722         msg[0] = DP_AUX_NATIVE_READ << 4;
723         msg[1] = address >> 8;
724         msg[2] = address & 0xff;
725         msg[3] = recv_bytes - 1;
726
727         msg_bytes = 4;
728         reply_bytes = recv_bytes + 1;
729
730         for (;;) {
731                 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
732                                       reply, reply_bytes);
733                 if (ret == 0)
734                         return -EPROTO;
735                 if (ret < 0)
736                         return ret;
737                 ack = reply[0] >> 4;
738                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
739                         memcpy(recv, reply + 1, ret - 1);
740                         return ret - 1;
741                 }
742                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
743                         udelay(100);
744                 else
745                         return -EIO;
746         }
747 }
748
749 static int
750 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
751                     uint8_t write_byte, uint8_t *read_byte)
752 {
753         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
754         struct cdv_intel_dp *intel_dp = container_of(adapter,
755                                                 struct cdv_intel_dp,
756                                                 adapter);
757         struct gma_encoder *encoder = intel_dp->encoder;
758         uint16_t address = algo_data->address;
759         uint8_t msg[5];
760         uint8_t reply[2];
761         unsigned retry;
762         int msg_bytes;
763         int reply_bytes;
764         int ret;
765
766         /* Set up the command byte */
767         if (mode & MODE_I2C_READ)
768                 msg[0] = DP_AUX_I2C_READ << 4;
769         else
770                 msg[0] = DP_AUX_I2C_WRITE << 4;
771
772         if (!(mode & MODE_I2C_STOP))
773                 msg[0] |= DP_AUX_I2C_MOT << 4;
774
775         msg[1] = address >> 8;
776         msg[2] = address;
777
778         switch (mode) {
779         case MODE_I2C_WRITE:
780                 msg[3] = 0;
781                 msg[4] = write_byte;
782                 msg_bytes = 5;
783                 reply_bytes = 1;
784                 break;
785         case MODE_I2C_READ:
786                 msg[3] = 0;
787                 msg_bytes = 4;
788                 reply_bytes = 2;
789                 break;
790         default:
791                 msg_bytes = 3;
792                 reply_bytes = 1;
793                 break;
794         }
795
796         for (retry = 0; retry < 5; retry++) {
797                 ret = cdv_intel_dp_aux_ch(encoder,
798                                       msg, msg_bytes,
799                                       reply, reply_bytes);
800                 if (ret < 0) {
801                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
802                         return ret;
803                 }
804
805                 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
806                 case DP_AUX_NATIVE_REPLY_ACK:
807                         /* I2C-over-AUX Reply field is only valid
808                          * when paired with AUX ACK.
809                          */
810                         break;
811                 case DP_AUX_NATIVE_REPLY_NACK:
812                         DRM_DEBUG_KMS("aux_ch native nack\n");
813                         return -EREMOTEIO;
814                 case DP_AUX_NATIVE_REPLY_DEFER:
815                         udelay(100);
816                         continue;
817                 default:
818                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
819                                   reply[0]);
820                         return -EREMOTEIO;
821                 }
822
823                 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
824                 case DP_AUX_I2C_REPLY_ACK:
825                         if (mode == MODE_I2C_READ) {
826                                 *read_byte = reply[1];
827                         }
828                         return reply_bytes - 1;
829                 case DP_AUX_I2C_REPLY_NACK:
830                         DRM_DEBUG_KMS("aux_i2c nack\n");
831                         return -EREMOTEIO;
832                 case DP_AUX_I2C_REPLY_DEFER:
833                         DRM_DEBUG_KMS("aux_i2c defer\n");
834                         udelay(100);
835                         break;
836                 default:
837                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
838                         return -EREMOTEIO;
839                 }
840         }
841
842         DRM_ERROR("too many retries, giving up\n");
843         return -EREMOTEIO;
844 }
845
846 static int
847 cdv_intel_dp_i2c_init(struct gma_connector *connector,
848                       struct gma_encoder *encoder, const char *name)
849 {
850         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
851         int ret;
852
853         DRM_DEBUG_KMS("i2c_init %s\n", name);
854
855         intel_dp->algo.running = false;
856         intel_dp->algo.address = 0;
857         intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
858
859         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
860         intel_dp->adapter.owner = THIS_MODULE;
861         intel_dp->adapter.class = I2C_CLASS_DDC;
862         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
863         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
864         intel_dp->adapter.algo_data = &intel_dp->algo;
865         intel_dp->adapter.dev.parent = connector->base.kdev;
866
867         if (is_edp(encoder))
868                 cdv_intel_edp_panel_vdd_on(encoder);
869         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
870         if (is_edp(encoder))
871                 cdv_intel_edp_panel_vdd_off(encoder);
872         
873         return ret;
874 }
875
876 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
877         struct drm_display_mode *adjusted_mode)
878 {
879         adjusted_mode->hdisplay = fixed_mode->hdisplay;
880         adjusted_mode->hsync_start = fixed_mode->hsync_start;
881         adjusted_mode->hsync_end = fixed_mode->hsync_end;
882         adjusted_mode->htotal = fixed_mode->htotal;
883
884         adjusted_mode->vdisplay = fixed_mode->vdisplay;
885         adjusted_mode->vsync_start = fixed_mode->vsync_start;
886         adjusted_mode->vsync_end = fixed_mode->vsync_end;
887         adjusted_mode->vtotal = fixed_mode->vtotal;
888
889         adjusted_mode->clock = fixed_mode->clock;
890
891         drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
892 }
893
894 static bool
895 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
896                     struct drm_display_mode *adjusted_mode)
897 {
898         struct drm_psb_private *dev_priv = encoder->dev->dev_private;
899         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
900         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
901         int lane_count, clock;
902         int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
903         int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
904         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
905         int refclock = mode->clock;
906         int bpp = 24;
907
908         if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
909                 cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
910                 refclock = intel_dp->panel_fixed_mode->clock;
911                 bpp = dev_priv->edp.bpp;
912         }
913
914         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
915                 for (clock = max_clock; clock >= 0; clock--) {
916                         int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
917
918                         if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
919                                 intel_dp->link_bw = bws[clock];
920                                 intel_dp->lane_count = lane_count;
921                                 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
922                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
923                                                 "count %d clock %d\n",
924                                        intel_dp->link_bw, intel_dp->lane_count,
925                                        adjusted_mode->clock);
926                                 return true;
927                         }
928                 }
929         }
930         if (is_edp(intel_encoder)) {
931                 /* okay we failed just pick the highest */
932                 intel_dp->lane_count = max_lane_count;
933                 intel_dp->link_bw = bws[max_clock];
934                 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
935                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
936                               "count %d clock %d\n",
937                               intel_dp->link_bw, intel_dp->lane_count,
938                               adjusted_mode->clock);
939
940                 return true;
941         }
942         return false;
943 }
944
945 struct cdv_intel_dp_m_n {
946         uint32_t        tu;
947         uint32_t        gmch_m;
948         uint32_t        gmch_n;
949         uint32_t        link_m;
950         uint32_t        link_n;
951 };
952
953 static void
954 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
955 {
956         /*
957         while (*num > 0xffffff || *den > 0xffffff) {
958                 *num >>= 1;
959                 *den >>= 1;
960         }*/
961         uint64_t value, m;
962         m = *num;
963         value = m * (0x800000);
964         m = do_div(value, *den);
965         *num = value;
966         *den = 0x800000;
967 }
968
969 static void
970 cdv_intel_dp_compute_m_n(int bpp,
971                      int nlanes,
972                      int pixel_clock,
973                      int link_clock,
974                      struct cdv_intel_dp_m_n *m_n)
975 {
976         m_n->tu = 64;
977         m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
978         m_n->gmch_n = link_clock * nlanes;
979         cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
980         m_n->link_m = pixel_clock;
981         m_n->link_n = link_clock;
982         cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
983 }
984
985 void
986 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
987                  struct drm_display_mode *adjusted_mode)
988 {
989         struct drm_device *dev = crtc->dev;
990         struct drm_psb_private *dev_priv = dev->dev_private;
991         struct drm_mode_config *mode_config = &dev->mode_config;
992         struct drm_encoder *encoder;
993         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
994         int lane_count = 4, bpp = 24;
995         struct cdv_intel_dp_m_n m_n;
996         int pipe = gma_crtc->pipe;
997
998         /*
999          * Find the lane count in the intel_encoder private
1000          */
1001         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1002                 struct gma_encoder *intel_encoder;
1003                 struct cdv_intel_dp *intel_dp;
1004
1005                 if (encoder->crtc != crtc)
1006                         continue;
1007
1008                 intel_encoder = to_gma_encoder(encoder);
1009                 intel_dp = intel_encoder->dev_priv;
1010                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1011                         lane_count = intel_dp->lane_count;
1012                         break;
1013                 } else if (is_edp(intel_encoder)) {
1014                         lane_count = intel_dp->lane_count;
1015                         bpp = dev_priv->edp.bpp;
1016                         break;
1017                 }
1018         }
1019
1020         /*
1021          * Compute the GMCH and Link ratios. The '3' here is
1022          * the number of bytes_per_pixel post-LUT, which we always
1023          * set up for 8-bits of R/G/B, or 3 bytes total.
1024          */
1025         cdv_intel_dp_compute_m_n(bpp, lane_count,
1026                              mode->clock, adjusted_mode->clock, &m_n);
1027
1028         {
1029                 REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1030                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1031                            m_n.gmch_m);
1032                 REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1033                 REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1034                 REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1035         }
1036 }
1037
1038 static void
1039 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1040                   struct drm_display_mode *adjusted_mode)
1041 {
1042         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1043         struct drm_crtc *crtc = encoder->crtc;
1044         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1045         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1046         struct drm_device *dev = encoder->dev;
1047
1048         intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1049         intel_dp->DP |= intel_dp->color_range;
1050
1051         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1052                 intel_dp->DP |= DP_SYNC_HS_HIGH;
1053         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1054                 intel_dp->DP |= DP_SYNC_VS_HIGH;
1055
1056         intel_dp->DP |= DP_LINK_TRAIN_OFF;
1057
1058         switch (intel_dp->lane_count) {
1059         case 1:
1060                 intel_dp->DP |= DP_PORT_WIDTH_1;
1061                 break;
1062         case 2:
1063                 intel_dp->DP |= DP_PORT_WIDTH_2;
1064                 break;
1065         case 4:
1066                 intel_dp->DP |= DP_PORT_WIDTH_4;
1067                 break;
1068         }
1069         if (intel_dp->has_audio)
1070                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1071
1072         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1073         intel_dp->link_configuration[0] = intel_dp->link_bw;
1074         intel_dp->link_configuration[1] = intel_dp->lane_count;
1075
1076         /*
1077          * Check for DPCD version > 1.1 and enhanced framing support
1078          */
1079         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1080             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1081                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1082                 intel_dp->DP |= DP_ENHANCED_FRAMING;
1083         }
1084
1085         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
1086         if (gma_crtc->pipe == 1)
1087                 intel_dp->DP |= DP_PIPEB_SELECT;
1088
1089         REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1090         DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1091         if (is_edp(intel_encoder)) {
1092                 uint32_t pfit_control;
1093                 cdv_intel_edp_panel_on(intel_encoder);
1094
1095                 if (mode->hdisplay != adjusted_mode->hdisplay ||
1096                             mode->vdisplay != adjusted_mode->vdisplay)
1097                         pfit_control = PFIT_ENABLE;
1098                 else
1099                         pfit_control = 0;
1100
1101                 pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1102
1103                 REG_WRITE(PFIT_CONTROL, pfit_control);
1104         }
1105 }
1106
1107
1108 /* If the sink supports it, try to set the power state appropriately */
1109 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1110 {
1111         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1112         int ret, i;
1113
1114         /* Should have a valid DPCD by this point */
1115         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1116                 return;
1117
1118         if (mode != DRM_MODE_DPMS_ON) {
1119                 ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1120                                                   DP_SET_POWER_D3);
1121                 if (ret != 1)
1122                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1123         } else {
1124                 /*
1125                  * When turning on, we need to retry for 1ms to give the sink
1126                  * time to wake up.
1127                  */
1128                 for (i = 0; i < 3; i++) {
1129                         ret = cdv_intel_dp_aux_native_write_1(encoder,
1130                                                           DP_SET_POWER,
1131                                                           DP_SET_POWER_D0);
1132                         if (ret == 1)
1133                                 break;
1134                         udelay(1000);
1135                 }
1136         }
1137 }
1138
1139 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1140 {
1141         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1142         int edp = is_edp(intel_encoder);
1143
1144         if (edp) {
1145                 cdv_intel_edp_backlight_off(intel_encoder);
1146                 cdv_intel_edp_panel_off(intel_encoder);
1147                 cdv_intel_edp_panel_vdd_on(intel_encoder);
1148         }
1149         /* Wake up the sink first */
1150         cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1151         cdv_intel_dp_link_down(intel_encoder);
1152         if (edp)
1153                 cdv_intel_edp_panel_vdd_off(intel_encoder);
1154 }
1155
1156 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1157 {
1158         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1159         int edp = is_edp(intel_encoder);
1160
1161         if (edp)
1162                 cdv_intel_edp_panel_on(intel_encoder);
1163         cdv_intel_dp_start_link_train(intel_encoder);
1164         cdv_intel_dp_complete_link_train(intel_encoder);
1165         if (edp)
1166                 cdv_intel_edp_backlight_on(intel_encoder);
1167 }
1168
1169 static void
1170 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1171 {
1172         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1173         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1174         struct drm_device *dev = encoder->dev;
1175         uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1176         int edp = is_edp(intel_encoder);
1177
1178         if (mode != DRM_MODE_DPMS_ON) {
1179                 if (edp) {
1180                         cdv_intel_edp_backlight_off(intel_encoder);
1181                         cdv_intel_edp_panel_vdd_on(intel_encoder);
1182                 }
1183                 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1184                 cdv_intel_dp_link_down(intel_encoder);
1185                 if (edp) {
1186                         cdv_intel_edp_panel_vdd_off(intel_encoder);
1187                         cdv_intel_edp_panel_off(intel_encoder);
1188                 }
1189         } else {
1190                 if (edp)
1191                         cdv_intel_edp_panel_on(intel_encoder);
1192                 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1193                 if (!(dp_reg & DP_PORT_EN)) {
1194                         cdv_intel_dp_start_link_train(intel_encoder);
1195                         cdv_intel_dp_complete_link_train(intel_encoder);
1196                 }
1197                 if (edp)
1198                         cdv_intel_edp_backlight_on(intel_encoder);
1199         }
1200 }
1201
1202 /*
1203  * Native read with retry for link status and receiver capability reads for
1204  * cases where the sink may still be asleep.
1205  */
1206 static bool
1207 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1208                                uint8_t *recv, int recv_bytes)
1209 {
1210         int ret, i;
1211
1212         /*
1213          * Sinks are *supposed* to come up within 1ms from an off state,
1214          * but we're also supposed to retry 3 times per the spec.
1215          */
1216         for (i = 0; i < 3; i++) {
1217                 ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1218                                                recv_bytes);
1219                 if (ret == recv_bytes)
1220                         return true;
1221                 udelay(1000);
1222         }
1223
1224         return false;
1225 }
1226
1227 /*
1228  * Fetch AUX CH registers 0x202 - 0x207 which contain
1229  * link status information
1230  */
1231 static bool
1232 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1233 {
1234         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1235         return cdv_intel_dp_aux_native_read_retry(encoder,
1236                                               DP_LANE0_1_STATUS,
1237                                               intel_dp->link_status,
1238                                               DP_LINK_STATUS_SIZE);
1239 }
1240
1241 static uint8_t
1242 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1243                      int r)
1244 {
1245         return link_status[r - DP_LANE0_1_STATUS];
1246 }
1247
1248 static uint8_t
1249 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1250                                  int lane)
1251 {
1252         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1253         int         s = ((lane & 1) ?
1254                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1255                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1256         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1257
1258         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1259 }
1260
1261 static uint8_t
1262 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1263                                       int lane)
1264 {
1265         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1266         int         s = ((lane & 1) ?
1267                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1268                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1269         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1270
1271         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1272 }
1273
1274
1275 #if 0
1276 static char     *voltage_names[] = {
1277         "0.4V", "0.6V", "0.8V", "1.2V"
1278 };
1279 static char     *pre_emph_names[] = {
1280         "0dB", "3.5dB", "6dB", "9.5dB"
1281 };
1282 static char     *link_train_names[] = {
1283         "pattern 1", "pattern 2", "idle", "off"
1284 };
1285 #endif
1286
1287 #define CDV_DP_VOLTAGE_MAX          DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1288 /*
1289 static uint8_t
1290 cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1291 {
1292         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1293         case DP_TRAIN_VOLTAGE_SWING_400:
1294                 return DP_TRAIN_PRE_EMPHASIS_6;
1295         case DP_TRAIN_VOLTAGE_SWING_600:
1296                 return DP_TRAIN_PRE_EMPHASIS_6;
1297         case DP_TRAIN_VOLTAGE_SWING_800:
1298                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1299         case DP_TRAIN_VOLTAGE_SWING_1200:
1300         default:
1301                 return DP_TRAIN_PRE_EMPHASIS_0;
1302         }
1303 }
1304 */
1305 static void
1306 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1307 {
1308         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1309         uint8_t v = 0;
1310         uint8_t p = 0;
1311         int lane;
1312
1313         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1314                 uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1315                 uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1316
1317                 if (this_v > v)
1318                         v = this_v;
1319                 if (this_p > p)
1320                         p = this_p;
1321         }
1322         
1323         if (v >= CDV_DP_VOLTAGE_MAX)
1324                 v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1325
1326         if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1327                 p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1328                 
1329         for (lane = 0; lane < 4; lane++)
1330                 intel_dp->train_set[lane] = v | p;
1331 }
1332
1333
1334 static uint8_t
1335 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1336                       int lane)
1337 {
1338         int i = DP_LANE0_1_STATUS + (lane >> 1);
1339         int s = (lane & 1) * 4;
1340         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1341
1342         return (l >> s) & 0xf;
1343 }
1344
1345 /* Check for clock recovery is done on all channels */
1346 static bool
1347 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1348 {
1349         int lane;
1350         uint8_t lane_status;
1351
1352         for (lane = 0; lane < lane_count; lane++) {
1353                 lane_status = cdv_intel_get_lane_status(link_status, lane);
1354                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1355                         return false;
1356         }
1357         return true;
1358 }
1359
1360 /* Check to see if channel eq is done on all channels */
1361 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1362                          DP_LANE_CHANNEL_EQ_DONE|\
1363                          DP_LANE_SYMBOL_LOCKED)
1364 static bool
1365 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1366 {
1367         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1368         uint8_t lane_align;
1369         uint8_t lane_status;
1370         int lane;
1371
1372         lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1373                                           DP_LANE_ALIGN_STATUS_UPDATED);
1374         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1375                 return false;
1376         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1377                 lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1378                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1379                         return false;
1380         }
1381         return true;
1382 }
1383
1384 static bool
1385 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1386                         uint32_t dp_reg_value,
1387                         uint8_t dp_train_pat)
1388 {
1389         
1390         struct drm_device *dev = encoder->base.dev;
1391         int ret;
1392         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1393
1394         REG_WRITE(intel_dp->output_reg, dp_reg_value);
1395         REG_READ(intel_dp->output_reg);
1396
1397         ret = cdv_intel_dp_aux_native_write_1(encoder,
1398                                     DP_TRAINING_PATTERN_SET,
1399                                     dp_train_pat);
1400
1401         if (ret != 1) {
1402                 DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1403                                 dp_train_pat);
1404                 return false;
1405         }
1406
1407         return true;
1408 }
1409
1410
1411 static bool
1412 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1413                         uint8_t dp_train_pat)
1414 {
1415         
1416         int ret;
1417         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1418
1419         ret = cdv_intel_dp_aux_native_write(encoder,
1420                                         DP_TRAINING_LANE0_SET,
1421                                         intel_dp->train_set,
1422                                         intel_dp->lane_count);
1423
1424         if (ret != intel_dp->lane_count) {
1425                 DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1426                                 intel_dp->train_set[0], intel_dp->lane_count);
1427                 return false;
1428         }
1429         return true;
1430 }
1431
1432 static void
1433 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1434 {
1435         struct drm_device *dev = encoder->base.dev;
1436         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1437         struct ddi_regoff *ddi_reg;
1438         int vswing, premph, index;
1439
1440         if (intel_dp->output_reg == DP_B)
1441                 ddi_reg = &ddi_DP_train_table[0];
1442         else
1443                 ddi_reg = &ddi_DP_train_table[1];
1444
1445         vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1446         premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1447                                 DP_TRAIN_PRE_EMPHASIS_SHIFT;
1448
1449         if (vswing + premph > 3)
1450                 return;
1451 #ifdef CDV_FAST_LINK_TRAIN
1452         return;
1453 #endif
1454         DRM_DEBUG_KMS("Test2\n");
1455         //return ;
1456         cdv_sb_reset(dev);
1457         /* ;Swing voltage programming
1458         ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1459         cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1460
1461         /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1462         cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1463
1464         /* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1465          * The VSwing_PreEmph table is also considered based on the vswing/premp
1466          */
1467         index = (vswing + premph) * 2;
1468         if (premph == 1 && vswing == 1) {
1469                 cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1470         } else
1471                 cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1472
1473         /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1474         if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1475                 cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1476         else
1477                 cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1478
1479         /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1480         /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1481
1482         /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1483         cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1484
1485         /* ;Pre emphasis programming
1486          * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1487          */
1488         cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1489
1490         /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1491         index = 2 * premph + 1;
1492         cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1493         return; 
1494 }
1495
1496
1497 /* Enable corresponding port and start training pattern 1 */
1498 static void
1499 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1500 {
1501         struct drm_device *dev = encoder->base.dev;
1502         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1503         int i;
1504         uint8_t voltage;
1505         bool clock_recovery = false;
1506         int tries;
1507         u32 reg;
1508         uint32_t DP = intel_dp->DP;
1509
1510         DP |= DP_PORT_EN;
1511         DP &= ~DP_LINK_TRAIN_MASK;
1512                 
1513         reg = DP;       
1514         reg |= DP_LINK_TRAIN_PAT_1;
1515         /* Enable output, wait for it to become active */
1516         REG_WRITE(intel_dp->output_reg, reg);
1517         REG_READ(intel_dp->output_reg);
1518         gma_wait_for_vblank(dev);
1519
1520         DRM_DEBUG_KMS("Link config\n");
1521         /* Write the link configuration data */
1522         cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1523                                   intel_dp->link_configuration,
1524                                   2);
1525
1526         memset(intel_dp->train_set, 0, 4);
1527         voltage = 0;
1528         tries = 0;
1529         clock_recovery = false;
1530
1531         DRM_DEBUG_KMS("Start train\n");
1532                 reg = DP | DP_LINK_TRAIN_PAT_1;
1533
1534
1535         for (;;) {
1536                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1537                 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1538                                 intel_dp->train_set[0],
1539                                 intel_dp->link_configuration[0],
1540                                 intel_dp->link_configuration[1]);
1541
1542                 if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1543                         DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1544                 }
1545                 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1546                 /* Set training pattern 1 */
1547
1548                 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1549
1550                 udelay(200);
1551                 if (!cdv_intel_dp_get_link_status(encoder))
1552                         break;
1553
1554                 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1555                                 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1556                                 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1557
1558                 if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1559                         DRM_DEBUG_KMS("PT1 train is done\n");
1560                         clock_recovery = true;
1561                         break;
1562                 }
1563
1564                 /* Check to see if we've tried the max voltage */
1565                 for (i = 0; i < intel_dp->lane_count; i++)
1566                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1567                                 break;
1568                 if (i == intel_dp->lane_count)
1569                         break;
1570
1571                 /* Check to see if we've tried the same voltage 5 times */
1572                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1573                         ++tries;
1574                         if (tries == 5)
1575                                 break;
1576                 } else
1577                         tries = 0;
1578                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1579
1580                 /* Compute new intel_dp->train_set as requested by target */
1581                 cdv_intel_get_adjust_train(encoder);
1582
1583         }
1584
1585         if (!clock_recovery) {
1586                 DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1587         }
1588         
1589         intel_dp->DP = DP;
1590 }
1591
1592 static void
1593 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1594 {
1595         struct drm_device *dev = encoder->base.dev;
1596         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1597         bool channel_eq = false;
1598         int tries, cr_tries;
1599         u32 reg;
1600         uint32_t DP = intel_dp->DP;
1601
1602         /* channel equalization */
1603         tries = 0;
1604         cr_tries = 0;
1605         channel_eq = false;
1606
1607         DRM_DEBUG_KMS("\n");
1608                 reg = DP | DP_LINK_TRAIN_PAT_2;
1609
1610         for (;;) {
1611
1612                 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1613                                 intel_dp->train_set[0],
1614                                 intel_dp->link_configuration[0],
1615                                 intel_dp->link_configuration[1]);
1616                 /* channel eq pattern */
1617
1618                 if (!cdv_intel_dp_set_link_train(encoder, reg,
1619                                              DP_TRAINING_PATTERN_2)) {
1620                         DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1621                 }
1622                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1623
1624                 if (cr_tries > 5) {
1625                         DRM_ERROR("failed to train DP, aborting\n");
1626                         cdv_intel_dp_link_down(encoder);
1627                         break;
1628                 }
1629
1630                 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1631
1632                 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1633
1634                 udelay(1000);
1635                 if (!cdv_intel_dp_get_link_status(encoder))
1636                         break;
1637
1638                 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1639                                 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1640                                 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1641
1642                 /* Make sure clock is still ok */
1643                 if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1644                         cdv_intel_dp_start_link_train(encoder);
1645                         cr_tries++;
1646                         continue;
1647                 }
1648
1649                 if (cdv_intel_channel_eq_ok(encoder)) {
1650                         DRM_DEBUG_KMS("PT2 train is done\n");
1651                         channel_eq = true;
1652                         break;
1653                 }
1654
1655                 /* Try 5 times, then try clock recovery if that fails */
1656                 if (tries > 5) {
1657                         cdv_intel_dp_link_down(encoder);
1658                         cdv_intel_dp_start_link_train(encoder);
1659                         tries = 0;
1660                         cr_tries++;
1661                         continue;
1662                 }
1663
1664                 /* Compute new intel_dp->train_set as requested by target */
1665                 cdv_intel_get_adjust_train(encoder);
1666                 ++tries;
1667
1668         }
1669
1670         reg = DP | DP_LINK_TRAIN_OFF;
1671
1672         REG_WRITE(intel_dp->output_reg, reg);
1673         REG_READ(intel_dp->output_reg);
1674         cdv_intel_dp_aux_native_write_1(encoder,
1675                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1676 }
1677
1678 static void
1679 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1680 {
1681         struct drm_device *dev = encoder->base.dev;
1682         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1683         uint32_t DP = intel_dp->DP;
1684
1685         if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1686                 return;
1687
1688         DRM_DEBUG_KMS("\n");
1689
1690
1691         {
1692                 DP &= ~DP_LINK_TRAIN_MASK;
1693                 REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1694         }
1695         REG_READ(intel_dp->output_reg);
1696
1697         msleep(17);
1698
1699         REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1700         REG_READ(intel_dp->output_reg);
1701 }
1702
1703 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1704 {
1705         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1706         enum drm_connector_status status;
1707
1708         status = connector_status_disconnected;
1709         if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1710                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1711         {
1712                 if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1713                         status = connector_status_connected;
1714         }
1715         if (status == connector_status_connected)
1716                 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1717                         intel_dp->dpcd[0], intel_dp->dpcd[1],
1718                         intel_dp->dpcd[2], intel_dp->dpcd[3]);
1719         return status;
1720 }
1721
1722 /**
1723  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1724  *
1725  * \return true if DP port is connected.
1726  * \return false if DP port is disconnected.
1727  */
1728 static enum drm_connector_status
1729 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1730 {
1731         struct gma_encoder *encoder = gma_attached_encoder(connector);
1732         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1733         enum drm_connector_status status;
1734         struct edid *edid = NULL;
1735         int edp = is_edp(encoder);
1736
1737         intel_dp->has_audio = false;
1738
1739         if (edp)
1740                 cdv_intel_edp_panel_vdd_on(encoder);
1741         status = cdv_dp_detect(encoder);
1742         if (status != connector_status_connected) {
1743                 if (edp)
1744                         cdv_intel_edp_panel_vdd_off(encoder);
1745                 return status;
1746         }
1747
1748         if (intel_dp->force_audio) {
1749                 intel_dp->has_audio = intel_dp->force_audio > 0;
1750         } else {
1751                 edid = drm_get_edid(connector, &intel_dp->adapter);
1752                 if (edid) {
1753                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1754                         kfree(edid);
1755                 }
1756         }
1757         if (edp)
1758                 cdv_intel_edp_panel_vdd_off(encoder);
1759
1760         return connector_status_connected;
1761 }
1762
1763 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1764 {
1765         struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1766         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1767         struct edid *edid = NULL;
1768         int ret = 0;
1769         int edp = is_edp(intel_encoder);
1770
1771
1772         edid = drm_get_edid(connector, &intel_dp->adapter);
1773         if (edid) {
1774                 drm_mode_connector_update_edid_property(connector, edid);
1775                 ret = drm_add_edid_modes(connector, edid);
1776                 kfree(edid);
1777         }
1778
1779         if (is_edp(intel_encoder)) {
1780                 struct drm_device *dev = connector->dev;
1781                 struct drm_psb_private *dev_priv = dev->dev_private;
1782                 
1783                 cdv_intel_edp_panel_vdd_off(intel_encoder);
1784                 if (ret) {
1785                         if (edp && !intel_dp->panel_fixed_mode) {
1786                                 struct drm_display_mode *newmode;
1787                                 list_for_each_entry(newmode, &connector->probed_modes,
1788                                             head) {
1789                                         if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1790                                                 intel_dp->panel_fixed_mode =
1791                                                         drm_mode_duplicate(dev, newmode);
1792                                                 break;
1793                                         }
1794                                 }
1795                         }
1796
1797                         return ret;
1798                 }
1799                 if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1800                         intel_dp->panel_fixed_mode =
1801                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1802                         if (intel_dp->panel_fixed_mode) {
1803                                 intel_dp->panel_fixed_mode->type |=
1804                                         DRM_MODE_TYPE_PREFERRED;
1805                         }
1806                 }
1807                 if (intel_dp->panel_fixed_mode != NULL) {
1808                         struct drm_display_mode *mode;
1809                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1810                         drm_mode_probed_add(connector, mode);
1811                         return 1;
1812                 }
1813         }
1814
1815         return ret;
1816 }
1817
1818 static bool
1819 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1820 {
1821         struct gma_encoder *encoder = gma_attached_encoder(connector);
1822         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1823         struct edid *edid;
1824         bool has_audio = false;
1825         int edp = is_edp(encoder);
1826
1827         if (edp)
1828                 cdv_intel_edp_panel_vdd_on(encoder);
1829
1830         edid = drm_get_edid(connector, &intel_dp->adapter);
1831         if (edid) {
1832                 has_audio = drm_detect_monitor_audio(edid);
1833                 kfree(edid);
1834         }
1835         if (edp)
1836                 cdv_intel_edp_panel_vdd_off(encoder);
1837
1838         return has_audio;
1839 }
1840
1841 static int
1842 cdv_intel_dp_set_property(struct drm_connector *connector,
1843                       struct drm_property *property,
1844                       uint64_t val)
1845 {
1846         struct drm_psb_private *dev_priv = connector->dev->dev_private;
1847         struct gma_encoder *encoder = gma_attached_encoder(connector);
1848         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1849         int ret;
1850
1851         ret = drm_object_property_set_value(&connector->base, property, val);
1852         if (ret)
1853                 return ret;
1854
1855         if (property == dev_priv->force_audio_property) {
1856                 int i = val;
1857                 bool has_audio;
1858
1859                 if (i == intel_dp->force_audio)
1860                         return 0;
1861
1862                 intel_dp->force_audio = i;
1863
1864                 if (i == 0)
1865                         has_audio = cdv_intel_dp_detect_audio(connector);
1866                 else
1867                         has_audio = i > 0;
1868
1869                 if (has_audio == intel_dp->has_audio)
1870                         return 0;
1871
1872                 intel_dp->has_audio = has_audio;
1873                 goto done;
1874         }
1875
1876         if (property == dev_priv->broadcast_rgb_property) {
1877                 if (val == !!intel_dp->color_range)
1878                         return 0;
1879
1880                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1881                 goto done;
1882         }
1883
1884         return -EINVAL;
1885
1886 done:
1887         if (encoder->base.crtc) {
1888                 struct drm_crtc *crtc = encoder->base.crtc;
1889                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1890                                          crtc->x, crtc->y,
1891                                          crtc->primary->fb);
1892         }
1893
1894         return 0;
1895 }
1896
1897 static void
1898 cdv_intel_dp_destroy(struct drm_connector *connector)
1899 {
1900         struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1901         struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1902
1903         if (is_edp(gma_encoder)) {
1904         /*      cdv_intel_panel_destroy_backlight(connector->dev); */
1905                 if (intel_dp->panel_fixed_mode) {
1906                         kfree(intel_dp->panel_fixed_mode);
1907                         intel_dp->panel_fixed_mode = NULL;
1908                 }
1909         }
1910         i2c_del_adapter(&intel_dp->adapter);
1911         drm_connector_unregister(connector);
1912         drm_connector_cleanup(connector);
1913         kfree(connector);
1914 }
1915
1916 static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1917 {
1918         drm_encoder_cleanup(encoder);
1919 }
1920
1921 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1922         .dpms = cdv_intel_dp_dpms,
1923         .mode_fixup = cdv_intel_dp_mode_fixup,
1924         .prepare = cdv_intel_dp_prepare,
1925         .mode_set = cdv_intel_dp_mode_set,
1926         .commit = cdv_intel_dp_commit,
1927 };
1928
1929 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1930         .dpms = drm_helper_connector_dpms,
1931         .detect = cdv_intel_dp_detect,
1932         .fill_modes = drm_helper_probe_single_connector_modes,
1933         .set_property = cdv_intel_dp_set_property,
1934         .destroy = cdv_intel_dp_destroy,
1935 };
1936
1937 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1938         .get_modes = cdv_intel_dp_get_modes,
1939         .mode_valid = cdv_intel_dp_mode_valid,
1940         .best_encoder = gma_best_encoder,
1941 };
1942
1943 static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1944         .destroy = cdv_intel_dp_encoder_destroy,
1945 };
1946
1947
1948 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1949 {
1950         cdv_intel_attach_force_audio_property(connector);
1951         cdv_intel_attach_broadcast_rgb_property(connector);
1952 }
1953
1954 /* check the VBT to see whether the eDP is on DP-D port */
1955 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1956 {
1957         struct drm_psb_private *dev_priv = dev->dev_private;
1958         struct child_device_config *p_child;
1959         int i;
1960
1961         if (!dev_priv->child_dev_num)
1962                 return false;
1963
1964         for (i = 0; i < dev_priv->child_dev_num; i++) {
1965                 p_child = dev_priv->child_dev + i;
1966
1967                 if (p_child->dvo_port == PORT_IDPC &&
1968                     p_child->device_type == DEVICE_TYPE_eDP)
1969                         return true;
1970         }
1971         return false;
1972 }
1973
1974 /* Cedarview display clock gating
1975
1976    We need this disable dot get correct behaviour while enabling
1977    DP/eDP. TODO - investigate if we can turn it back to normality
1978    after enabling */
1979 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1980 {
1981         u32 reg_value;
1982         reg_value = REG_READ(DSPCLK_GATE_D);
1983
1984         reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1985                         DPUNIT_PIPEA_GATE_DISABLE |
1986                         DPCUNIT_CLOCK_GATE_DISABLE |
1987                         DPLSUNIT_CLOCK_GATE_DISABLE |
1988                         DPOUNIT_CLOCK_GATE_DISABLE |
1989                         DPIOUNIT_CLOCK_GATE_DISABLE);   
1990
1991         REG_WRITE(DSPCLK_GATE_D, reg_value);
1992
1993         udelay(500);            
1994 }
1995
1996 void
1997 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1998 {
1999         struct gma_encoder *gma_encoder;
2000         struct gma_connector *gma_connector;
2001         struct drm_connector *connector;
2002         struct drm_encoder *encoder;
2003         struct cdv_intel_dp *intel_dp;
2004         const char *name = NULL;
2005         int type = DRM_MODE_CONNECTOR_DisplayPort;
2006
2007         gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
2008         if (!gma_encoder)
2009                 return;
2010         gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
2011         if (!gma_connector)
2012                 goto err_connector;
2013         intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
2014         if (!intel_dp)
2015                 goto err_priv;
2016
2017         if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
2018                 type = DRM_MODE_CONNECTOR_eDP;
2019
2020         connector = &gma_connector->base;
2021         encoder = &gma_encoder->base;
2022
2023         drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
2024         drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);
2025
2026         gma_connector_attach_encoder(gma_connector, gma_encoder);
2027
2028         if (type == DRM_MODE_CONNECTOR_DisplayPort)
2029                 gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2030         else
2031                 gma_encoder->type = INTEL_OUTPUT_EDP;
2032
2033
2034         gma_encoder->dev_priv=intel_dp;
2035         intel_dp->encoder = gma_encoder;
2036         intel_dp->output_reg = output_reg;
2037         
2038         drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
2039         drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
2040
2041         connector->polled = DRM_CONNECTOR_POLL_HPD;
2042         connector->interlace_allowed = false;
2043         connector->doublescan_allowed = false;
2044
2045         drm_connector_register(connector);
2046
2047         /* Set up the DDC bus. */
2048         switch (output_reg) {
2049                 case DP_B:
2050                         name = "DPDDC-B";
2051                         gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2052                         break;
2053                 case DP_C:
2054                         name = "DPDDC-C";
2055                         gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2056                         break;
2057         }
2058
2059         cdv_disable_intel_clock_gating(dev);
2060
2061         cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2062         /* FIXME:fail check */
2063         cdv_intel_dp_add_properties(connector);
2064
2065         if (is_edp(gma_encoder)) {
2066                 int ret;
2067                 struct edp_power_seq cur;
2068                 u32 pp_on, pp_off, pp_div;
2069                 u32 pwm_ctrl;
2070
2071                 pp_on = REG_READ(PP_CONTROL);
2072                 pp_on &= ~PANEL_UNLOCK_MASK;
2073                 pp_on |= PANEL_UNLOCK_REGS;
2074                 
2075                 REG_WRITE(PP_CONTROL, pp_on);
2076
2077                 pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2078                 pwm_ctrl |= PWM_PIPE_B;
2079                 REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2080
2081                 pp_on = REG_READ(PP_ON_DELAYS);
2082                 pp_off = REG_READ(PP_OFF_DELAYS);
2083                 pp_div = REG_READ(PP_DIVISOR);
2084         
2085                 /* Pull timing values out of registers */
2086                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2087                         PANEL_POWER_UP_DELAY_SHIFT;
2088
2089                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2090                         PANEL_LIGHT_ON_DELAY_SHIFT;
2091
2092                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2093                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2094
2095                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2096                         PANEL_POWER_DOWN_DELAY_SHIFT;
2097
2098                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2099                                PANEL_POWER_CYCLE_DELAY_SHIFT);
2100
2101                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2102                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2103
2104
2105                 intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2106                 intel_dp->backlight_on_delay = cur.t8 / 10;
2107                 intel_dp->backlight_off_delay = cur.t9 / 10;
2108                 intel_dp->panel_power_down_delay = cur.t10 / 10;
2109                 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2110
2111                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2112                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2113                               intel_dp->panel_power_cycle_delay);
2114
2115                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2116                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2117
2118
2119                 cdv_intel_edp_panel_vdd_on(gma_encoder);
2120                 ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2121                                                intel_dp->dpcd,
2122                                                sizeof(intel_dp->dpcd));
2123                 cdv_intel_edp_panel_vdd_off(gma_encoder);
2124                 if (ret == 0) {
2125                         /* if this fails, presume the device is a ghost */
2126                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2127                         cdv_intel_dp_encoder_destroy(encoder);
2128                         cdv_intel_dp_destroy(connector);
2129                         goto err_priv;
2130                 } else {
2131                         DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2132                                 intel_dp->dpcd[0], intel_dp->dpcd[1], 
2133                                 intel_dp->dpcd[2], intel_dp->dpcd[3]);
2134                         
2135                 }
2136                 /* The CDV reference driver moves pnale backlight setup into the displays that
2137                    have a backlight: this is a good idea and one we should probably adopt, however
2138                    we need to migrate all the drivers before we can do that */
2139                 /*cdv_intel_panel_setup_backlight(dev); */
2140         }
2141         return;
2142
2143 err_priv:
2144         kfree(gma_connector);
2145 err_connector:
2146         kfree(gma_encoder);
2147 }